Target	Putative off-target site				No. of plants	No. of plants
site	Gene locus	Region	Sequence ^a	MMs ^b	sequenced ^c	with mutations
	Glyma19g24640	introp	GTgGtGAaCCTCTCGTTGTT	2	18	0
GmFT2a	19:-30300772	muon	GGG	3		
-SP1	Glyma16g26690		GTAGGGAcCCTCTaGTTGT		10	0
	16:+30780526	exon	TGGG	2	18	U
	Glyma12g35200		CACAcGTgGgaAACCAACC	4	35	0
GmFT2a	12:-38349846	uur	AAGG	4		
-SP2	Glyma15g10400	intron	CtCAtGTTtTCAACCAAgCA	4	35	0
	15:+7538434	muron	AGG	4		
	Glyma09g11720		gtCtGATATTaACCCTTGGTT	4	11	0
GmFT2a	9:-11946423	uur	GG 4		11	0
-SP3	Glyma16g26690		CACCGATATTTAttCTTGGT	2	11	0
	16:-30780651	exon	TGG	2		

Table S1 Potential off-target analysis at the three target sites of GmFT2a in the T1 generation

^a Mismatched bases are shown in lowercase letters. ^b No. of mismatched bases. ^c T1 plants identified as biallelic mutants of *GmFT2a*.

Text S1 Frameshift mutations at three target sites of GmFT2a generated premature translation termination codons (PTCs)

CDS of GmFT2a (WT, wild-type)

Protein sequence of GmFT2a (WT, wild-type)

MPSGSRDPLVVGGVIGDVLDPFEYSIPMRVTYNNRDVSNGCEFKPSQVVNQPRVNIGGDDLRNFYTLIAVDPDAPSPSDPN LREYLHWLVTDIPATTGASFGHEVVTYESPRPMMGIHRLVFVLFRQLGRETVYAPGWRQNFNTKEFAELYNLGLPVAAVYF NIQRESGSGGRRLY

GmFT2a-SP1 (1-bp insertion)

CDS

Protein sequence

MPSGSRDPLVCWGSNWGCIGSF Stop

GmFT2a-SP1 (8-bp deletion)

CDS

Protein sequence

MPSGSRDRWGSNWGCIGSF Stop

GmFT2a-SP2 (1-bp insertion)

CDS

ATGCCTAGTGGAAGTAGGGATCCTCTCGTTGTTGGGGGGAGTAATTGGGGATGTATTGGATCCTTTTGAATATTCTATTCC TATGAGGGTTACCTACAATAACAGAGATGTCAGCAATGGATGTGAATTCAAACCCTCACAAGTTGTCAACCAA<u>A</u>CCAA GGGTAAATATCGGTGG<mark>TGA</mark>TGACCTCAGGAACTTCTATACTTTGATTGCGGTTGATCCCGATGCACCTAGCCCAAGTGA CCCCAATTTGAGAGAATACCTCCATTGGTTGGTGGTGACTGATATCCCAGCAACAACAGGGGCTAGTTTCGGCCATGAGGT TGTAACATATGAAAGTCCAAGACCAATGATGGGGGATTCATCGTTTGGTGTTTTGTGTTATTTCGTCAACTGGGTAGGGAG ACCGTGTATGCACCAGGATGGCGCCAGAATTTCAACACTAAAGAATTTGCTGAACTTTACAACCTTGGATTGCCAGTT GCTGCTGTCTATTTCAACATTCAGAGGGAATCTGGTTCTGGTGGAAGGAGGTTATACTAA Protein sequence

MPSGSRDPLVVGGVIGDVLDPFEYSIPMRVTYNNRDVSNGCEFKPSQVVNQTKGKYRW Stop

GmFT2a-SP2 (4-bp deletion)

CDS

ATGCCTAGTGGAAGTAGGGATCCTCTCGTTGTTGGGGGAGTAATTGGGGATGTATTGGATCCTTTTGAATATTCTATTCC TATGAGGGTTACCTACAATAACAGAGATGTCAGCAATGGATGTGAATTCAAACCCTCACAAGTTGTCAA----CCAAGGG TAAATATCGGTGGTGATGACCTCAGGAACTTCTATACTTTGATTGCGGTTGATCCCGATGCACCTAGCCCAAGTGACCC CAATTTGAGAGAATACCTCCATTGGTTGGTGACTGATATCCCAGCAACAACAGGGGCTAGTTTCGGCCATGAGGTTGT AACATATGAAAGTCCAAGACCAATGATGGGGGATTCATCGTTTGGTGTTTGTGTTATTTCGTCAACTGGGTAGGGAGACC GTGTATGCACCAGGATGGCGCCAGAATTTCAACACTAAAGAATTTGCTGAACTTTACAACCTTGGATTGCCAGTTGCT GCTGTCTATTTCAACATTCAGAGGGAATCTGGTTCTGGTGGGAAGGAGGTTATACTAA

Protein sequence

MPSGSRDPLVVGGVIGDVLDPFEYSIPMRVTYNNRDVSNGCEFKPSQVVNQG Stop

GmFT2a-SP3 (14-bp deletion)

CDS

Protein sequence

MPSGSRDPLVVGGVIGDVLDPFEYSIPMRVTYNNRDVSNGCEFKPSQVVNQPW Stop

GmFT2a-SP3 (1-bp insertion)

CDS

Protein sequence

MPSGSRDPLVVGGVIGDVLDPFEYSIPMRVTYNNRDVSNGCEFKPSQVVNQPKGKYRW Stop

Text S1 Frameshift mutations at three target sites of *GmFT2a* generated premature translation termination codons (PTCs). CDS, coding sequence. Blue capital letter, target sequence. Red capital letter, protospacer adjacent motif. Underline, insertions. Dashes, deletions. Yellow rectangle, termination codon.

Figure S1 Homozygous *ft2a* mutants at three target sites in the T1 generation delayed flowering time under natural conditions (summer) in Beijing, China (N39°58', E116°20'). WT, wild-type plant (Jack). *ft2a*-SP1-T1, *ft2a*-SP2-T1 and *ft2a*-SP3-T1 were homozygous mutants of *GmFT2a* at the three target sites in the T1 generation, respectively. n, exact numbers of individual plants identified. The flowering time are shown as the mean values \pm standard deviation. **, homozygous T1 *ft2a* mutants exhibit highly significant late flowering (*P* < 0.01). DAE, days after emergence.

T1 homozygous	The types of	No. of the progeny	No. of the progeny	Total
ft2a mutants	homozygous mutations	plants under LD conditions	plants under SD conditions	
ft2a-SP1-T1#11.14	1-bp insertion at GmFT2a-SP1	4	3	7
ft2a-SP1-T1#11.15	1-bp insertion at GmFT2a-SP1	8	6	14
ft2a-SP1-T1#11.16	1-bp insertion at GmFT2a-SP1	7	6	13
ft2a-SP2-T1#16.04	1-bp insertion at GmFT2a-SP2	7	8	15
ft2a-SP2-T1#16.11	1-bp insertion at GmFT2a-SP2	7	8	15
ft2a-SP2-T1#16.12	1-bp insertion at GmFT2a-SP2	8	7	15
ft2a-SP3-T1#30.02	14-bp deletion at GmFT2a-SP3	3	3	6
ft2a-SP3-T1#30.08	14-bp deletion at GmFT2a-SP3	6	6	12
ft2a-SP3-T1#30.12	14-bp deletion at GmFT2a-SP3	6	6	12
Total		56	53	109

Table S2 T2 ft2a mutants under LD and SD conditions

Text S2 The sequences of the Cas9 and Arabidopsis U6 promoter used in the present study.

Cas9 DNA sequence

a gaaccgcaaggagacggtatacaagaaggaagaataggatctgctacctgcaggagattttcagcaacgaaatggcgaaggtggacgattcgttctttcatagattggaggaggagtttcctcggeggacettagattgatetacetegetetggcacacatgattaagtteagggggccattttetgategagggggatettaaceeggacaatagegatgtggacaagttgtteatecagetegtecaaaccta caat cag ccttttg agg aa aa accca at taat gctt cag gcg t cg acg cca agg cg at cct gt ct g cacg ccttt caa agt ct cg ccg gctt ga ga actt g at cg ct caact cccg gg g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc gg g g ga actt g at cg ct caact ccc g g g g ga actt g at cg ct caact ccc g g g g ga actt g at cg ct caact ccc g g g g g g at cct g t cg c g g ct g a cg ct caact ccc g g g g g g a c ct g at c c g g c g at cct g t c g at c c g g c g at cct g t c g at c c g g c g at cct g t c g at c c g g c g at cct g t c g at c c g g c g g c g at cct g c c g g c g at c c g g c g g c g at c c g g c g at c c g g c g g c g at c c g g c g at c c g g c g g c g at c c g g c g at c c g g c g g c g at c c g g c g at c c g g c g c g at c c g g c g c g at c c g g c g at c c g g c g g c g at c c g g c g at c c g g c g g c g at c c g g c g at c c g g c g g c g at c c g g c g c g at c c g g at c c g g at c c g g c g at c c g g at c c g g c g at c c g aaagaagaacggcttgttcgggaatctcattgcactttcgttggggctcacaccaaacttcaagagtaattttgatctcgctgaggacgcaaagctgcagctttccaaggacacttatgacgatgaccaaggacgcaaagctgcagctttccaaggacacttatgacgatgaccaaggacgcaaagctgcagctttccaaggacacttatgacgatgaccaaggacgcaaagctgcagctttccaaggacacttatgacgatgaccaaggacgcaaagctgcagctttccaaggacacttatgacgatgaccaaggacgcaaagctgcagctttccaaggacacttatgacgatgaccaaggacgcaaagctgcagctttccaaggacacttatgacgatgacgaaggacgaaagctgcagctttccaaggacgacgacagacgaaggacgcaaagctgcagctttccaaggacgacgacgaaggacgcaaagctgcagctttccaaggacgacgacgacgaaggaaggatggataaccttttggcccaaatcggcgatcagtacgcggacttgttcctcgccgcgaagaatttgtcggacgcgatcctcctgagtgatattctcccgcgtgaacacccgagattacaaaggccccg ggaggactacttcaagaagattgaatgcttcgattccgttgagatcagcggcgtggaagacaggtttaacgcgtcactggggacttaccacgatctcctgaagatcattaaggataaggacttcttgataacctcactaaggccgagggggggtctcagcgaaactggacaaggcgggcttcattaagcggcaactggttgagactagacagatcacgaagcacgtggcgcagattctcgattcacg attatcaccatgctcatgacgcatacctcaacgctgtggtcggaacagcattgattaagaagtacccgaagctcgaagtcggattcgtgtacggtgactataaggtttacgatgtgcgcaagatgat caa aggtggagaaggtcaa agtcaa agaagctcaa aggaggtctctggggtatcaccattatggagaggtccagcttcgaa aagaatccgatcgatttctcgaggcgaaggggatata

Arabidopsis U6 promoter

Figure S2 Schematic illustrating the basic architecture of the constructs used for CRISPR/Cas9-mediated genome editing. *AtU6, Arabidopsis U6* promoter. gRNA, guide-RNA. dpCas9, Cas9 codon-optimized for dicotyledons. NLS, nuclear localization sequence. The *bar* gene driven by a CaMV 35S promoter is used as a screening marker. KanR, kanamycin resistance gene. pVS1-rep, pVS1 replication origin. pVS1 STA, pVS1 stability function.

Table S3 Primer sequences used in the present study

Primer name	Primer sequence	Size (bp)	Purpose	
GmFT2a-F	ATTCATAACAAAGCAAACGAG	653	To amplify the regions which span the target sites	
GmFT2a-R	ACTTGACCTTCCCTTAAACAC			
OFF1-F	CGGAGACAAAATGCAGCAGG	(94		
OFF1-R	GGCCTACAACTATGCTCCCC	684	To examine potential off-target site 1	
OFF2-F	GGGTCATGCAGAAACTCACCT	522	To ensuring material office of the 2	
OFF2-R	TGTGACGTTTGCATGTCTTTTT	555	To examine potential on-target site 2	
OFF3-F	GGGAAGAGTTTCGGGTCGTT	(00		
OFF3-R	FF3-R AAGGTTTCTCATGGTCGGTGT		10 examine potential off-target site 3	
OFF4-F	GGCATCATTGCCCCATTTGTT	426	To examine potential off-target site 4	
OFF4-R	AACCAAGGAATCAAGTGAAAGCAT			
OFF5-F	AAATTTTATGGCACCACTACCTGC	701		
OFF5-R	CTCATCACCATCGCCATCTCT	701	10 examine potential off-target site 5	
OFF6-F	GGGTCATGCAGAAACTCACCT	522	To examine potential off-target site 6	
OFF6-R	TGTGACGTTTGCATGTCTTTTT	533		
Cas9-F	TTGGGGCTCACACCAAACTT	010	To amplify part of the Cas9 coding sequence	
Cas9-R	CGATCGCCTTCTTTTGCTCG	910		
sgRNA-F	AAAAGGCCCCTGGGAATCTG		To amplify the region from the $AtU6$ promoter to	
sgRNA-R	GATGAAGTGGACGGAAGGAAGGAG	593	downstream vector sequence spanning the sgRNA	
GmActin-F	CGGTGGTTCTATCTTGGCATC	249		
GmActin-R	GTCTTTCGCTTCAATAACCCTA		To amplify <i>GmActin</i> as a normalization control.	
q <i>GmFT2a</i> -F	GGATTGCCAGTTGCTGCTGT	1.00		
q <i>GmFT2a</i> -R	GAGTGTGGGGAGATTGCCAAT	160	qK1-PCK analysis (<i>GmF12a</i>)	
q <i>GmActin</i> -F	CGGTGGTTCTATCTTGGCATC	240		
q <i>GmActin</i> -R	GTCTTTCGCTTCAATAACCCTA	249	qK1-rCK analysis (GmAcun)	