Supplementary Information

AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest

Pratiti Bhadra, Jielu Yan, Jinyan Li, Simon Fong, and Shirley W. I. Siu*

Department of Computer and Information Science, University of Macau Avenida da Universidade, Taipa, Macau, China

*Corresponding author: shirleysiu@umac.mo

Last update: 14 Dec 2017

Supplementary Table S1. Pearson correlation coefficients (PCC) of AMP/non-AMP distributions using M^{model_train} . A descriptor is named with its *physiochemical property*, *class*, and *distribution* ("first residue" is coded as 001, "25% residues" as 025, "50% residues" as 050, "75% residues" as 075, "last residue" as 100). Descriptors with PCC < 0.5 are shown with boldface; those with PCC < 0.5 also in the two other datasets (C^{train} , C^{test}) are marked with asterisks.

Descriptor	PCC	Descriptor	PCC	Descriptor	PCC
Charge_C1_001	0.690	Polarizability_C3_025	0.751	NormalizedVDWV_C2_075	0.632
Charge_C2_001*	0.063	SecondaryStr_C1_025	0.797	NormalizedVDWV_C3_075	0.675
Charge_C3_001	0.252	SecondaryStr_C2_025	0.711	Polarity_C1_075	0.730
Hydrophobicity_C1_001	0.747	SecondaryStr_C3_025	0.571	Polarity_C2_075*	0.311
Hydrophobicity_C2_001	0.549	SolventAccessibility_C1_025	0.643	Polarity_C3_075	0.544
Hydrophobicity_C3_001*	0.128	SolventAccessibility_C2_025	0.729	Polarizability_C1_075	0.525
NormalizedVDWV_C1_001	0.554	SolventAccessibility_C3_025	0.669	Polarizability_C2_075	0.801
NormalizedVDWV_C2_001	0.625	Charge_C1_050	0.597	Polarizability_C3_075	0.675
NormalizedVDWV_C3_001*	0.301	Charge_C2_050*	0.288	SecondaryStr_C1_075	0.747
Polarity_C1_001*	0.130	Charge_C3_050	0.268	SecondaryStr_C2_075	0.807
Polarity_C2_001	0.512	Hydrophobicity_C1_050	0.679	SecondaryStr_C3_075	0.627
Polarity_C3_001	0.689	Hydrophobicity_C2_050	0.719	SolventAccessibility_C1_075	0.727
Polarizability_C1_001	0.584	Hydrophobicity_C3_050	0.683	SolventAccessibility_C2_075	0.609
Polarizability_C2_001	0.614	NormalizedVDWV_C1_050	0.628	SolventAccessibility_C3_075	0.613
Polarizability_C3_001*	0.301	NormalizedVDWV_C2_050	0.627	Charge_C1_100	0.571
SecondaryStr_C1_001*	0.346	NormalizedVDWV_C3_050	0.672	Charge_C2_100	0.484
SecondaryStr_C2_001	0.657	Polarity_C1_050	0.710	Charge_C3_100*	0.184
SecondaryStr_C3_001	0.768	Polarity_C2_050*	0.357	Hydrophobicity_C1_100*	0.464
SolventAccessibility_C1_001	0.432	Polarity_C3_050	0.648	Hydrophobicity_C2_100	0.559
SolventAccessibility_C2_001	0.747	Polarizability_C1_050	0.636	Hydrophobicity_C3_100	0.652
SolventAccessibility_C3_001*	0.296	Polarizability_C2_050	0.684	NormalizedVDWV_C1_100	0.529
Charge_C1_025	0.588	Polarizability_C3_050	0.672	NormalizedVDWV_C2_100	0.558
Charge_C2_025	0.661	SecondaryStr_C1_050	0.720	NormalizedVDWV_C3_100	0.567
Charge_C3_025	0.237	SecondaryStr_C2_050	0.739	Polarity_C1_100	0.645
Hydrophobicity_C1_025	0.729	SecondaryStr_C3_050	0.640	Polarity_C2_100	0.521

Hydrophobicity_C2_025	0.782	SolventAccessibility_C1_050	0.432	Polarity_C3_100	0.570
Hydrophobicity_C3_025	0.640	SolventAccessibility_C2_050	0.679	Polarizability_C1_100	0.503
NormalizedVDWV_C1_025	0.703	SolventAccessibility_C3_050	0.629	Polarizability_C2_100	0.565
NormalizedVDWV_C2_025	0.617	Charge_C1_075	0.473	Polarizability_C3_100	0.567
NormalizedVDWV_C3_025	0.751	Charge_C2_075	0.782	SecondaryStr_C1_100*	0.420
Polarity_C1_025	0.636	Charge_C3_075	0.231	SecondaryStr_C2_100	0.723
Polarity_C2_025*	0.315	Hydrophobicity_C1_075	0.609	SecondaryStr_C3_100	0.618
Polarity_C3_025	0.657	Hydrophobicity_C2_075	0.696	SolventAccessibility_C1_100	0.546
Polarizability_C1_025	0.705	Hydrophobicity_C3_075	0.727	SolventAccessibility_C2_100*	0.464
Polarizability_C2_025	0.731	NormalizedVDWV_C1_075	0.638	SolventAccessibility_C3_100	0.639

Supplementary Table S2. Datasets generated from M^{model_train} for P:N ratio tests of AMP prediction. Size of the positive dataset is 3268.

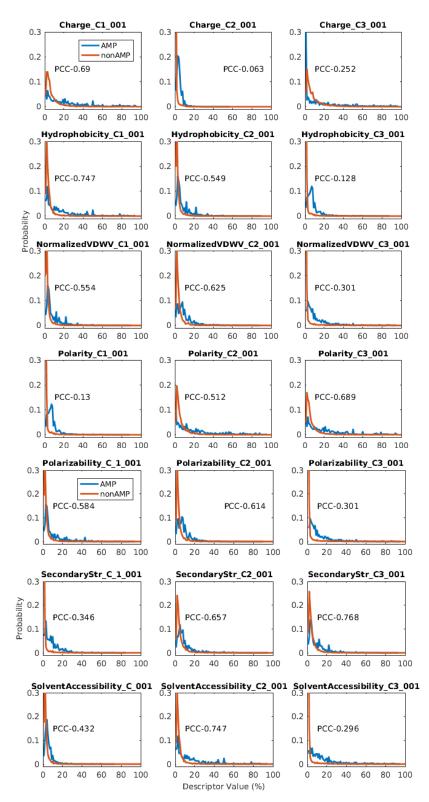
P:N ratio	Size of	Total number of			
	one non-AMP subset	non-AMP subsets			
1:1	3268	51			
1:1.5	4902	34			
1:2	6536	26			
1:2.5	8170	20			
1:3	9804	17			
1:3.5	11438	15			
1:4	13072	13			
1:4.5	14706	11			
1:5	16340	10			
1:5.5	17974	9			
1:6	19608	9			
1:6.5	21242	8			
1:7	22876	7			
1:7.5	24510	7			
1:8	26144	6			
1:8.5	27778	6			
1:9	29412	6			
1:9.5	31046	5			
1:10	32680	5			

Supplementary Table S3. Performance of RF classifiers using different P:N ratios in 10-fold cross validation. Values shown are averages and standard deviations (in brackets) over all corresponding subsets. The optimal model based on C-measure is ratio 1:3.

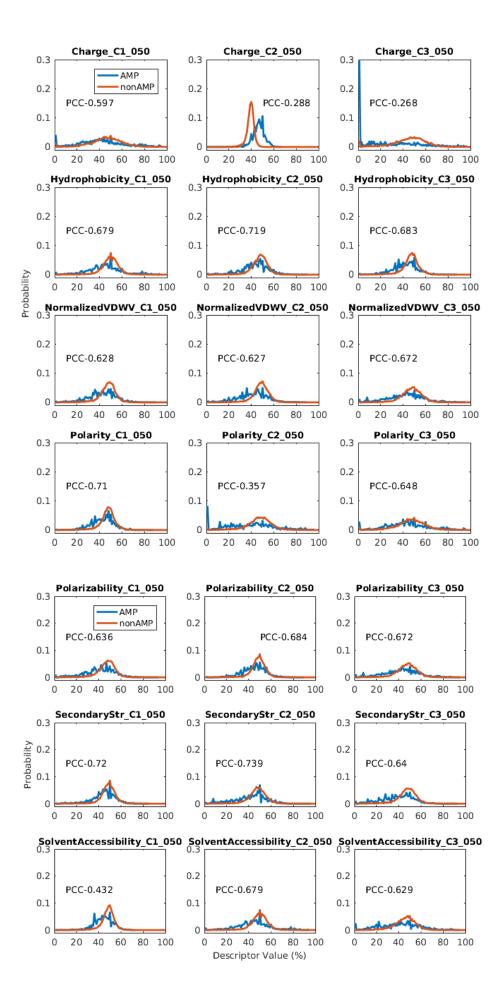
P:N ratio	Sn	Sp	Acc	МСС	AUC-ROC	AUC-PR	Карра	C-measure
1:1	0.978	0.945	0.962	0.924	0.988	0.698	0.923	0.588
	(0.002)	(0.004)	(0.002)	(0.004)	(0.001)	(0.024)	(0.005)	(0.018)
1:1.5	0.972	0.952	0.960	0.917	0.989	0.755	0.917	0.628
	(0.002)	(0.003)	(0.002)	(0.004)	(0.001)	(0.017)	(0.004)	(0.011)
1:2	0.965	0.957	0.960	0.912	0.989	0.791	0.911	0.650
	(0.003)	(0.002)	(0.002)	(0.004)	(0.001)	(0.014)	(0.005)	(0.009)
1:2.5	0.958	0.961	0.961	0.906	0.989	0.814	0.905	0.660
	(0.003)	(0.002)	(0.002)	(0.004)	(0.001)	(0.015)	(0.004)	(0.010)
1:3	0.950	0.965	0.962	0.900	0.989	0.830	0.899	0.665
	(0.003)	(0.002)	(0.002)	(0.004)	(0.000)	(0.009)	(0.004)	(0.006)
1:3.5	0.943	0.968	0.962	0.893	0.989	0.840	0.893	0.663
	(0.004)	(0.001)	(0.002)	(0.005)	(0.001)	(0.010)	(0.005)	(0.009)
1:4	0.936	0.970	0.963	0.888	0.989	0.849	0.888	0.663
	(0.004)	(0.002)	(0.002)	(0.005)	(0.001)	(0.007)	(0.005)	(0.007)
1:4.5	0.929	0.973	0.965	0.884	0.989	0.857	0.884	0.662
	(0.004)	(0.001)	(0.002)	(0.005)	(0.000)	(0.007)	(0.005)	(0.008)
1:5	0.921	0.974	0.965	0.878	0.989	0.858	0.877	0.653
	(0.004)	(0.001)	(0.001)	(0.003)	(0.001)	(0.004)	(0.003)	(0.005)
1:5.5	0.915	0.975	0.966	0.873	0.989	0.862	0.873	0.649
	(0.006)	(0.001)	(0.001)	(0.004)	(0.000)	(0.006)	(0.004)	(0.007)
1:6	0.908	0.977	0.967	0.868	0.989	0.862	0.867	0.642
	(0.005)	(0.001)	(0.001)	(0.004)	(0.001)	(0.007)	(0.004)	(0.010)
1:6.5	0.902	0.978	0.968	0.863	0.989	0.864	0.863	0.637
	(0.006)	(0.001)	(0.001)	(0.006)	(0.001)	(0.005)	(0.006)	(0.009)
1:7	0.894	0.979	0.968	0.858	0.989	0.864	0.858	0.629
	(0.004)	(0.001)	(0.001)	(0.004)	(0.001)	(0.005)	(0.004)	(0.008)
1:7.5	0.889	0.980	0.969	0.854	0.989	0.864	0.854	0.623
	(0.007)	(0.001)	(0.001)	(0.007)	(0.001)	(0.007)	(0.006)	(0.011)
1:8	0.882	0.981	0.970	0.850	0.989	0.863	0.850	0.616
	(0.009)	(0.001)	(0.002)	(0.008)	(0.001)	(0.004)	(0.008)	(0.013)
1:8.5	0.875	0.982	0.971	0.846	0.989	0.859	0.846	0.608
	(0.009)	(0.001)	(0.001)	(0.007)	(0.000)	(0.005)	(0.007)	(0.012)
1:9	0.869	0.982	0.971	0.841	0.989	0.858	0.841	0.601
	(0.007)	(0.000)	(0.001)	(0.006)	(0.000)	(0.006)	(0.006)	(0.012)
1:9.5	0.861	0.983	0.972	0.837	0.989	0.857	0.836	0.593
	(0.005)	(0.001)	(0.001)	(0.006)	(0.000)	(0.002)	(0.006)	(0.010)
1:10	0.859	0.984	0.972	0.835	0.989	0.857	0.835	0.590
	(0.006)	(0.001)	(0.001)	(0.005)	(0.001)	(0.006)	(0.005)	(0.011)

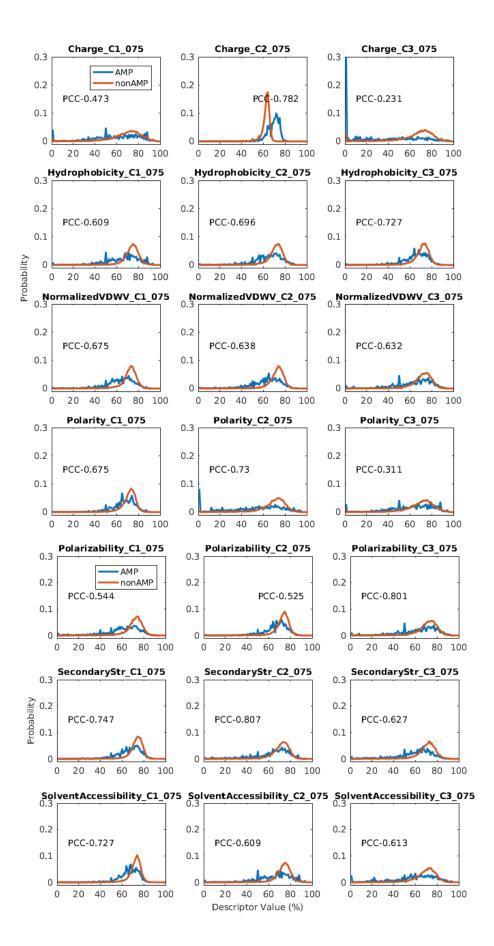
Supplementary Table S4. Comparison of RF and SVM classifiers using D_F features and AMP/non-AMP data ratio of 1:3 in 10-fold cross-validation. Values shown are averages and standard deviations (in brackets) over all corresponding subsets

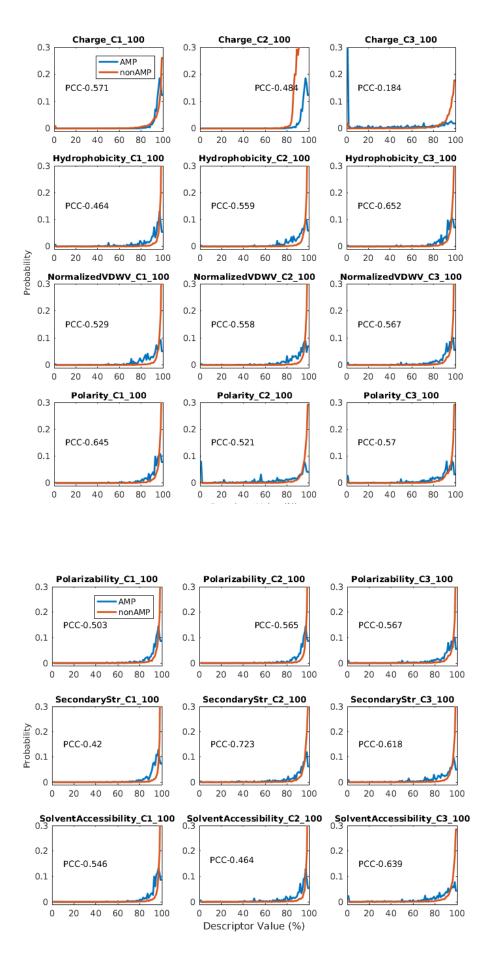
Method	Sn	Sp	Acc	МСС	AUC-ROC	AUC-PR	Карра	C-measure
RF	0.950 (0.003)	0.965 (0.002)	0.962 (0.002)	0.900 (0.004)	0.989 (0.000)	0.830 (0.009)	0.889 (0.004)	0.665 (0.006)
SVM	0.532 (0.042)	0.949 (0.006)	0.844 (0.012)	0.552 (0.038)	0.813 (0.030)	0.681 (0.034)	(0.004) 1.0 (0.000)	0.305 (0.047)

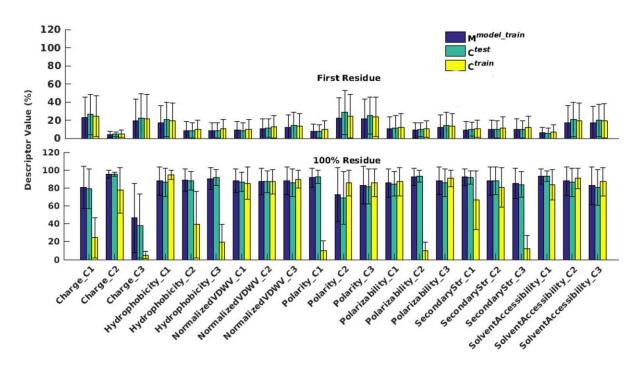

Supplementary Table S5. A comparison of RF classifiers using different descriptors by 10-fold crossvalidation with the AMP data ratio of 1:1. Values shown are averages and standard deviations (in brackets) over 10 times of 10-fold cross validation. The best two results in each performance measure are highlighted.

Feature set {#}	Sn	Sp	Acc	МСС	AUC-ROC	AUC-PR	Kappa	C- measure
AmPEP {105}	0.978 (0.002)	0.945 (0.004)	0.962 (0.002)	0.924 (0.004)	0.988 (0.001)	0.698 (0.024)	0.923 (0.005)	0.588 (0.018)
AAC {20}	0.948 (0.002)	0.946 (0.001)	0.947 (0.001)	0.894 (0.002)	0.985 (0.000)	0.77 (0.004)	0.894 (0.002)	0.606 (0.004)
PAAC {24}	0.948 (0.001)	0.945 (0.002)	0.947 (0.001)	0.893 (0.001)	0.984 (0.000)	0.822 (0.006)	0.893 (0.001)	0.645 (0.006)
K-mer {400}	0.939 (0.002)	0.944 (0.002)	0.941 (0.001)	0.883 (0.002)	0.983 (0.000)	0.876 (0.005)	0.883 (0.002)	0.671 (0.006)
Auto Covariance (AC) {6}	0.761 (0.002)	0.844 (0.003)	0.802 (0.002)	0.606 (0.004)	0.870 (0.001)	0.814 (0.004)	0.604 (0.004)	0.259 (0.005)
Cross Covariance (CC) {12}	0.802 (0.003)	0.85 (0.003)	0.826 (0.003)	0.653 (0.005)	0.897 (0.002)	0.851 (0.002)	0.652 (0.005)	0.325 (0.005)
Auto-Cross Covariance (ACC) {18}	0.83 (0.002)	0.863 (0.003)	0.846 (0.002)	0.693 (0.004)	0.914 (0.001)	0.863 (0.003)	0.693 (0.004)	0.379 (0.005)
Parallel Correlation Pseudo Amino Acid Composition (PC-PseAAC) {22}	0.948 (0.001)	0.945 (0.002)	0.947 (0.002)	0.893 (0.003)	0.984 (0.000)	0.806 (0.006)	0.893 (0.003)	0.633 (0.007)
Series Correlation Pseudo Amino Acid Composition (SC-PseAAC) {26}	0.948 (0.001)	0.946 (0.002)	0.947 (0.001)	0.893 (0.002)	0.984 (0.000)	0.805 (0.005)	0.893 (0.002)	0.633 (0.006)
General Parallel Correlation Pseudo Amino Acid Composition (PC-PseAAC- General) {22}	0.946 (0.001)	0.942 (0.001)	0.944 (0.001)	0.888 (0.002)	0.984 (0.000)	0.823 (0.006)	0.888 (0.002)	0.639 (0.005)
Parallel Series Correlation Pseudo Amino Acid Composition (SC-PseAAC- General) {26}	0.946 (0.001)	0.943 (0.002)	0.944 (0.001)	0.889 (0.002)	0.983 (0.000)	0.822 (0.005)	0.889 (0.002)	0.639 (0.005)


AAC: Amino Acid Composition, PAAC: Pseudo Amino Acid Composition


AAC and PseAAC were generated using propy 1.0 package (default parameter of propy is used). Other descriptors, K-mer, AC, CC, ACC, PC-PseAAC, SC-PseAAC, PC-PseAAC-General, SC-PseAAC-General were generated by Pse-in-One-1.0.4 using default parameters.


Supplementary Figure S1. Comparison of the AMP and non-AMP statistical distributions of 105 descriptors.



Supplementary Figure S2. Comparison of the average descriptor value of "first residue" and "100% residues" computed from the AMP sequences of three datasets (M^{model_train}, C^{test} and C^{train}). Standard deviations are shown as error bars.