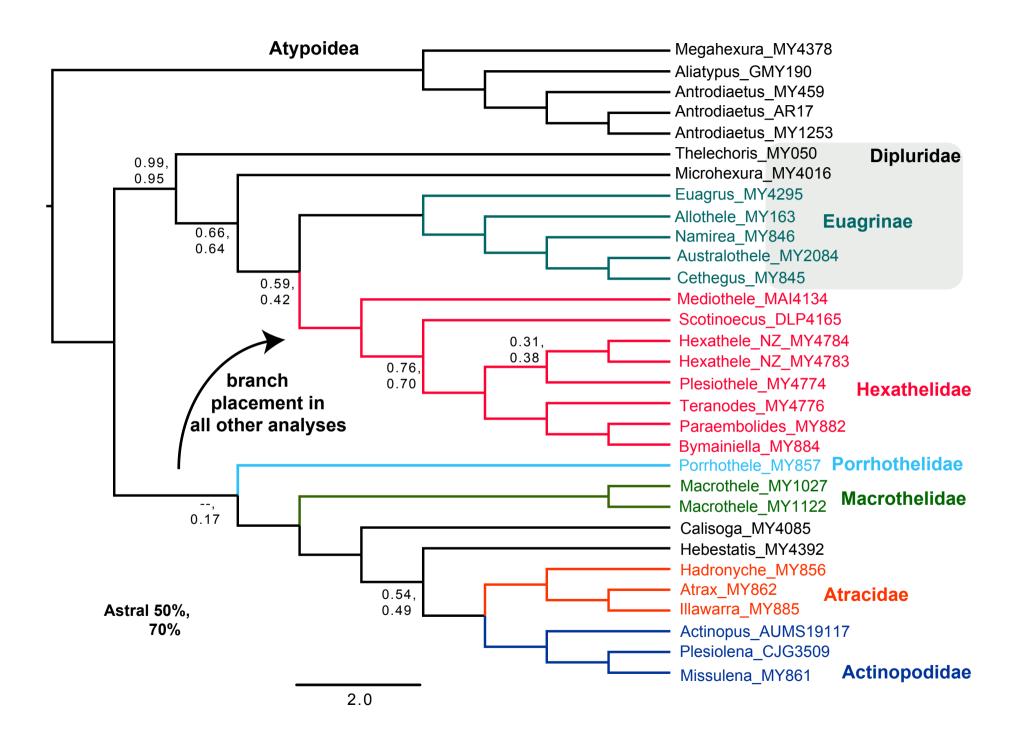
Phylogenomic reclassification of the world's most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution

Marshal Hedin, Shahan Derkarabetian, Martín J. Ramírez, Cor Vink, Jason Bond


Supplemental Information

Supplemental Text. Summary of prior hexathelid phylogeny and classification studies.

Although our overall results contrast with earlier morphology-only studies of mygalomorph relationships, several points of agreement can be found with more recent molecular studies. Raven [12, 27] re-limited the family Hexathelidae, and identified one morphological synapomorphy (possession of numerous labial cuspules). Raven [12] discussed at length the uncomfortable placement of Atrax (then the only described atracine), including hypothesized morphological homoplasy with more derived mygalomorph taxa. Goloboff [22] conducted a formal cladistic analysis of morphology, and recovered a paraphyletic Hexathelidae as an early-diverging Avicularioidea lineage, but noted that near parsimonious trees included hexathelids as monophyletic. Using ribosomal DNA sequences, Hedin & Bond [23] found a paraphyletic Hexathelidae, with taxa intermixed with non-diplurine diplurids at the base of Avicularioidea. Sampled atracines were not recovered with the single sampled actinopodid. Using elongation factor-1 gamma sequences, Ayoub et al. [17] recovered a Hadronyche plus Missulena clade, separate from the hexatheline Bymainiella. Using multiple genes alone, or molecules plus morphology, Bond et al. [13] recovered Atrax + Hadronyche with Missulena + Actinopus (F Actinopodidae). Again, hexathelids were not monophyletic, with two hexathelines intermixed with early-diverging non-diplurine diplurids. Opatova and Arnedo [18] used the Bond et al. [13] multigenic matrixes, adding data for multiple Macrothele specimens. These authors found four separate hexathelid lineages (i.e., hexathelid nonmonophyly), a monophyletic *Macrothele*, and an atracine plus actinopodid sister relationship. Using a 6-gene dataset, Wheeler et al. [20] recovered a core hexathelid lineage (including the important South American taxa Mediothele and Scotinoecus as sister taxa), separate from a well-supported atracine plus actinopodid clade. Finally, Hamilton et al. [19] used anchored hybrid enrichment (AHE) sequence capture data to show hexathelid non-monophyly, and an atracinae plus actinopodid relationship (see FIG 1C).

Supplemental Table 1. Excel file with voucher, identification and UCE information.

Supplemental Figure 1. ASTRAL phylogenies.

