SUPPLEMENTARY INFORMATION

Modulation of oncogenic miRNA biogenesis using functionalized polyamines

Cathy Staedel^{1,*}, Thi Phuong Anh Tran², Julie Giraud³, Fabien Darfeuille¹, Audrey Di Giorgio², Nicolas J. Tourasse¹, Franck Salin⁴, Philippe Uriac⁵, and Maria Duca^{2*}

¹Université de Bordeaux, INSERM, ARNA, 33076 Bordeaux, France

²Université Côte d'Azur, CNRS, ICN, 06107 Nice, France

³Université de Bordeaux, INSERM, BARITON, 33076 Bordeaux, France

⁴Université de Bordeaux, INRA, BIOGECO, 33612 Cestas, France

⁵Université de Rennes 1, CNRS, ISCR, 35042 Rennes, France

* To whom correspondence should be addressed: Tel: +33 4 92076153; Fax: +33 4 92076151; Email: maria.duca@unice.fr. Correspondence may also be addressed to Cathy Staedel: Tel: +33 5 57 57 45 65; Fax: +33 5 57 57 10 15; Email: cathy.staedel@inserm.fr

SUPPLEMENTARY METHODS

MiRnome. Cells were plated in 6-well plates and treated or not with 25 µM of PA-1 for 4 days during their exponential growth phase, in triplicates. Cells were lyzed and RNA was extracted using the mirVana[™] miRNA isolation lit (Ambion) according to the manufacturer's protocol. 100 fentomoles of spike-in cel-miR-39 (Qiagen) were added to each sample during the lysis step. The small RNA (<200 nt) fraction were enriched and purified by passage on two sequential glass-fiber filters, as recommended. Small RNAs were quantified and analyzed using the Agilent® RNA 6000 Nano chip on an Agilent® Bioanalyzer instrument. Small RNA libraries were constructed using the Ion Total RNA-SEq kit and Ion Xpress[™] RNA-Seq Barcode kit (Life Technologies, Foster City, CA). Template preparation, emulsion PCR and Ion Sphere Particles enrichment were performed using the PGM[™] Hi-Q[™] OT2 kit (Life Technologies), according to the manufacturer's instructions. Sequencing was performed in an Ion PGM Sequencer using an Ion 314 Chip and Ion PGM[™] Hi-Q[™] Sequencing Kit (Life Technologies).

Sequence analysis

Reads were trimmed of IonTorrent adapters (A-key and P1-key) using cutadapt $1.1^{[21a]}$ run with an error rate of 20% and a minimum overlap between read and adapter of 20 bases (options "-e 0.20 -O 20"). Identification of miRNAs and quantification of their expression levels were carried out by means of miRDeep* $37^{[21b]}$ using assembly hg19 (GRCh37) of the human genome (which is part of miRDeep*) and default options, except for the minimum phred quality score which was lowered from 20 to 18 for some datasets that were of lower quality. The human miRNA set included in miRDeep* was from miRBase v19 (http://www.mirbase.org/). To quantify the amount of the cel-miR-39 miRNA of *Caenorhabditis elegans* that was included as a control, the *C. elegans* ce11 (WBcel235) genome assembly was downloaded from the Ensembl database release 84 (http://www.ensembl.org/) and installed into miRDeep*, which was run with the same parameters as above. The *C. elegans* miRNA set was downloaded from miRBase v21.

Molecular Modeling and Docking

The MC-Fold/MC-Sym pipeline ((http:// http://www.major.iric.ca/MC-Pipeline/) is a web-hosted service for RNA secondary and tertiary structure prediction. The pipeline consists in uploading RNA sequence to MC-Fold, which output secondary structures that are directly input to MC-Sym, which outputs tertiary structures. Pre-miRNA sequences were obtained from the miRBase database (http://www.mirbase.org/). The hairpin loop of pre-miR-372 was chosen to predict the 3D structure using the MC-Fold/MC-Sym pipeline. Energy optimization was further conducted on the 3D model using the TINKER Molecular Modeling Package (http://dasher.wustl.edu/tinker/).

For docking with AutoDock,⁴¹ polar hydrogen atoms, Kollman united charges and solvent parameters RNA applied to the using pmol2q script were (http://www.sourcefiles.org/Scientific/Biology/Proteins/pmol2q_2.3.0.tar.gz). This script converts the .pdb file format of the RNA template to the .pdbqt file format that is compatible with AutoDock program version 4 (http://autodock.scripps.edu/). Pre-miR-372/PA-1 molecular docking was conducted using AutoDock program version 4. The rotational bonds of the ligand were treated as flexible, whereas the receptor was kept rigid. Grid box was fixed in order to include the entire RNA sequence. RNA-ligand interactions were analyzed and visualized using Discovery Studio Visualizer version 4.1 (http://accelrys.com/products/discovery-studio/).

Figure S1. A) Binding curves of compounds **PA-1-3** (concentrations from 61 nM to 1 mM) in the presence of pre-miR-372 and B) inhibition curves of compounds **1-3** incubated with pre-miR-372 in the presence of Dicer.

Figure S2. A) A) Relative growth rate of the gastric adenocarcinoma AGS, MKN74, MKN7, MKN28 and NCI-N87 cell lines in the absence (control) and in the presence of **PA-1** (25 μ M). Growth was determined by (A492nm at day 4 - A492nm at day 2) / A492nm at day 2. Each point represents the mean \pm standard deviation (SD) of growth rate data compared to those of untreated cells. B) Relative expression of relevant miRNAs in the different cell lines in basal growth conditions. Bars represent the means \pm SD (n = 3) of RT-qPCR data of the miRNAs normalized to both RNU49 and snU6 and compared to AGS cells.

Figure S3. Relative growth rate of AGS cells (A) expressing high miR-372 levels and MKN74 cells (B) in the presence of spermine and putrescine. Growth was determined by $(A_{492nm} \text{ at day } 4 - A_{492nm} \text{ at day } 2) / A_{492nm}$ at day 2. Each point represents the mean ± standard deviation (SD) of growth rate data compared to those of untreated cells.

Figure S4. Cytostatic and reversible effect of PA-1 on AGS cells. A) Cell cycle analysis by flow cyometry: upon 48h treatment with PA-1 at the indicated concentrations, the cells were detached and fixed in 70% ethanol, as described in ³²; DNA was stained by propidium iodine (0.5 mg/ml in PBS, 0.1% BSA, 0.1% RNaseA). Representative DNA histograms are shown, with the percentage of cells in the different phases of the cell cycle (mean ± SD of quadruplicates); B) CDKN1A/p21 protein immunolabelling using fluorescence microscopy, in untreated cells and upon 24h or 72h treatment with **PA-1** at 25 µM. CDKN1A/p21 was labeled on paraformaldehyde-fixed cells using a mouse antihuman p21 monoclonal antibody (BD Pharmingen), followed by an Alexa 564-labeled anti-mouse antibody, and appears in red in the cell nucleus. Nuclei are revealed by Hoechst staining and appear in blue; C) RT-PCR quantification of CDKN1A/p21, PCNA and PDCD4 mRNAs (as described in ⁴³) after a 72 h treatment with increasing doses of **PA-1**. Bars represent the mean \pm SD of the different gene expression normalized to the housekeeping genes and compared to untreated cells (n = 3); D) Cells were plated in 96-well microplates and treated with **PA-1** at 25 μ M for 72h. Cell viability was assessed at this time point on a part of the wells (dark grey bars), while the others wells were rinsed twice with fresh growth medium and grown in the presence (medium grey bars) or in the absence (light grey bars) of **PA-1** (25 μ M) for additional 48h. Cell viability was assessed at this later time point. Bars represent the absorbance at 492 nm of the CellTiter reagent metabolized by the viable cells (mean \pm SD of quadruplicates).

Figure S5. MiRNAs found to be downregulated (A) or upregulated (B) in the miRnome of AGS cells treated for 4 days with 25 μ M of compound **PA-1**, compared to untreated cells. Bars represent the mean fold changes in the number of reads (% of total reads) for each miRNA, for triplicate samples, established for the AGS miRnome in Table S3.

Figure S6. Verification by RTqPCR of the changes in the miRNA levels upon treatment with compound PA-1. The same triplicate samples as for the miRnome analysis were used. Bars are the mean \pm SD of fold changes of miRNA in PA-1-treated AGS compared to untreated ones.

Figure S7. Inhibition of **PA-1**-mediated growth inhibition by complementation by a mimic of mature miR-372 (mim372). AGS were plated in 96-well plates at 2500 cells/well and treated with 25 μ M **PA-1**. The following day, 0.1 or 1 μ M mim372 or siControl double stranded oligoribonucleotides were transfected using Lipofectamin2000 (Invitrogen) as recommended and previously described³². Cell viability was measured 48h later. Bars represent the fold changes of absorbance at 492 nm relative to untreated siControl cells (mean ± SD in triplicates).

Figure S8. Quantification of lead(II) footprinting analysis relative to gel showed in Figure 2B.

Figure S9. A) Quantification of Dicer footprinting analysis relative to gel showed in Figure 2C; B) Quantification of S1 RNase footprinting analysis relative to gel showed in Figure 2D.

Figure S10. Docking of compound **PA-1** with the pre-miR-373 (A), pre-miR-22 (B) and pre-miR-31 (C) hairpin loops performed using autodock 4 where the grid boxes were fixed on the entire RNA sequence.

Figure S11. Uncropped gels corresponding to Figure 6 of the main manuscript. A) complete gel relative to Figure 6B with additional L and R control bands; B) complete gel relative to Figure 6C showing reproducibility of the result obtained in lanes 4-7 that have been repeated twice on the gel and C) complete gel relative to Figure 6D with additional increasing concentration of **PA-1** in the presence of S1 enzyme.

Table S1. MiRnome of untreated and PA-1-treated (4 days at 25 μ M) AGS cells. Data are expressed as the percentage of each miRNA reads normalized to cel-miR-39 relative to the total number of miRNA reads of the sample (mean \pm SD for the triplicate samples). The miRNAs are sorted in a decreasing order of their percent of total reads in the untreated AGS cells.

miR_ID	R_ID mature miR(highest read) Untreated		d AGS	PA-1 treated AGS	
		Mean	SD	Mean	SD
hsa-mir-21	TAGCTTATCAGACTGATGTTGA(TAGCTTATCAGACTGATGTTGA)	16,781	0,495	20,314	3,613
hsa-mir-372	AAAGTGCTGCGACATTTGAGCGT(AAAGTGCTGCGACATTTGAGC GT)	16,746 <i>0,463</i>		9,329	1,845
hsa-mir-373	GAAGTGCTTCGATTTTGGGGTGT(GAAGTGCTTCGATTTTGGGGT GT)	15,798	1,073	12,545	1,076
hsa-mir-371a- <mark>5p</mark>	ACTCAAACTGTGGGGGGCACT(ACTCAAACTGTGGGGGGCACTT)	10,685	0,664	12,244	1,554
hsa-mir-31	AGGCAAGATGCTGGCATAGCT(AGGCAAGATGCTGGCATAGCTG)	3,795	0,374	1,664	0,194
hsa-let-7a	TGAGGTAGTAGGTTGTATAGTT(TGAGGTAGTAGGTTGTATAGTT)	2,355	0,230	2,836	0,469
hsa-mir-19a	TGTGCAAATCTATGCAAAACTGA(TGTGCAAATCTATGCAAAACTG A)	2,295	0,131	0,869	0,009
hsa-mir-23a	ATCACATTGCCAGGGATTTCC(ATCACATTGCCAGGGATTT)	2,051	0,212	2,200	0,071
hsa-mir-203a	GTGAAATGTTTAGGACCACTAG(GTGAAATGTTTAGGACCACTAG)	1,603	0,130	1,914	0,165
hsa-mir-23b	ATCACATTGCCAGGGATTACC(ATCACATTGCCAGGGATTA)	1,577	0,122	2,035	0,184
hsa-mir-99b	CACCCGTAGAACCGACCTTGCG(CACCCGTAGAACCGACCTTGCG)	1,522	0,171	0,668	0,178
hsa-mir-18a	TAAGGTGCATCTAGTGCAGATAG(TAAGGTGCATCTAGTGCAGAT AG)	1,431	0,165	1,487	0,285
hsa-mir-371a <mark>-3p</mark>	AAGTGCCGCCATCTTTTGAGTGT(ACTCAAACTGTGGGGGGCACTT)	1,354	0,135	0,810	0,024
hsa-let-7e	TGAGGTAGGAGGTTGTATAGTT(TGAGGTAGGAGGTTGTATAGTT)	1,288	0,198	2,342	0,164
hsa-mir-20a	TAAAGTGCTTATAGTGCAGGTAG(TAAAGTGCTTATAGTGCAGGT AG)	1,260	0,073	2,557	0,058
hsa-mir-27b	TTCACAGTGGCTAAGTTCTGC(TTCACAGTGGCTAAGTTCTG)	1,125	0,105	1,068	0,103
hsa-mir-191	CAACGGAATCCCAAAAGCAGCTG(CAACGGAATCCCAAAAGCAGC TG)	1,109	0,055	0,724	0,056
hsa-mir-125a	TCCCTGAGACCCTTTAACCTGTGA(TCCCTGAGACCCTTTAACCTGT G)	1,066	0,073	1,404	0,192
hsa-let-7g	TGAGGTAGTAGTTTGTACAGTT(TGAGGTAGTAGTTTGTACAGTT)	0,959	0,146	0,758	0,098
hsa-mir-27a	TTCACAGTGGCTAAGTTCCGC(TTCACAGTGGCTAAGTTCCG)	0,947	0,095	0,530	0,073
hsa-mir-29a	TAGCACCATCTGAAATCGGTTA(TAGCACCATCTGAAATCGGTTA)	0,705	0,026	0,502	0,063
hsa-let-7b	TGAGGTAGTAGGTTGTGTGGGTT(TGAGGTAGTAGGTTGTGTGGTT)	0,678	0,049	0,709	0,160
hsa-mir-192	CTGACCTATGAATTGACAGCC(CTGACCTATGAATTGACAG)	0,582	0,067	0,261	0,037
hsa-mir-15b	TAGCAGCACATCATGGTTTACA(TAGCAGCACATCATGGTTTACA)	0,576	0,070	0,763	0,068
hsa-let-7i	TGAGGTAGTAGTTTGTGCTGTT(TGAGGTAGTAGTTTGTGCTGTT)	0,563 0,004		0,131	0,031
hsa-let-7d	AGAGGTAGTAGGTTGCATAGTT(AGAGGTAGTAGGTTGCATAGTT)	0,485	0,033	0,976	0,087
hsa-mir-200a	TAACACTGTCTGGTAACGATGT(TAACACTGTCTGGTAACGATGTT)	0,476	0,060	0,510	0,080
hsa-mir-34a	TGGCAGTGTCTTAGCTGGTTGT(TGGCAGTGTCTTAGCTGGTTGTT)	0,474	0,047	0,676	0,047
hsa-mir-660	TACCCATTGCATATCGGAGTTG(TACCCATTGCATATCGGAGTTGT)	0,443	0,039	0,570	0,057
hsa-mir-151a	TCGAGGAGCTCACAGTCTAGT(TCGAGGAGCTCACAGTCTAGTA)	0,416	0,044	0,570	0,029
hsa-mir-31	TGCTATGCCAACATATTGCCAT(AGGCAAGATGCTGGCATAGCTG)	0,406	0,027	0,276	0,029
hsa-mir-30d	TGTAAACATCCCCGACTGGAAG(TGTAAACATCCCCGACTGGAAG)	0,403	0,034	0,854	0,082
hsa-mir-93	CAAAGTGCTGTTCGTGCAGGTAG(CAAAGTGCTGTTCGTGCAGGT	0,385	0,015	0,655	0,371

	AG)				
hsa-mir-10a	isa-mir-10a TACCCTGTAGATCCGAATTTGTG(TACCCTGTAGATCCGAATTTGT)		0,024	0,359	0,026
hsa-mir-22	AAGCTGCCAGTTGAAGAACTGT(AAGCTGCCAGTTGAAGAACTGT)	0,372	0,032	0,108	0,028
hsa-mir-141	TAACACTGTCTGGTAAAGATGG(TAACACTGTCTGGTAAAGATGG)	0,356	0,018	0,373	0,078
hsa-mir-17	CAAAGTGCTTACAGTGCAGGTAG(CAAAGTGCTTACAGTGCAGGT AG)	0,350	0,115	1,003	0,045
hsa-mir-30b	TGTAAACATCCTACACTCAGCT(TGTAAACATCCTACACTCAGCT)	0,323	0,049	1,631	0,203
hsa-mir-200b	TAATACTGCCTGGTAATGATGA(TAATACTGCCTGGTAATGATGA)	0,318	0,060	0,935	0,104
hsa-mir-183	TATGGCACTGGTAGAATTCACT(TATGGCACTGGTAGAATTCACTG)	0,279	0,061	0,195	0,027
hsa-mir-15a	TAGCAGCACATAATGGTTTGTG(TAGCAGCACATAATGGTTTGTG)	0,261	0,069	0,085	0,017
hsa-mir-200c	TAATACTGCCGGGTAATGATGGA(TAATACTGCCGGGTAATGATG G)	0,259	0,034	0,971	0,086
hsa-mir-373*	ACTCAAAATGGGGGGCGCTTTCC(GAAGTGCTTCGATTTTGGGGTG T)	0,253	0,054	0,568	0,054
hsa-mir-130a	CAGTGCAATGTTAAAAGGGCAT(CAGTGCAATGTTAAAAGGGCAT)	0,250	0,047	0,322	0,011
hsa-mir-106b	TAAAGTGCTGACAGTGCAGAT(TAAAGTGCTGACAGTGCAGATA)	0,232	0,072	0,677	0,028
hsa-mir-429	TAATACTGTCTGGTAAAACCGT(TAATACTGTCTGGTAAAACCGT)	0,229	0,076	0,220	0,059
hsa-mir-107	AGCAGCATTGTACAGGGCTATCA(AGCAGCATTGTACAGGGCTAT)	0,221	0,028	0,130	0,013
hsa-mir-455	GCAGTCCATGGGCATATACAC(GCAGTCCATGGGCATATACA)	0,187	0,005	0,137	0,012
hsa-mir-21*	CAACACCAGTCGATGGGCTGT(TAGCTTATCAGACTGATGTTGA) 0,17		0,036	0,087	0,002
hsa-mir-221	AGCTACATTGTCTGCTGGGTTTC(AGCTACATTGTCTGCTGGGTTT)	0,161	0,039	0,195	0,005
hsa-mir-374b	ATATAATACAACCTGCTAAGTG(ATATAATACAACCTGCTAAGTG)	0,160	0,022	0,246	0,052
hsa-mir-222	AGCTACATCTGGCTACTGGGT(AGCTACATCTGGCTACTGGGT)	0,140	0,042	0,162	0,035
hsa-mir-335	TCAAGAGCAATAACGAAAAATGT(TCAAGAGCAATAACGAAAAAT GT)	0,137	0,001	0,247	0,046
hsa-mir-135b	TATGGCTTTTCATTCCTATGTGA(TATGGCTTTTCATTCCTATGTGA)	0,130	0,009	0,078	0,014
hsa-mir-98	TGAGGTAGTAAGTTGTATTGTT(TGAGGTAGTAAGTTGTATTGTT)	0,130	0,005	0,290	0,303
hsa-mir-7-1	CAACAAATCACAGTCTGCCATA(TGGAAGACTAGTGATTTTGTTGT)	0,121	0,009	0,169	0,030
hsa-mir-423	AGCTCGGTCTGAGGCCCCTCAGT(AGCTCGGTCTGAGGCCCCTCA GT)	0,119	0,007	0,136	0,022
hsa-mir-744	TGCGGGGGCTAGGGCTAACAGCA(TGCGGGGGCTAGGGCTAACAGC A)	0,116	0,006	0,162	0,075
hsa-mir-324	CGCATCCCCTAGGGCATTGGTGT(CGCATCCCCTAGGGCATTGGT GT)	0,114	0,022	0,164	0,076
hsa-mir-484	TCAGGCTCAGTCCCCTCCCGAT(TCAGGCTCAGTCCCCTCCCGAT)	0,106	0,019	0,091	0,031
hsa-mir-590	GAGCTTATTCATAAAAGTGCAG(GAGCTTATTCATAAAAGTGCAG)		0,012	0,135	0,040
hsa-mir-320a	AAAAGCTGGGTTGAGAGGGCGA(AAAAGCTGGGTTGAGAGGGC GA)	0,095	0,014	0,354	0,070
hsa-mir-128-1	TCACAGTGAACCGGTCTCTTT(TCACAGTGAACCGGTCTCTTT)	0,092	0,002	0,072	0,012
hsa-mir-193b	AACTGGCCCTCAAAGTCCCGCT(AACTGGCCCTCAAAGTCCCGCT)	0,091	0,007	0,062	0,010
hsa-mir-29c	TAGCACCATTTGAAATCGGTTA(TAGCACCATTTGAAATCGGTTA)	0,090	0,000	0,058	0,008
hsa-mir-423	TGAGGGGCAGAGAGCGAGACTTT(AGCTCGGTCTGAGGCCCCTCA GT)	0,090	0,006	0,081	0,021
hsa-mir-30e	TGTAAACATCCTTGACTGGAAG(TGTAAACATCCTTGACTGGAAG)	0,084	0,011	0,121	0,026
hsa-mir-185	TGGAGAGAAAGGCAGTTCCTGA(TGGAGAGAAAGGCAGTTCCTG A)	0,083 0,010 0,078		0,019	
hsa-mir-17*	ACTGCAGTGAAGGCACTTGTAG(CAAAGTGCTTACAGTGCAGGTA G)	0,081	0,000	0,058	0,006
hsa-mir-532	-/ CATGCCTTGAGTGTAGGACCGT(CATGCCTTGAGTGTAGGACCGT)	0,079	0,030	0,084	0,023

hsa-mir-148a	48a TCAGTGCACTACAGAACTTTGT(TCAGTGCACTACAGAACTTTGT)		0,019	0,120	0,027
hsa-mir-128-2	TCACAGTGAACCGGTCTCTTT(TCACAGTGAACCGGTCTCTTT)	0,077	0,004	0,068	0,014
hsa-mir-130b	CAGTGCAATGATGAAAGGGCAT(CAGTGCAATGATGAAAGGGCA T)	0,075	0,034	0,101	0,021
hsa-mir-301a	CAGTGCAATAGTATTGTCAAAGC(CAGTGCAATAGTATTGTCAAAG)	0,074	0,018	0,100	0,010
hsa-mir-302b	TAAGTGCTTCCATGTTTTAGTAG(TAAGTGCTTCCATGTTTTAGTAG)	0,071	0,016	0,123	0,035
hsa-mir-302d	TAAGTGCTTCCATGTTTGAGTGT(TAAGTGCTTCCATGTTTGAGTG T)	0,068	0,027	0,061	0,015
hsa-mir-365a	TAATGCCCCTAAAAATCCTTAT(TAATGCCCCTAAAAATCCTTAT)	0,067	0,001	0,094	0,017
hsa-mir-365b	TAATGCCCCTAAAAATCCTTAT(TAATGCCCCTAAAAATCCTTAT)	0,067	0,001	0,094	0,017
hsa-mir-935	CCAGTTACCGCTTCCGCTACCGC(CAGTTACCGCTTCCGCTACCG)	0,066	0,025	0,072	0,018
hsa-mir-425	AATGACACGATCACTCCCGTTGA(AATGACACGATCACTCCCGTTG A)	0,064	0,015	0,097	0,025
hsa-mir-28	AAGGAGCTCACAGTCTATTGAG(AAGGAGCTCACAGTCTATTGAG)	0,059	0,007	0,058	0,008
hsa-mir-26b	TTCAAGTAATTCAGGATAGGT(TTCAAGTAATTCAGGATAGGTT)	0,057	0,000	0,074	0,019
hsa-mir-500a	ATGCACCTGGGCAAGGATTCTG(TAATCCTTGCTACCTGGGTGAG A)	0,054	0,014	0,078	0,012

Table S2 (Related to Table 1). Binding affinities (K_D , μM) of compounds PA-1, PA-2 and PA-3 for pre-miR-372 alone or in the presence of 100 eq. of tRNA (K'_D , μM) and DNA (K''_D , μM).

Name	$\mathbf{K}_{\mathbf{D}}^{\mathbf{a}}$	K' _D tRNA ^b	K' _D /K _D	K'' _D DNA ^c	K'' _D /K _D
PA-1	0.15	0.14	1.0	0.17	1.1
PA-2	0.53	0.62	1.2	5.8	11
PA-3	1.15	1.13	1.0	1.15	1.0

^a Binding studies were performed on 5'-FAM-pre-miR-372 in buffer A (20 mm Tris–HCl (pH 7.4), 12 mm NaCl, 2.5 mm MgCl₂, and 1 mm DTT). ^b Measured in the presence of a 100-fold excess of a mixture of natural tRNAs (tRNA mix). ^c Measured in the presence of a 100-fold excess of a 15-mer duplex DNA. All K_D values are given with an uncertainty of $\pm 10\%$.

Table S3 (Related to Table 1). IC_{50} values $(\mu M)^a$ for the inhibition of pre-miR-372 maturation in the presence of recombinant Dicer enzyme or HEK93 cell lysates.

Name	IC ₅₀ (µM) (recombinant Dicer)	IC'50 (μM) (cell lysates)	IC'50/IC50
1	1.06	2.88	2.7
2	16.3	65.4	4.0
3	12.7	34.4	2.7

^a IC_{50} experiments were performed in the presence of 50 nM of 3'-dabcyl-5'-FAM-pre-miR-372 beacon and 0.25U of human recombinant Dicer in Buffer A and represent the average of three independent experiments. All IC_{50} values are given with an uncertainty of $\pm 10\%$.