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Figure S1. Related to Figure 1. (A) Model  for the hypothesis that eIF5B was conserved throughout the 
evolution of aerobic eukaryotes for hypoxic  adaptation and metabolism. IF2/eIF5B likely evolved in the last 
universal  common ancestor under anaerobic conditions, and contemporary bacterial and archaeal  IF2 
homologs are capable of performing protein synthesis during oxygen deficiency. (B) Validation of siRNA-
mediated eIF5B knockdown success by immunoblot for Figure 1D. Representative immunoblots are shown. (C) 
Area under curve measurements of ribosome density profiles of normoxic  and hypoxic  U87MG treated with 
control  non-silencing (NS) or eIF5B-specific siRNA (Figure 1D). (D) Representative immunoblots of normoxic 
and hypoxic MCF7 and A549 treated with NS or eIF5B-specific siRNA.
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Figure S2. Related to Figure 2. (A) Validation of eIF5B IP by immunoblot (top panel) and agarose gel images 
of RT-qPCR products after 40 amplification cycles (bottom panel) for Figure 2A. Representative images are 
shown. (B) Normoxic  and hypoxic  U87MG treated with control non-silencing (NS) or eIF5B-specific  siRNA were 
subjected to ribosome density fractionation, followed by RT-qPCR measurements of elongator tRNAArg levels in 
free, 40S/43S, and 60S/80S fractions. (C) Representative control  immunoblots for Figure 2D. (D) Normoxic and 
hypoxic  U87MG treated with control non-silencing (NS) or eIF5B-specific siRNA were subjected to ribosome 
density fractionation, followed by RT-qPCR measurements of NDRG1 and ATF4 steady-state mRNA levels 
(based on aggregate abundance across all fractions). (E) Representative immunoblots of U87MG exposed to 4 
hr of heat shock (43 0C) versus untreated controls (37 0C). (F) Representative immunoblots of hypoxic  (time 
course) MCF7. (G) Representative control immunoblots for Figure 2G. (H) Representative immunoblots of 
normoxic  and hypoxic (24 hr) U87MG treated with NS or eIF5B-specific siRNA and salubrinal. (I) 
Representative control immunoblots for Figure 2H. (J) Representative control  immunoblots for Figure 2J. (K) 
Validation of siRNA-mediated eIF2A and eIF2D knockdown success by immunoblot for Figure 2K. 
Representative immunoblots are shown. (L) Representative immunoblots of normoxic  and hypoxic  U87MG 
treated with NS, eIF2A-specific (left panel), or eIF2D-specific (right panel) siRNA.
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Figure S3. Related to Figure 3. (A) Transcript distribution profile of TE changes in eIF5B depleted (eIF5B-
specific siRNA) versus eIF5B replete (control  non-silencing (NS) siRNA), hypoxic U87MG cells. (B) Liquid 
chromatography tandem mass spectrometry (LC-MS/MS) analysis workflow for identifying eIF5B-dependent 
targets that show concordant changes in TE, protein output, and steady-state protein level. (C) Correlation 
between protein output and steady-state protein level  for eIF5B-dependent targets classified based on hypoxia-
responsiveness. Class I and III members are preferentially translated in normoxia and hypoxia, respectively, 
whereas Class II members are translated across oxygen levels.
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Figure S4. Related to Figure 4. (A, B, top panel) KEGG pathway enrichment analysis of eIF5B-dependent 
cellular systems. (B, bottom panel) Hexagon models are shown, depicting TE, steady-state RNA level, protein 
output, and steady-state protein level for each individual detected protein involved in amino acid synthesis and 
protein processing, cell adhesion, and endocytosis. Legend is shown in Figure 4B. (C) Distribution of eIF5B-
dependent targets across the three hypoxia-responsive classes. (D) Full list of eIF5B-dependent enzymes and/
or isoforms identified to participate in the specific central carbon metabolism pathways. (E) Change in protein 
output and steady-state protein levels for heat shock proteins in eIF5B depleted (eIF5B-specific  siRNA) versus 
eIF5B replete (control non-silencing (NS) siRNA), hypoxic  U87MG cells. Representative immunoblots of (F) 
normoxic and hypoxic U87MG cells and (G) normoxic 786-0 treated with NS or eIF5B-specific siRNAs.
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Supplemental Experimental Procedures. Related to Experimental Procedures. 

Mass spectrometry analysis. Samples were re-suspended in 100 uL of 50 mM NH4HCO3 (pH 8.3), 8 M Urea, and 

DTT was added to reduce cysteines at a final concentration of 10 mM. Cysteines were reduced at 60°C for 1 hour. 

Sample was cooled to room temperature and iodoacetamide was added to a final volume of 20 mM. Samples were 

incubated at room temperature in the dark for 30 min. Samples were then acetone precipitated overnight, and protein 

precipitates were centrifuged at 23,000 g for 15 min. Precipitates were re-suspended in 50 uL of NH4HCO3 (pH 8.3), 

and MS grade Trypsin/LysC (Promega) was added to a final protease:protein ratio of 1:50 and samples were 

digested overnight at 37 0C. Samples were lyophilized and re-suspended in 0.1% trifluoroacetic acid (TFA). 

Peptides were fractionated using the Pierce High pH Reverse Phase Peptide Fractionation Kit (Pierce), following the 

manufacturer’s instructions. Each sample was fractionated into 8 high pH fractions.  

 

Fractionated peptides were lyophilized, and lyophilized peptide mixtures were dissolved in 0.1% formic acid and 

loaded onto a 75 µm x 2 cm PepMap 100 Easy-Spray pre-column filled with 3 µm C18 beads (Thermo Fisher 

Scientific) followed by an in-line 75 µm x 50 cm PepMap RSLC EASY-Spray column filled with 2 µm C18 beads 

(Thermo Fisher Scientific) at a pressure of 700 BAR. Peptides were eluted over 120 to 240 min at a rate of 250 

nl/min using a 0 to 35% acetonitrile gradient in 0.1 % formic acid. For ribosome density fractionated samples, “free” 

fractions were eluted over 120 min each, while “40/60/80S” and “polysome” fractions were eluted over 180 each. 

eIF5B-depleted and control samples were eluted over 240 min each. Peptides were introduced by nanoelectrospray 

into an LTQ-Orbitrap Elite hybrid mass spectrometer (Thermo-Fisher) outfitted with a nanospray source and EASY-

nLC split-free nano-LC system (Thermo Fisher Scientific). The instrument method consisted of one MS full scan 

(400–1500 m/z) in the Orbitrap mass analyzer, an automatic gain control target of 1e6 with a maximum ion injection 

of 200 ms, one microscan, and a resolution of 240,000. Ten data-dependent MS/MS scans were performed in the 

linear ion trap using the ten most intense ions at a normalized collision energy of 35. The MS and MS/MS scans 

were obtained in parallel fashion. In MS/MS mode automatic gain control targets were 1e5 with a maximum ion 

injection time of 50 ms. A minimum ion intensity of 5000 was required to trigger an MS/MS spectrum. Dynamic 

exclusion was applied using a maximum exclusion list of 500 with one repeat count with a repeat duration of 30 s 

and exclusion duration of 15 s. 
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Raw MS files acquired from the mass spectrometer were processed using PEAKS software (Bioinformatics 

Solutions Inc.). Data was loaded into the software program and data from each fraction was refined to merge scans 

within 2 min and 10.0 ppm. Spectra with PEAKS filter scores <0.5 were excluded. De novo sequencing and 

database searching was done using a precursor mass cutoff of 10.0 ppm and a fragment mass tolerance of 0.6 Da. 

Carbidomethylation of cysteine (+57.02 Da) residues was selected as a fixed modification while variable 

modifications included 13C6-15N2 SILAC on K (8.01Da), 13C6-15N4 SILAC on R (10.02), Oxidation of M (15.99). 

Label-free quantification was performed in PEAKS using SILAC labels. Data sets are available at the PRoteomics 

IDEntifications (PRIDE) database via ProteomeXchange, accession PXD006799. 

 

RNA interference. Small interfering RNA (siRNA) pools (siGENOME siRNA, GE Dharmacon) were transfected at 

a final concentration of 50 nM using Effectene (Qiagen) for 48 hr.  

 

Cell viability assays. Fluorescein diacetate (FDA) staining was used to assess cell viability. Briefly, cells were 

incubated in FDA (10 µg/ml) for 30 min at 370C with DAPI counterstaining, and visualized with fluorescence 

microscopy (excitation and emission wavelengths of 492 nm and 517 nm, respectively) after washing with PBS. In 

addition, cell viability measurements were performed using the RealTime-Glo MT Cell Viability Assay (Promega) 

at indicated time points over 48 hr on cells grown in the same well. 

 

Global protein synthesis measurements. Global protein synthesis was measured by puromycin (Thermo Fisher 

Scientific) incorporation (1 µg/ml) for 20 min, followed by immunoblot analysis with an anti-puromycin antibody 

(see below).  

 

Immunoblot. Immunoblots were performed using standard techniques using the following antibodies: β-actin 

(Thermo Fisher Scientific, MA5-15739), ATF4 (Cell Signaling Technology, 11815S), total eIF2α (Cell Signaling 

Technology, 5324), Ser51-phosphorylated eIF2α (Abcam, ab32157), eIF2A (Proteintech, 11233-1-AP), eIF2D 

(Proteintech, 12840-1-AP), eIF5B (Santa Cruz Biotechnology, sc-393564), GLUT1 (Novus Biologicals, NB110-

39113), HIF-2α (Novus Biologicals, NB100-122), HSP27 (Cell Signaling Technology, 2402S), HSP70 (Santa Cruz 

Biotechnology, sc-66048), HSP90 (Cell Signaling Technology, 4877S), NDRG1 (Abcam, ab37897), P4HA1 (Novus 
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Biologicals, NB100-57852), and puromycin (EMD Millipore, MABE343). HRP-conjugated secondary antibodies 

(Santa Cruz Biotechnology) were used. Signals were detected by chemiluminescence (Pierce) using an Amersham 

Imager 600 (GE Healthcare Life Sciences) and analyzed in ImageJ (NIH).  

 

RNA immunoprecipitation. eIF5B RNA immunoprecipitation (RIP) experiments were performed using the 

Imprint RNA Immunoprecipitation Kit (Sigma-Aldrich) according to the manufacturer’s protocols. Whole cell 

lysates extracted with mild lysis buffer were incubated with an eIF5B/IF2-specific antibody (Bethyl Laboratories 

Inc., A301-744A) at 4 0C overnight. 200 µl of lysate and 7.5 µg of pre-bound antibodies were used for each RIP 

reaction. 

 

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). First-strand cDNA synthesis was 

performed using the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific), according to the 

manufacturer’s protocol. qRT-PCR was performed using the PowerUp SYBR Green Master Mix (Thermo Fisher 

Scientific) and a StepOnePlus Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific). All primer 

sequences are available upon request. Relative changes in expression were calculated using the comparative Ct 

(ΔΔCt) method. 

 

RNA-sequencing and analysis. Equal volumes of relevant ribosome density fractionated fractions were combined 

to yield the “free”, “40/60/80S”, and “polysome” samples, respectively. Poly(A) RNA selection, library preparation, 

and RNA sequencing were performed by the Sylvester Comprehensive Cancer Center Oncogenomics Core Facility, 

using the KAPA Stranded mRNA-Seq Kit (KAPA Biosystems) and NextSeq 500 High Output Kit v2 (Illumina). 

Paired-end (2 x 75 bp) sequencing runs at a depth of  >50 million reads were performed on the libraries using the 

NextSeq 500 system (Illumina). 

 

Raw data pre-processing was performed by the Sylvester Comprehensive Cancer Center Biostatistics and 

Bioinformatics Core Facility. For differential expression analysis, raw paired-end read data in FASTQ format were 

assessed for quality with FastQC (v. 11.5, Babraham Bioinformatics). Trimmomatic (Bolger et al., 2014) (v. 0.32) 

was used to remove adapters, Illumina-platform specific sequences, and low quality leading and trailing bases. 
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STAR (Dobin et al., 2013) ( (v. 2.5.0) was then utilized to map reads to the reference transcriptome (UCSC hg38 

knownGene database). Results were then processed by SAMtools (Li et al., 2009) (v. 0.1.19) for assignment to 

genomic features using featureCounts (Liao et al., 2014) in the Subread package (Liao et al., 2013) (v. 1.5.0). 

Transcript quantification (Fragments Per Kilobase of transcript per Million mapped reads, FPKM) was performed 

with RSEM (Li and Dewey, 2011) (v. 1.2.31) with a reference transcriptome (gencode.v26.p10.h38). Following 

input adjustment, translation efficiency was calculated based on polysomal to monosomal FPKM ratio. Steady-state 

RNA (transcriptome) levels were calculated based on the sum of FPKM across all fractions. Data sets are available 

at the NCBI Sequence Read Archive (SRA) database, accession SRP110475. 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. KEGG analysis was 

performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) bioinformatics 

resource (Huang da et al., 2009) (v. 6.8). 
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