
SUPPLEMENTARY METHODS: 

MATHEMATICAL MODEL. RELATED TO EXPERIMENTAL PROCEDURES. 

We based our computer simulations of TRAIL-induced apoptosis on previous kinetic models 
developed for the apoptotic extrinsic pathway (Fig. 1a)1, 2, 3, 4, 5. Briefly, these Extrinsic Apoptosis 
Reaction Models (EARM) use the mass action law for the reactions involved in the apoptotic route, to 
write down a system of ordinary differential equations (ODEs) giving the time evolution of all protein 
species considered (Supplementary Table 1). The kinetic parameters (reaction rates and initial protein 
numbers) have been fitted and improved to reproduce a wide range of experimental data including 
pathway RNAi and protein overexpression2, variability in apoptosis times1, 4, different apoptotic 
phenotypes6, 7 or fractional killing5.  

The goal of this work is to understand how mitochondrial variability influences apoptosis, and thus we 
will explicitly introduce the effect of the initial amount of mitochondrial mass in the EARM taking into 
account our own experimental observations. Previous work has shown that variability in times to death is 
a consequence of differences in the abundance of specific proteins involved in the apoptotic pathway3, 4. 
Our experiments show that cell-to-cell variability of the apoptotic proteins is correlated with variability in 
mitochondrial levels (Fig. 3b and c). We will use these correlations to constrain sampling of initial protein 
levels used as input in the EARM, as explained in the next sections. Cell-to-cell heterogeneity in 
mitochondrial mass is also included in the model by sampling the initial values of the variable Pore 
(Supplementary Table 1), according to our experimental distribution of CMXRos levels in a HeLa clonal 
population. In the EARM model, the variable Pore represents the number of potential sites in the 
mitochondrial membrane where a pore could be formed. When a Bax tetramer binds to the mitochondrial 
membrane the variable Pore turns into an activated variable denoted as Pore* (reaction #19 in 
Supplementary Table 2) that actually represents a mitochondrial pore able to release Cytochrome-C and 
Smac to the cytosol (reactions #20 and #21 in Supplementary Table 2). As in previous versions of 
EARM2, 3, the number of potential binding sites for Bax are in excess and thus heterogeneity in the 
variable Pore will play a minor role. 

The biochemical reactions in the model follow the generic structure (see Supplementary Table 2): 
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with i being the index for the i-th reaction and with specific forward (k), reverse (kr) and catalytic (kc) 
rates for each reaction. All rates have been taken from3 and rescaled by a global factor of 6, with the only 
exception of k(1) that was tuned manually to best fit our experimental data. 

Besides the biochemical reactions given in Supplementary Table 2, the model includes synthesis and 
degradation of the proteins involved. The synthesis rate (ks) for the i-th protein is set to: 
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with X the initial number of molecules of that protein (which depends on the mitochondrial content of the 
cell as explained in the next section), and kdeg its degradation rate. Degradation rates are given in 
Supplementary Table 1. 

 

Initializing protein levels constrained by mitochondrial abundance. 

First, we found that distributions of both mitochondrial mass and protein levels in a population of 
HeLa cells are well represented by a log-normal distribution (both Lilliefors test and χ2 -test for goodness 
of fit to a log-normal agreed with a log-normal distribution of protein and mitochondrial levels to 5% 
significance). Using this distribution, we can sample protein abundances constrained by mitochondrial 
levels as follows: denote by m and p the amounts of mitochondria and protein in a certain cell, normalized 
by the population respective means. We define a set of transformed variables as 

 



𝑥 ≡ log  (𝑚) 
(S1) 

𝑦 ≡ log  (𝑝) 

Since m and p are log-normally distributed, both x and y will follow a normal distribution. Knowing 
the mean of x and y (µx, µy), their standard deviations (σx, σy), as well as their Pearson’s correlation 
coefficient (ρ), the probability of finding a cell with a particular value of x and y would then be given by a 
bivariate normal distribution, P(x,y). 
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The expression for P(x,y) in (S2) can be re-written as: 
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The expression in (S3) can be identified as the probability of obtaining a value x when sampling from 
a normal distribution (P(x), in green), multiplied by the conditional probability of obtaining a value y 
once that x has been fixed (P(y|x), in red), that follows a normal distribution with new mean µyi (which 
depends on the value of x set) and standard deviation σyi as defined above. 

We then proceed in the following way: 

1) We get a value for x sampling randomly from a normal distribution with mean and standard 
deviation obtained from the fitted experimental values of CMXRos, and m as m = exp(x), (S1). 

2) With this value for x and the values of µy, σy and ρ for each protein (obtained from the 
immunolabelling experiments), we can calculate µyi and σyi as seen in (S3). 

3) We sample y from a normal distribution with mean µyi and standard deviation σyi. 
4) We calculate p as p = exp(y), see (S1). We do this for all the protein species included in the 

model. 
5) We obtain protein abundances in absolute number of molecules (see below and Supplementary 

Table 1), which we use as input for the EARM. With this we numerically solve the model 
equations to obtain fate and death time (see next section) for each simulated cell. 

Note that we started working with m and p, which are experimentally given in arbitrary units of 
fluorescence intensity, and later normalized by the average intensity of the population (mean 1). The 
EARM requires that we set initial values for the number of molecules of proteins and mitochondria. To 
match this requirement, and similar to previous analysis with EARM3, 4, we provide population average 
numbers for each protein type as parameters. These average copy numbers, together with the values of the 
reaction rates, can be tuned within biologically plausible ranges to reproduce the experimental results. 
Parameter values can be found in Supplementary Tables 1 and 2. 

In summary, from our immunolabeling experiments we first calculate µx, µy, σx, σy and ρ for each 
protein. From the properties of the log-normal distribution, the values of µx, µy, σx and σy can be obtained 
as 

 



knowing the means (µm and µp) and coefficients of variation (CVm and CVp) of the mitochondria and 
protein distributions respectively. The value of ρ is obtained by calculating the correlation between log(m) 
and log(p). Note that for the normalized data (µm= µp =1), expressions (S4) simplify to 
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distribution parameters we sample mitochondrial and protein levels from the joint distribution specified in 
(S3). 

We will call this modelling approach mitoEARM (EARM with the addition of mitochondrial 
constraints on protein abundances) to distinguish it from the original EARM. Note that while in the 
previous approach by Spencer et al. initial protein levels are sampled either independently from 
experimental distributions4, or taking into account several protein-protein correlations3, here we sample 
protein levels conditioned to initial mitochondrial amount, using only the mitochondria-protein 
correlation and the variances of mitochondria and protein distributions. In fact, protein-protein 
correlations as observed by Gaudet et al.3 arise naturally if a common source (mitochondrial mass) 
changes simultaneously the levels of both proteins (see section Mitochondria-protein correlations 
constrain protein-protein correlations). 

 

Determining cell fate and times to death from model simulations. 

The set of differential equations that build up the mitoEARM are numerically solved (Matlab2015a, 
Mathworks) to extract the temporal dynamics of the proteins involved in the pathway. From these 
dynamics, we need to impose a criterion to determine whether a cell will survive TRAIL treatment or not, 
and in the latter case, when will death happen. 

It is known that most of the variability in apoptosis times comes from cells reaching MOMP at very 
different moments, while the timespan between MOMP and death is less variable8. Therefore, and 
similarly to the criterion used in previous modelling studies3, we choose a high enough level of cytosolic 
Smac as the marker of time to death. In the mitoEARM we consider the time at which Smac reaches 90% 
of its maximum value as the cell’s time to death. 

Since the original EARM was developed to study variability in apoptosis times3, 4, no restriction was 
imposed in the model to allow for survival of cells to drug addition, even at large doses and very long 
times after treatment. Model equations are deterministic and eventually, even for low initial levels of pro-
apoptotic proteins, enough Smac will be released to consider any cell as death at long times. To mimic 
our experimental observation that a noticeable fraction of TRAIL-treated cells survive for longer than 24 
h even at a saturating dose of the drug, we need to impose a criterion to decide cell fate within our 
modelling framework. A recent study has shown that cell fate is linked to Casp8 activation rate in HeLa 
cells treated with TRAIL and other pro-apoptotic compounds9, so in the mitoEARM we focus on Casp8 
dynamics to determine cell fate. Cells that have activated Casp8 at a rate greater than a threshold at some 
point during the first 24 h of treatment with TRAIL are counted as dying cells, while cells that don’t reach 
the threshold are counted as survivors. The threshold is selected such that the model mimics the surviving 
fraction at a sensitive dose (32 ng ml-1) of TRAIL treatment, and it is kept constant among TRAIL doses. 
This reflects the experimental finding that for a given cell line and drug, the Casp8 activation threshold 
that best separates survivors from apoptotic cell is dose invariant9. Increasing or decreasing TRAIL raises 
or lowers Casp8 activation rates, thus forcing a higher or lower fraction of cells to overcome the 
threshold. 
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With these criteria, we can determine whether a simulated cell survives or dies and, in the latter case, 
the time elapsed to time to death after TRAIL addition.  

 

Parameter estimation and model calibration. 

We started the model calibration with the original parameters (average protein copy numbers and 
kinetic rates) of the original EARM1.3 model3. For degradation rates, we use the values provided in 
Bertaux et al.5. To reproduce the range of experimental times to death, we rescaled all kinetic parameters 
by a common factor. Note that since all kinetic parameters appear as linear terms in the model equations, 
this is equivalent to rescale time. 

To adjust the Casp8 activation rate to recover the experimental fraction of surviving cells at 32 ng ml-

1, we varied the binding constant of TRAIL ligand to DR5 receptor (Supplementary Table 1), as well as 
the average Casp8 levels, average receptor levels and the number of average TRAIL molecules per cell 
corresponding to a reference dose (Supplementary Table 2). Manual calibration of these few parameters 
was enough to qualitatively reproduce all our experimental observations (dose-response curve, variability 
in apoptosis times and discrimination of cell fate and times to death by mitochondrial content), as shown 
in Fig. 5.  

 

 

Sensitivity analysis of mitochondrial-protein correlations. 

The discrimination performance of mitochondrial mass as a cell fate classifier depends on its 
correlation with all the proteins in the apoptotic route. To test whether mitochondria is a good classifier as 
result of controlling the amount of some specific proteins along the route, we performed a sensitivity 
analysis of every node in the pathway with respect to its degree of correlation with mitochondria. By 
analogy with the local sensitivity analysis of kinetic models with respect to parameter variations10, we 
define a local sensitivity coefficient for each protein i as 
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where 𝜌! is the logarithmic correlation of mitochondria with protein i, and superindex exp indicated 
magnitudes at their experimentally measured values. To calculate numerically the partial derivative, we 
use a finite difference approximation changing the correlations 𝜌! around the experimental value, 
resampling new protein levels from (S3) and calculating the new AUC. The correlations for the rest of the 
proteins 𝜌!!! are kept at their experimental values. 

 

Mitochondria-protein correlations constrain protein-protein correlations. 

Given the mitochondrial mass (m) and the abundances of any two different protein species (p1 and p2) 
for each cell in a population, it is possible to prove that the correlation of each protein with mitochondria 
introduces constraints on the correlation between both of them. Let’s start defining: 

𝑥 ≡ log(𝑚) 
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Since m, p1 and p2 are log-normally distributed, x, y and z will follow normal distributions with 
respective means µx, µy and µz and standard deviations σx, σy and σz. We can define the following vectors: 

𝑣 ≡ 𝑥 𝑦 𝑧  

𝜇 ≡ 𝜇! 𝜇! 𝜇!  
(S7) 



And the following covariance matrix: 

Σ ≡
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Where σij denotes the covariance of variables i and j (with i=x,y,z and j=x,y,z). Since all our variables 
are normally distributed, it is true that: 

𝜎!" = 𝜌!" · 𝜎! · 𝜎! (S9) 

being ρij the Pearson correlation between the variables i and j. The multi-variate normal probability 
density function (PDF) describing any number of variables n is given by: 
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In the general case, 𝑣 and 𝜇 are n-dimensional vectors and Σ a n×n covariance matrix of determinant 
|Σ|. In our example we have n=3, therefore the vectors take the forms in (S7) and the covariance matrix is 
the one in (S8). In order for (S10) to hold true, the covariance matrix Σ must be positive-definite, all of its 
first minors being positive. For its 2×2 minors, it’s easy to see, using (S9), that: 
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The expression (S11) is always greater than zero if not in the trivial situation of ρij=1. As for the 3×3 
determinant, again using (S9) we can obtain: 
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The zeros of the expression (S12) are at: 

𝜌!"
(!!) = 𝜌!"𝜌!" + 1 + 𝜌!"𝜌!"

!
− 𝜌!" + 𝜌!"

!
 

𝜌!"
(!!) = 𝜌!"𝜌!" − 1 + 𝜌!"𝜌!"

!
− 𝜌!" + 𝜌!"

!
 

(S13) 

It can be proven that any value for ρyz that falls between ρ(0+) and ρ(0-) will cause |Σ| to be positive, 
while any other will make it negative. The maximum value for |Σ| is reached in the middle of this 
interval: 

𝜌!"
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In order to build a consistent multivariate PDF, we need to satisfy the following condition for ρyz: 
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Remember that y and z are the log-transformed variables representing the amounts of any given pair of 
proteins inside a cell, being ρyz the log-correlation between them. This log-correlation is constrained 
between two values that depend on the log-correlation of each respective protein with the third variable, x 
(the log-transformed mitochondrial mass of the cell), namely ρxy and ρxz, as seen in (S13) and (S15). 

Simply put, mitochondria-protein correlations restrict the available range for the corresponding 
protein-protein correlations. If there are no additional regulations between the two proteins, their ‘basal’ 
log-correlation will be ρyz=ρxy ρxz (S14). Extra layers of regulation can bring this value up or down, 
however keeping it within the permitted ranges (S15). The expected protein-protein correlation ranges 
taking into account the experimentally measured mitochondria-protein correlations, as well as their 
‘basal’ correlation values (no other variables or interactions affect these correlations) are shown in 
Supplementary Table 3. 



 

 

 

 

 

Supplementary Fig. 1. Stability of TRAIL during the experimental procedure. 
HeLa cells stained with MG were not treated (Control, red bar) or treated with fresh 
TRAIL at 62 ng ml-1 (Fresh, green bar), with TRAIL pre-incubated at 37ºC for 24 h (Pre-
incubated, blue bar), and with the medium resulting from the 24 h experiment of TRAIL-
induced apoptosis (Reused, yellow bar). Cells were imaged for 24 h every 15 min and 
the fraction of apoptotic cells were calculated by visual inspection of phase contrast 
images. Error bars are standard deviations obtained by bootstrapping from different 
images of two biological replicates.   
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Supplementary Fig. 2. Distributions of cell division times. Probability of time to cell 
division in clonal and non-synchronized populations of HeLa cells no treated (Control) 
and treated with different TRAIL doses, obtained by visual inspection of the phase 
contrast images from 24 h time-lapse. Ensembles of 100-200 cells that divided once 
during this time-lapse were used to calculate the distributions. For TRAIL-treated 
samples, only cells surviving TRAIL were considered. Kolmogorov-Smirnov tests 
between control and TRAIL-treated populations to statistically check for the equality of 
the distributions could not reject the null hypothesis that control and TRAIL-treated 
division times came from the same continuous distribution (p-values > 0.3) with 5% 
significance (‘kstest2’ in Matlab2014a, Mathworks). We have also measured cell cycle 
times of 200 recently born HeLa cells by tracking until next division, obtaining an 
average cell time of 26±7 h (error corresponds to standard deviation).  

 

  

 

 

0 10 20
Time to division (h)
5 15

Control
16 ng ml-1 TRAIL
32 ng ml-1 TRAIL
125 ng ml-1 TRAIL

0

0.03

0.06

0.09

PD
F



 

Supplementary Fig. 3. Independence of division and times to death in single 
cells. a Boxplots of times to death for the apoptotic cells undergoing divisions (blue) 
and not dividing (red) before dying at 16 ng ml-1 of TRAIL. The experimental ensemble 
is shown on the left, while the results of a ‘null’ simulated ensemble are shown on the 
right. The ‘null’ ensemble was generated by randomly sampling division times from the 
experimental probability distribution in Supplementary Fig. 2 (black line), while times to 
death were randomly and independently sampled from the experimental distribution 
shown in Fig. 1c (blue). In the ‘null’ model, we deemed a cell as ‘non-dividing’ if its 
randomly assigned death time was shorter than its assigned division time, and 
‘dividing’ if otherwise. Similar results were obtained with other TRAIL doses (32 and 
125 ng ml-1). b Correlation between death and division times for cells treated with 
TRAIL (16 ng ml-1) that divided before dying. In most sibling cells both sisters died 
within the observation time (70% of apoptotic dividing cells at a TRAIL dose of 16 ng 
ml-1, 75% at 32 ng ml-1 and 86% at 125 ng ml-1). To correlate with division time, we took 
as death time the average apoptosis time of both sister cells, since they are highly 
correlated (panel d). c Correlation between death and division times for the ‘null’ 
simulated ensemble at 16 ng ml-1 of TRAIL. d Correlation between apoptosis times of 
sister cell pairs (cells that divided after addition of 16 ng ml-1 of TRAIL). For 32 ng ml-1 

and 125 ng ml-1 Pearson’s correlation coefficient between apoptosis times of sibling 
pairs were 0.91 and 0.88 respectively. Boxes cover the range from the lower to the 
upper quartile of the data. Whiskers indicate maximum and minimum values, excluding 
outliers which are plotted as individual grey crosses. Horizontal lines inside the boxes 
represent median values, and notches indicate 95% confidence intervals for the 
median. 
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Supplementary Fig. 4. Effect of MitoTracker Green in the fractional killing 
induced by TRAIL. HeLa cells not stained (-MG, white bars) or stained with 
MitoTracker Green (+MG, grey bars) were treated with different doses of TRAIL (31 
and 62 ng ml-1). Cells were imaged for 24 h every 15 min and the fraction of apoptotic 
cells were calculated by visual inspection of phase contrast images. Error bars are the 
standard deviation of six different images (two biological replicates and three different 
visual fields per replicate).  
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Supplementary Fig. 5. Influence of mitochondrial content on apoptotic cell fate 
triggered by different inductors. HeLa cells stained with MG were treated with 63 ng 
ml-1 of DRB, 2.5 µg ml-1 of cycloheximide (CHX), and a combination of 2.5 µg ml-1 of 
CHX with 20 ng ml-1 of TNF. Cells were imaged for 24 h every 15 min. Boxplots of 
mitochondrial levels of alive (white) and dead (grey) HeLa cells after 24 h of treatment. 
Mitochondrial values are normalized to average (grey line). Boxes cover the range from 
the lower to the upper quartile of the data. Whiskers indicate maximum and minimum 
values, excluding outliers which are plotted as individual grey crosses. Horizontal lines 
inside the boxes represent median values, and notches indicate 95% confidence 
intervals for the median. Data are representative of 2 independent experiments.  
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Supplementary Fig. 6. Global scaling of gene expression with mitochondrial 
content. We sorted a clonal population of HeLa cells in two subpopulations with low 
and high average mitochondrial mass per cell. These two subpopulations were RNA-
sequenced. The expression of each gene given as Transcripts Per Million (TPM) in 
both subpopulations is represented in a scatter plot (grey dots) in log-log scale. The 
dashed line corresponds to the line X=Y. The solid line is the regression line to the data 
and shows a shift due to a global scaling factor of 2.8 for transcript abundance in the 
subpopulation with high mitochondrial content. The genes coding for the proteins of the 
apoptotic pathway are shown in red (pro-apoptotic proteins) and green (anti-apoptotic 
proteins), falling along the global scaling line. 
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Supplementary Fig. 7. Receptor levels improve discriminatory capacity of 
mitochondria at low TRAIL doses. Performance of apoptosis fate discrimination 
using each apoptotic protein as a binary classifier for different TRAIL doses. Red bars 
correspond to pro-apoptotic proteins and blue bars to anti-apoptotic proteins. Hollow 
bars: All correlations between mitochondrial mass and apoptotic proteins are included. 
Filled bars: Only the experimentally observed correlation between mitochondrial mass 
and DR5 is included. The discriminatory performance of mitochondria is included in 
orange as a reference. 10,000 cells were simulated at each TRAIL dose. 
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Supplementary Fig. 8. Effect of ROS in TRAIL-induced apoptosis. a ROS 
production by mitochondria. HeLa cells were co-stained with MG and MitoSOX (a 
reporter of mitochondrial superoxide) for 2 h. b Antioxidant defence of HeLa cells. 
HeLa cells were co-stained with ThiolTracker (stains reduced thiol group in the cell) 
and CMXRos. c Ratio MitoSOX/MG versus MG. This plot shows not bias in the 
superoxide production per mitochondria in cells with high mitochondria content versus 
cells with low mitochondria content. d Ratio of ThiolTracker/CMXRos versus CMXRos. 
This plot shows that the antioxidant defence is proportional to the mitochondria content, 
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therefore, cells with high mitochondria content have the same oxidative stress than low 
mitochondria content cells. e Effect of ROS in fractional killing induced by TRAIL. 
Apoptotic fraction of HeLa cells after a 2h of pre-treatment with increasing doses of 
diamide (pro-oxidant, orange) or N-acetyl cysteine (NAC, antioxidant, pink) and a 
posterior 24 h treatment with TRAIL 31 ng ml-1. Error bars are the standard deviation of 
six different images (two biological replicates and three different visual fields per 
replicate). 

 

  



Supplementary Table 1. Parameters involved in the mitoEARM model. 

 Protein 

Molecules per 
cell 

(population 
average) (a) 

Coefficient of 
variation, CVp 

Logarithmic 
protein-

mitochondria 
correlation, ρ 

Degradation 
rate, kdeg 

(h-1) 

1 Ligand 50 × TRAIL (b)   0.462 

2 Receptor 500 0.36 0.79 0.139 

3 Ligand:Receptor 0   0.832 

4 Receptor* 0   0.832 

5 Flip 2 000 0.29 0.87 0.139 

6 Flip:Receptor* 0   0.832 

7 Casp8 1 000 0.37 0.86 0.139 

8 Casp8:Receptor* 0   0.832 

9 Casp8* 0   0.832 

10 Bar 1 000 0.36 0.96 0.139 

11 Casp8:Bar* 0   0.832 

12 Casp3 10 000 0.40 (c) 0.77 (c) 0.139 

13 Casp8*:Casp3 0   0.832 

14 Casp3* 0   0.832 

15 Casp6 10 000 0.40 (c) 0.77 (c) 0.139 

16 Casp3*:Casp6 0   0,832 

17 Casp6* 0   0,832 

18 Casp6*:Casp8 0   0,832 

19 XIAP 100 000 0.44 0.90 0.139 

20 XIAP:Caspase-3* 0   0.832 

21 PARP 100 000 0.40 (c) 0.77 (c) 0.139 

22 Casp3*:PARP 0   0.832 

23 cPARP 0   0.832 

24 Bid 60 000 0.43 0.90 0.139 

25 Casp8*:Bid 0   0.832 

26 tBid 0   0.832 

27 Mcl-1 20 000 0.42 0.60 0.139 

28 tBid:Mcl-1 0   0.832 

29 Bax 80 000 0.29 0.86 0.139 

30 tBid:Bax 0   0.832 

31 Bax* 0   0.832 

32 Bax*m 0   0.832 

33 Bcl-2 30 000 0.40 0.51 0.139 

34 Bax*m:Bcl-2 0   0.832 

35 Bax*2m 0   0.832 



36 Bax*2m:Bcl-2 0   0.832 

37 Bax*4m 0   0.832 

38 Bax*4m:Bcl-2 0   0.832 

39 Pore 500 000 0.55 (d) 1.00 (d) 0.139 

40 Bax*4m:Pore 0   0.832 

41 Pore* 0   2.189 

42 CytoCm 500 000 0.40 (c) 0.77 (c) 0.139 

43 Pore*:CytoCm 0   0.832 

44 CytoCr 0   0.832 

45 Smacm 100 000 0.35 0.58 0.139 

46 Pore*:Smacm 0   0.832 

47 Smacr 0   0.832 

48 CytoC 0   0.832 

49 Apaf 100 000 0.40 (c) 0.77 (c) 0.139 

50 Apaf:CytoC 0   0.832 

51 Apaf* 0   0.832 

52 Caspase-9 100 000 0.41 0.59 0.139 

53 Apoptosome 0   0.832 

54 Apoptosome:Casp3 0   0.832 

55 Smac 0   0.832 

56 Apoptosome:XIAP 0   0.832 

57 Smac:XIAP 0   0.832 

58 Casp3*Ub 0   0 
 

(a) Values taken from3, with the only exceptions of Ligand and Receptor, that have been 
tuned for best fitting of our data. The values of degradation rates are taken from5. 

(b) In the original model, a dose of 50 ng ml-1 of TRAIL was mimicked setting the initial 
Ligand concentration to 3000 molecules, which means 60 molecules per ng ml-1 of 
TRAIL. In our case, we have set 50 Ligand molecules per each ng ml-1 of TRAIL. 

(c) We lack experimental data for some proteins, for which we have assumed a CV of 0.40 
and a mitochondrial log-correlation of 0.77. These are averaged values among the 
proteins for which we do have experiments. 

(d) Note that the variable Pore is a pseudo-molecular species representing each potential site 
in the mitochondrial membrane where a pore could be formed. It is directly related to the 
mitochondrial mass, which is why it has ρ=1. Its coefficient of variation comes from 
experimental distributions of mitochondria.  



Supplementary Table 2. Biochemical reactions and kinetic parameter values used in the 
mitoEARM model. 

 Reaction 
k 

(molec-1 h-1) 
kr 

(h-1) 
kc 

(h-1) 

1 
𝐿𝑖𝑔𝑎𝑛𝑑 + 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟       ↔        𝐿𝑖𝑔𝑎𝑛𝑑:𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟       

→       𝐿𝑖𝑔𝑎𝑛𝑑 + 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗ 1.3e-4 0.0216 216 

2 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗ + 𝐹𝑙𝑖𝑝       ↔        𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗:𝐹𝑙𝑖𝑝  2.16e-2 21.6  

3 
𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗ + 𝐶𝑎𝑠𝑝8       ↔        𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗:𝐶𝑎𝑠𝑝8       

→       𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗ + 𝐶𝑎𝑠𝑝8∗ 2.16e-3 21.6 21600 

4 𝐶𝑎𝑠𝑝8∗ + 𝐵𝑎𝑟       ↔        𝐶𝑎𝑠𝑝8∗:𝐵𝑎𝑟  2.16e-2 21.6  

5 
𝐶𝑎𝑠𝑝8∗ + 𝐶𝑎𝑠𝑝3       ↔        𝐶𝑎𝑠𝑝8∗:𝐶𝑎𝑠𝑝3       

→       𝐶𝑎𝑠𝑝8∗ + 𝐶𝑎𝑠𝑝3∗ 2.16e-3 21.6 21600 

6 
𝐶𝑎𝑠𝑝3∗ + 𝐶𝑎𝑠𝑝6       ↔        𝐶𝑎𝑠𝑝3∗:𝐶𝑎𝑠𝑝6       

→       𝐶𝑎𝑠𝑝3∗ + 𝐶𝑎𝑠𝑝 2.16e-3 21.6 21600 

7 
𝐶𝑎𝑠𝑝6∗ + 𝐶𝑎𝑠𝑝8       ↔        𝐶𝑎𝑠𝑝6∗:𝐶𝑎𝑠𝑝8       

→       𝐶𝑎𝑠𝑝6∗ + 𝐶𝑎𝑠𝑝8∗ 2.16e-3 21.6 21600 

8 
𝐶𝑎𝑠𝑝3∗ + 𝑋𝐼𝐴𝑃       ↔        𝐶𝑎𝑠𝑝3∗:𝑋𝐼𝐴𝑃       

→       𝐶𝑎𝑠𝑝3!"∗ + 𝑋𝐼𝐴𝑃 4.32e-2 21.6 2160 

9 
𝐶𝑎𝑠𝑝3∗ + 𝑃𝐴𝑅𝑃       ↔        𝐶𝑎𝑠𝑝3∗:𝑃𝐴𝑅𝑃       

→       𝐶𝑎𝑠𝑝3∗ + 𝑐𝑃𝐴𝑅𝑃 2.16e-2 21.6 432000 

10 
𝐶𝑎𝑠𝑝8∗ + 𝐵𝑖𝑑       ↔        𝐶𝑎𝑠𝑝8∗:𝐵𝑖𝑑       

→       𝐶𝑎𝑠𝑝8∗ + 𝑡𝐵𝑖𝑑 2.16e-3 21.6 21600 

11 𝑡𝐵𝑖𝑑 +𝑀𝑐𝑙 − 1       ↔        𝑡𝐵𝑖𝑑:𝑀𝑐𝑙 − 1  2.16e-2 21.6  

12 𝑡𝐵𝑖𝑑 + 𝐵𝑎𝑥       ↔        𝑡𝐵𝑖𝑑:𝐵𝑎𝑥       →       𝑡𝐵𝑖𝑑 + 𝐵𝑎𝑥∗ 2.16e-3 21.6 21600 

13 𝐵𝑎𝑥∗       ↔       𝐵𝑎𝑥!∗  216 21600  

14 𝐵𝑎𝑥!∗ + 𝐵𝑐𝑙 − 2       ↔        𝐵𝑎𝑥!∗ :𝐵𝑐𝑙 − 2  3.09e-1 21.6  

15 𝐵𝑎𝑥!∗ + 𝐵𝑎𝑥!∗       ↔       𝐵𝑎𝑥∗2! 3.09e-1 21.6  

16 𝐵𝑎𝑥∗2! + 𝐵𝑐𝑙 − 2       ↔        𝐵𝑎𝑥∗2!:𝐵𝑐𝑙 − 2  3.09e-1 21.6  

17 𝐵𝑎𝑥∗2! + 𝐵𝑎𝑥∗2!       ↔       𝐵𝑎𝑥∗4! 3.09e-1 21.6  

18 𝐵𝑎𝑥∗4! + 𝐵𝑐𝑙2       ↔        𝐵𝑎𝑥∗4!:𝐵𝑐𝑙 − 2  3.09e-1 21.6  

19 𝐵𝑎𝑥∗4! + 𝑃𝑜𝑟𝑒       ↔        𝐵𝑎𝑥∗4!:𝑃𝑜𝑟𝑒   →       𝑃𝑜𝑟𝑒∗ 3.09e-1 21.6 21600 

20 
𝑃𝑜𝑟𝑒∗ + 𝐶𝑦𝑡𝑜𝐶!       ↔        𝑃𝑜𝑟𝑒∗:𝐶𝑦𝑡𝑜𝐶!       

→       𝑃𝑜𝑟𝑒∗ + 𝐶𝑦𝑡𝑜𝐶! 6.17e-1 21.6 216000 

21 
𝑃𝑜𝑟𝑒∗ + 𝑆𝑚𝑎𝑐!       ↔        𝑃𝑜𝑟𝑒∗: 𝑆𝑚𝑎𝑐!       

→       𝑃𝑜𝑟𝑒∗ + 𝑆𝑚𝑎𝑐! 6.17e-1 21.6 216000 

22 𝐶𝑦𝑡𝑜𝐶!       ↔       𝐶𝑦𝑡𝑜𝐶 21600 216  

23 
𝐶𝑦𝑡𝑜𝐶 + 𝐴𝑝𝑎𝑓1       ↔        𝐶𝑦𝑡𝑜𝐶:𝐴𝑝𝑎𝑓1       

→       𝐶𝑦𝑡𝑜𝐶 + 𝐴𝑝𝑎𝑓1∗ 1.08e-2 21.6 21600 

24 𝐴𝑝𝑎𝑓1∗ + 𝐶𝑎𝑠𝑝9       ↔       𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑜𝑚𝑒 1.08e-3 21.6  

25 
𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑜𝑚𝑒 + 𝐶𝑎𝑠𝑝3       ↔        𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑜𝑚𝑒:𝐶𝑎𝑠𝑝3       

→       𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑜𝑚𝑒 + 𝐶𝑎𝑠𝑝3∗ 1.08e-4 21.6 21600 



26 𝑆𝑚𝑎𝑐!       ↔       𝑆𝑚𝑎𝑐 21600 216  

27 𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑜𝑚𝑒 + 𝑋𝐼𝐴𝑃       ↔        𝐴𝑝𝑜𝑝𝑡𝑜𝑠𝑜𝑚𝑒:𝑋𝐼𝐴𝑃  4.32e-2 21.6  

28 𝑆𝑚𝑎𝑐 + 𝑋𝐼𝐴𝑃       ↔        𝑆𝑚𝑎𝑐:𝑋𝐼𝐴𝑃  1.51e-1 21.6  

29 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟∗       ↔       𝐿𝑖𝑔𝑎𝑛𝑑 + 𝑅𝑒𝑐𝑒𝑝𝑡𝑜𝑟 21.6 0  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 3. Expected correlation between protein pairs due to global 
mitochondria-protein correlations. 

Protein1, 
p1 

Protein2, 
p2 

Mito. log-
correlation of 

p1,  
ρxy 

Mito. log-
correlation of 

p2,  
ρxz 

Min. p1-p2 
log-

correlation, 
ρyz

(0-) 

Max. p1-p2 
log-

correlation, 
ρyz

(0+) 

Expected  
p1-p2 log-

correlation, 
ρyz

(1/2) 

Receptor Flip 0.79 0.87 0.39 0.99 0.69 

Receptor Casp8 0.79 0.86 0.37 0.99 0.58 

Casp8 Bar 0.86 0.96 0.68 0.97 0.83 

Casp8 Bid 0.86 0.90 0.55 0.99 0.77 

Bid Mcl-1 0.90 0.60 0.19 0.89 0.54 

Bid Bax 0.90 0.86 0.55 0.99 0.77 

Bax Bcl-2 0.86 0.51 0.00 0.88 0.44 

XIAP Smac 0.90 0.58 0.17 0.88 0.52 

XIAP Casp9 0.90 0.59 0.18 0.88 0.53 
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