Three-dimensional reconstruction and NURBS-based structured meshing of coronary arteries from the conventional X-ray angiography projection images

Arso M. Vukicevic^{1,4,5*}, Serkan Çimen², Nikola Jagic³, Gordana Jovicic¹, Alejandro F. Frangi², Nenad Filipovic^{1,5,*}

¹ Faculty of Engineering Sciences, University of Kragujevac, Serbia.

² Center for Computational Imaging & Simulation Technologies in Biomedicine, Electronic & Electrical Engineering Department, The University of Sheffield, Sheffield, UK.

³ Faculty of Medicine, University of Kragujevac.

- ⁴ Research and Development Center for Bioengineering, Kragujevac, Kragujevac, Serbia
- ⁵ Faculty of Information Technology, Belgrade Metropolitan University, Belgrade, Serbia.

* Corresponding authors e-mail: arso $kg@yahoo.com$, [fica@kg.ac.rs.](mailto:fica@kg.ac.rs)

Appendix S1: Nomenclature

Nomenclature legend

- **x** Data vector-array, (bold lowercase)
-
- **x**
- \vec{x}
- $x =$ Constant variable, (regular lowercase)
- *x* Scalar variable, (italic lowercase)
- $X()$ Scalar function, result is scalar variable (x
- $\vec{x}()$ – Vector function, result is point in 2D (**x**
- \vec{x} () – Vector function, result is point in $3D$ space (\vec{x})
- **X** Matrix, (bold uppercase) – Point in 2D space (at X-ray plane detector), (bold lowercase with vector-arrow) – Point in 3D space, (bold uppercase with vector-arrow)), (regular uppercase)), (regular lowercase with vector-arrow)); (regular uppercase with vector-arrow)

Notes:

- **Bold** indicates data structure; regular style indicates variable or function.
- UPPERCASE indicates that data or computation is in 3D; lowercase indicates that data is in 2D DICOM plane.
- Vector-arrow indicates that type of function or data is point (2D lowercase or 3D UPPERCASE).

At the implementation level these should be different classes (data types).

Nomenclature

- *n* –Number of point samples used for the device calibration
- *s* –Number of vessel centreline samples
- *2s* –Number of vessel borders samples
- *m* –Number of frames acquired from primary view

p –Number of frames acquired from secondary view

$$
\vec{\mathbf{q}}_{i,j}^{k} \left\{ i = 1, 2; j = 1, n; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}
$$
 -Point samples used for calibration

$$
\vec{\mathbf{c}}_{i,j}^{k} \left\{ i = 1, 2; j = 1, s; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}
$$
-Parameterized vessels centrelines

 $\vec{b}^k_{i,j}$ $\begin{cases} i = 1, 2; j = 1, 2s; k = 1, \frac{m \text{ for } i = 1, 2s; k = 1, \frac{m \text{ for } i = 2, 3s; k = 1, \frac{m \text{ for } i = 3, 3s; k = 1, \frac{m \text{ for } i = 3, 3s; k = 1, \frac{m \text{ for } i = 2, 3s; k = 1, \frac{m \text{ for } i = 1, 3s; k = 1, \frac{m \text{ for } i = 1, 3s; k = 1, \frac{m \text{ for } i = 1, 3s;$ $\left\{ i = 1, 2; j = 1, 2s; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}$ -Par –Parameterized vessels borders (two for each centreline)

- κ –Pixel spacing at 2D X-ray plane detector
- α –Primary angle: Right Anterior Oblique (RAO) / Left Anterior Oblique (LAO)

 β –Secondary angle: Cranial (CRA) / Caudal (CAU)

- d_{SOD} –Distance from patient to X-ray source
- *dSID* –Distance from X-ray source to intensifier plane
- **M** –C-arm rotation matrix

1

- **F** –Position of X-ray source in 3D
- **O** –Position of intensifier plane origin in 3D
- **p** –Coordinates of an arbitrary vessel centreline point in the intensifier (DICOM) 2D plane
- **P** –Coordinates of an arbitrary vessel centreline point in the 3D
- $\bar{\mathbf{p}}_i(\mathbf{P})$ -Projection of \mathbf{P} back on the intensifier plane for i-th view
- **Δθ** –Intensifier 3D rotation around its origin **O**
- **R**_{Δθ} –Rotation matrix computed from three components in rotation vector $\Delta\vec{O} = \begin{bmatrix} \Delta o_x & \Delta o_y & \Delta o_z & 1 \end{bmatrix}^T$
- $\vec{\mathbf{O}} = \begin{bmatrix} \Delta o_x & \Delta o_y & \Delta o_z & 1 \end{bmatrix}^T$ –Intensifier 3D translation from its origin $\vec{\mathbf{O}}$
- **1 I** –Isocenter of primary view
- \mathbf{I}_2 -Isocenter of secondary view
- Δi –Translation of the secondary view isocenter \mathbf{I}_2 from the global origin

 $\mathbf{X} \mathbf{A} \big\{ \alpha_2, \beta_2, \mathbf{\Delta} \mathbf{\theta}, \mathbf{\Delta} \mathbf{\vec{O}}, \mathbf{\Delta} \mathbf{\vec{i}} \big\}$ –List of device parameters optimized during calibration

- F-Cost-function used during the calibration of device parameters $\mathbf{\dot{X}}$ **A**
- **D** –Cost-matrix for finding correspondence between two series
- ξ –Function for calculating values in the cost-matrix
- δ –Cost-value for skipping elements from two matching series
- ε _{min} –Calibration error

*

- \mathbf{CF} –List of corresponding frames
- $\overline{C}(t)$ -Length-parameterized vessel centreline, $t \in \{0,1\}$
- $C(t)$ -Arbitrary 3D point along the parameterized vessel centreline $C(t)$, $t \in \{0,1\}$
- $T(t)$ –Tangent of the centreline $\vec{C}(t)$ at point $\vec{C}(t)$, $t \in \{0,1\}$
- $N(t)$ –Normal of the centreline $\vec{C}(t)$ at point $\vec{C}(t)$, $t \in \{0,1\}$
- $B(t)$ –Binormal of the centreline $\dot{C}(t)$ at point $\ddot{C}(t)$, $t \in \{0,1\}$
- $\vec{c}_i(t_i)$ –Parameterized vessel centreline on *i* -th projection, $t_i \in \{0,1\}$ (note that $t \neq t_i$)
- $\vec{c}_i(t_i)$ –Arbitrary point along the parameterized vessel centreline $\vec{c}_i(t_i)$ on i -th projection, $t_i \in \{0,1\}$ ($t \neq t_i$)
- $\vec{t}_i(t_i)$ –Tangent of the centreline $\vec{c}_i(t_i)$ at the point $\vec{c}_i(t_i)$, $t_i \in \{0,1\}$ ($t \neq t_i$)
- $\vec{n}_i(t_i)$ –Normal of the centreline $\vec{c}_i(t_i)$ at the point $\vec{c}_i(t_i)$, $t \in \{0,1\}$ ($t \neq t_i$)

 $\mathbf{b}_{i,1}$, $\mathbf{b}_{i,2}$ –Intersections of centreline normal $\vec{n}_i(t_i)$ with vessel borders on *i* -th projection

 $\mathbf{P}_{\text{a,i}}$, $\mathbf{P}_{\text{b,i}}$ –Points $\mathbf{b}_{\text{i,1}}$, $\mathbf{b}_{\text{i,2}}$ positioned in 3D

 $\vec{L}_1(\vec{F}_i, \vec{P}_{a_i})$, $\vec{L}_2(\vec{C}(t), \vec{T}(t))$ – lines $(X$ -rays) – $\vec{L}_1(\vec{F}_i, \vec{P}_{a_i})$ is defined by the X-ray source point \vec{F}_i \vec{F}_i and point \vec{P}_{a_i} and the second line $\vec{L}_2(\vec{C}(t), \vec{T}(t))$ was defined by the point $\vec{C}(t)$ and direction vector $\vec{T}(t)$ $\overline{}$. $t \in \{0,1\}$

- $\tilde{A}_i(s_u,t)$, $B_i(s_u,t)$ -Points that belong to both rays $L_{1/2}$ and vessel lumen (3D surface) for *i*-th projection, $t \in \{0,1\}$
- $S_j(u,v)$ –Parameterized NURBS surface of j -th vessel branch lumen defined by centreline $\tilde{P}_j(t)$ and patches obtained along the centreline, $u, v \in \{0,1\}$
- **B** –Bifurcation list that describes connectivity of considered vessel branches

Appendix S2: Pseudo-code

Figure A1. Pre-processing steps and inputs. (a, c) Schematic illustration of the data to be extracted from X-ray angiography (XRA) images; (b, d) Description of input data structures.

The procedure requires two sequences of XRA images acquired from different viewpoints (overall Algorithm 1). After picking the pair of end-diastole frames, a couple (n) of corresponding points $\vec{q}_{i,j}^k$ $\{i = 1, 2; j = 1, n; k = \text{end-diastole}\}$ were extracted for the purpose of calibration (Algorithm 2) and framespairing (Algorithm 3). For the purposes of CA centerlines (Algorithm 4) and surface (Algorithms 5 and 6) reconstruction, the total *s* vessel centerlines $\vec{c}_{i,j}^k \left\{ i = 1,2; j = 1, s; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}$ and and its corresponding

borders $\vec{b}_{i,j}^{k}$ $\left\{ i = 1, 2; j = 1, 2s; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}$ **w** were extracted for each vessel branch; where index *i* indicates the XRA view, j indicates the point or centerline number, and k indicates the index of the XRA frame in the sequence. Both centerlines $\vec{c}_{i,j}^k$ and borders $\vec{b}_{i,j}^k$ were defined as parametric curves, so the computation of intersections between the centerline's normal and borders (required for the surface reconstruction) was performed automatically (Fig. A1).

Reconstruction and structured meshing of coronary arteries from X-ray angiography

Algorithm 1 Three-dimensional reconstruction of coronary arterial trees from uncalibrated angiographic X-ray projections (overall algorithm)

Input: Total *s* vessel centrelines $\vec{c}_{i,j}^k \left\{ i = 1, 2; j = 1, s; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}$ tra tracked over the XRA frames.

Output: Structured 3D+t mesh of CA tree.

Output: Calibrated XRA device parameters **XA**.

1 Find optimal device parameters **XA** and correspondence **CP** between the acquired frames (see * ***** Algorithm 3)

2 for k=1 **to** number of corresponding pairs in the list \overrightarrow{CP} **do**

By using \mathbf{X}^* and the input data for k-th corresponding pair of frames generate a structured 3D mesh of CA tree (see later Algorithm 6)

4 end for

3

Algorithm 2 XRA device calibration using the mathematical model from Section 2.3 and two enddiastole frames (Section 2.4)

Algorithm 3 Partial matching of XRA frame series acquired from two views (Section 2.5)

Input: *n* 2D bifurcation points sampled from two XRA views over *m* frames from primary view and p frames from secondary view $\vec{q}_{i,j}^k \left\{ i = 1, 2; j = 1, n; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}$ $\begin{cases} k \\ i = 1, 2 \\ j = 1, n \\ k = 1, \frac{m \text{ for } i = 1}{n \text{ for } i = 2} \end{cases}$ $\left\{ i = 1, 2; j = 1, n; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}.$ $\vec{q}_{i,j}^k$ $\left\{ i = 1,2; j = 1, n; k = 1, \frac{m \text{ for } i = 1}{p \text{ for } i = 2} \right\}.$ **Input:** Optimized device parameters \mathbf{X}^* . Computed following Algorithm 2.

- **Output:** Optimal correspondence \overrightarrow{CF} between the acquired frames.
- 1 Compute jump-cost C according to Equation 12
- **2** Use referent corresponding end-diastole pair
- **3** Compute jump cost ξ (a,b) according to Equation 8
- **4** Compute cost matrix **D** according to Equations 8 and 9
- **5** Find corresponding frames $\overrightarrow{CF} = OSB(D, \delta)$ according to Equation 7

Input: Calibrated device parameters \mathbf{X}^* **A**.

4 Define parameterized curve $\vec{C}(t)$ from obtained q corresponding points \vec{CP}

