
Supplementary information for “Interactions between species in-1

troduce spurious associations in microbiome studies”2

Model of community composition3

Here we describe a mathematical model of community composition, that we use to correct for4

microbial interactions in microbiome-wide association studies.5

Log-transformation of abundances6

The environment within a host is constantly changing due to variations in diet, immune response,7

phage activity and other factors. As a result, microbial growth rates should be highly variable8

and produce multiplicative fluctuations in the community composition, which are better captured9

on logarithmic rather than on linear scale. Indeed, the abundances of many gut species follow a10

log-normal distribution (Fig. S1), and recent work shows that a log-transformation of abundances11

increases the power and quality of microbiome studies [25]. Therefore, we chose to carry out12

all of the analysis and modeling on natural logarithms of relative abundances computed with a13

pseudocount of one read. For simplicity, we refer to these quantities as abundances in the following14

and denote them as li with the subscript identifying the species under consideration.15

Maximum entropy models16

Microbiota composition is highly variable among people in both health and disease [25] and needs17

to be described via a multivariate probability distribution P ({li}). The amount of data in a large18

microbiome-wide association study, however, is sufficient to reliably determine only the first and19

second moments of P ({li}). This situation is common in the analysis of biological data and has been20

successfully managed with the use of maximum entropy distributions [38]. These distributions are21

chosen to be as random as possible under the constraints imposed by the first and second moments.22

Maximum entropy models introduce the least amount of bias and reflect the tendency of natural23

systems to maximize their entropy. In other contexts, these models have successfully described the24

dynamics of neurons [50], forests [51], and flocks [52], and even predicted protein structure [53] and25

function [54]. In the context of microbiomes, a recent work derived a maximum entropy distribution26

for microbial abundances using the principle of maximum diversity [55].27

Let us denote abundance means and covariances computed from the data by the vector m and28

matrix C respectively. The constraints on the maximum entropy distribution are then expressed29

as30

〈li〉 = mi

〈lilj〉 − 〈li〉〈lj〉 = Cij
(1)

and the maximum entropy distribution takes the following form31

P ({li}) =
1

Z
e
∑
i hili+

1
2

∑
ij Jij lilj (2)

which is similar to the Ising model of statistical physics, but with continuous rather than discrete32

degrees of freedom. The variables hi and Jij arise as Lagrange multipliers for the first and second33
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moment constraints during entropy maximization. In statistical physics, they describe local mag-34

netic fields that align spins li and interactions between spins li and lj . The constant Z, known as35

the partition function, ensures that the distribution is normalized:36

Z =

∫ ∏
i

dlie
∑
i hili+

1
2

∑
ij Jij lilj (3)

Note that Z is a multi-dimensional Gaussian integral.37

Host effects vs. species interactions38

To interpret this maximum entropy distribution in terms of biologically relevant factors such as39

microbial interactions and properties of the host, we can rewrite equation (2) as follows40

P ({li}) =
1

Z
e
∑
iHili (4)

where41

Hi = hi +
1

2

∑
j

Jijlj (5)

describe the quality of the local environment for species i: the higher Hi, the more abundant42

the species. The quality of the environment can be decomposed into external variables such as43

temperature or metabolite concentrations Vα and the species’ response to these variables Riα as44

Hi =
∑
α

RiαVα (6)

We can further decompose the external variables Vα into host factors V h
α and influences of other45

species, e.g., due to metabolite secretion or production of antibiotics:46

Vα = V h
α +

∑
j

Pαjlj (7)

where Pαj describes the influence of microbe j on variable α.47

Upon combining equations (6) and (7), we can express Hi as48

Hi =
∑
α

RiαV
h
α +

∑
αj

RiαPαjlj (8)
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Comparison of this equation to equation (5) shows that we can identify hi =
∑

αRiαVα with the49

direct effects of the host and Jij = 2
∑

αRiαPαj with the interactions among the microbes.50

Inference of model parameters51

Here we describe the procedure of learning the parameters of the maximum entropy model from52

the data. Our approach closely follows that of Refs. [38], [53] and [54].53

Relating h and J to m and C54

To infer model parameters hi and Jij , we need to relate them to empirical observations such as55

the means and covariances of the abundances. These relationships can be conveniently obtained56

from the derivatives of the partition function, which is the standard approach in statistical physics.57

Indeed, the mean abundances can be expressed as58

〈lk〉 =
1

Z

∫ ∏
i

dlie
∑
i hili+

1
2

∑
ij Jij lilj lk =

∂ lnZ

∂hk
. (9)

A similar relationship holds for the covariance matrix:59

〈lilj〉 − 〈li〉〈lj〉 =
∂2 lnZ

∂hi∂hj
(10)

To complete the calculation, we need to compute the partition function defined by equation (3).60

The result reads61

Z =
1√

det(J/2π)
e

1
2
hT J−1h (11)

where symbols without indexes are treated as vectors or matrices.62

From equation (11), we immediately find that63

m = J−1h

C = J−1
(12)

which can be inverted to obtain64

h = C−1m

J = C−1
(13)

Inverting the covariance matrix65

It is clear from equation (13) that the key step in obtaining the model parameters is the inversion66
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of the covariance matrix. However, this matrix is likely to be degenerate or ill-conditioned because67

of the insufficient amount of data or very strong correlations between microbial abundances. To68

overcome this difficulty, we computed a pseudoinverse of C as described in the following sections.69

Briefly, we used singular value decomposition [114] of C in terms of two orthogonal matrices U70

and V (since C is symmetric, U = V ) and a diagonal matrix Λ:71

C = UΛV T (14)

Some diagonal elements of Λ were small and comparable to the levels of noise (or uncertainty), so72

we set the corresponding elements of Λ−1 to zero. Specifically, Λ−1
kk was set to zero for all k such73

that Λkk < λmin, where λmin was a predetermined threshold. A regular inverse (Λ−1
kk = 1/Λkk) was74

used for the rest of the elements. The choice of the threshold and the robustness of the results to75

the variation in λmin are discussed in the section on data analysis. This procedure ensured that we76

do not infer large changes in host fields h due to fluctuations in the estimate of 〈l〉. The inverse of C77

was then computed as C−1 = V Λ−1UT , where we used the fact that the inverse of an orthogonal78

matrix is its transpose.79

Origin of spurious associations and Direct Associations Analysis80

Microbial interactions introduce spurious associations81

In microbiome-wide association studies, we are typically interested in the changes in microbial82

abundances ∆m between two groups of subjects. From equation (12), we can relate ∆m to the83

changes in the phenotype of the host ∆h:84

∆m = C∆h (15)

This formula clearly illustrates the origin of spurious associations. Imagine that there is a small85

number of species directly linked to host phenotype, i.e. ∆h is a sparse vector. Because C is a86

dense matrix (see Fig. 1b in the main text), equation (15) predicts that ∆m is dense, i.e. the87

abundances of most species are affected. The sizes of these effects are variable and depend on the88

magnitude of the off-diagonal elements of C. Except for the strongly interacting species, the largest89

changes in m are likely to mirror the largest changes in h and result in significant associations. In90

large samples, however, smaller effects become detectable that could either reflect small direct91

effects or the secondary, indirect effects due to microbial interactions. As a result, the number92

of associations grows with the sample size, and the relationship between associated species and93

host phenotype becomes obscured. Fig. 2 in the main text presents evidence for a large number of94

spurious associations in both synthetic and real data.95

Removing indirect associations96

Equation (15) offers a straightforward way to correct for microbial interactions and separate direct97

from indirect associations. Indeed, for each species, we can compute the corresponding change in98

the host field as99
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∆hi =
∑
j

(
C−1

)
ij

∆mj (16)

The statistical significance of this change can be determined via the permutation test followed by100

the Benjamini-Hochberg procedure to correct for multiple hypothesis testing [61].101

Assumptions and limitations of DAA102

Pairwise interactions are sufficient103

So far, we have considered only pairwise interactions between the taxa. This is a common as-104

sumption in maximum entropy models, which reflects the need for very large data sets in which105

higher-order interactions can be reliably inferred [38, 50–54]. While fitting higher-order interactions106

is impractical, we can nevertheless test whether they make a significant contribution to the pat-107

terns of co-occurrence observed in IBD data. To this purpose, we computed third and fourth order108

moments of microbial abundances in IBD data and compared them to the corresponding moments109

predicted by our maximum entropy model. This is a meaningful test because only the first and110

second moments were used to fit the model to the data.111

The predictions of our model follow from the properties of the multivariate Gaussian distribution112

and can be summarized as follows:113

〈liljlk〉 = mimjmk +miCjk +mjCik +mkCij

〈(li − 〈li〉)(lj − 〈lj〉)(lk − 〈lk〉)〉 = 0

〈(li − 〈li〉)(lj − 〈lj〉)(lk − 〈lk〉)(lm − 〈lm〉)〉 = CijCkm + CimCjk + CikCjm

(17)

The model predicts that the third central moments vanish, and indeed the corresponding values in114

the data are close to zero (Fig. S2). The observed deviation is consistent with the level of noise115

seen in a random Gaussian sample drawn from the maximum entropy distribution; the size of the116

sample equaled that of the IBD data. Further, the predictions for the non-central moments are117

highly correlated with the moments observed in IBD data (Fig. S2) with Pearson’s r equal to 1118

and 0.81 for third and fourth moments respectively. The deviations of r from 1 are largely due to119

the uncertainty in the values of the observed moments. Indeed, we obtained r = 1 and r = 0.88120

for the correlation between predicted and observed third and fourth order moments for the random121

sample drawn from our maximum entropy distribution. Since the higher moments of the maximum122

entropy distribution satisfy Eq. (17) exactly, the observed values of r set the upper bound on the123

correlation coefficient that can be obtained given the sample size in the IBD data set.124

Host phenotype affects h, but not J125

An important assumption behind Eq. (16) is that the interspecific interactions are not affected by126

host phenotype, i.e. C and J are the same for control and disease groups. Deviations from this127

assumption are certainly possible, but they represent higher order effects, which are absent in a128

simple linear-response model of microbial communities given by Eq. (8). Moreover, current sample129

sizes are insufficient to accurately infer and compare the covariance matrices for each of the groups.130

Association tests between microbial interactions and host phenotype are further complicated by131

the large number of interspecific interactions, which leads to a severe reduction in statistical power.132
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Therefore, we did not attempt to identify specific interactions that are affected by IBD; instead,133

we assessed the overall similarity between the covariance matrices CCD and Ccontrol computed for134

patients with and without Crohn’s disease (Fig. S3). We found that the plot of the matrix elements135

of CCD vs. Ccontrol clustered around the diagonal with the coefficient of linear regression equal to136

0.96, suggesting that the structure of correlations is similar for the two phenotypic groups. The137

spectral properties of the matrices are also similar.138

To perform a more quantitative comparison we also computed the Pearson correlation coefficient139

between the matrix elements of CCD vs. Ccontrol (r = 0.7). However, interpreting the value of140

the correlation coefficient is non-trivial because it is very sensitive to the noise in the data and141

the uncertainty in the individual matrix elements is high, especially for taxa with low abundance.142

One way to estimate the expected level of noise is to compare the observed correlation coefficient143

to the correlation coefficient for two subsamples of the shuffled data drawn without preserving the144

diagnosis labels, but of the same size as the CD and control groups. This coefficient must equal 1145

in the limit of infinitely large data, so it sets the upper limit on r that can be observed between C146

computed for CD and control groups, even when there are no differences in the interactions. We147

note, however, that this upper bound is unlikely to be reached for IBD data because some taxa148

have different noise levels in CD and control groups. Indeed, the taxa depleted in CD have a low149

abundance in this group and, therefore, higher error in the estimates of the correlation coefficients150

with other taxa. We found that the correlation coefficient r between two random subsets was about151

0.9, suggesting that high level of noise is the likely explanation for the spread of the data away152

from the diagonal in Fig. S3.153

Robustness of inference to the uncertainties in the covariance matrix154

Since the sample size in the IBD data set is not sufficient to infer every element of the covariance155

matrix accurately, it is important to determine how the uncertainty in C affects DAA results. To156

this end, we repeatedly subsampled the IBD data set to half of its size and examined the variation157

in the gross properties of C and changes in h and ∆h. Fig. S11 shows that the eigenvalues of C158

are extremely robust and are virtually unaffected by the subsampling of the data. Similarly, there159

is only small variation in the values of ∆h between control and CD groups (Fig. S12). For genera160

detected by DAA, the values of ∆h together their error bars due to subsampling are well outside161

the region where ∆h are expected to lie under the null hypothesis of no association between the162

genus and Crohn’s disease.163

Compositional effects164

Microbial abundances are usually normalized by the total number of reads in the sample to eliminate165

the noise introduced during sample preparation, for example, at DNA extraction and amplification166

steps. Other normalization schemes are also used because they could be advantageous for certain167

data or analyses [55, 59, 60]. Any normalization eliminates one dimension of the data and thereby168

creates compositional biases that complicate the interpretation of the results [56–58]. For example,169

the relative abundance of a microbe could change simply due to the change in the abundance of170

other members in the community; such a possibility makes it difficult to unambiguously determine171

whether this microbe is associated with host phenotype. While it is impossible to fully eliminate172

compositional biases, their effects could be minimized. In this section, we show that the procedure173

that we adopted to compute C−1 achieves such minimization for a particular choice of the normal-174

ization scheme. We also discuss how DAA can be generalized for an arbitrary normalization scheme175

and show that the same results are obtained with and without the normalization of the data prior176

to the analysis. Overall, we conclude that compositional biases do not affect the performance of177

DAA for diverse microbial communities such as the gut and sample size less than about 5000. The178
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application of DAA to data with strong compositional effects would require the modifications that179

we outline below.180

In this section, we use li to denote the log-transformed abundance of microbe i regardless of the181

normalization scheme. The log-transformation is an important step in the analysis of compositional182

data because it reduces the degree of compositional biases [55–60]. Any normalization of the data183

imposes a constraint on li, which can be stated as follows184

F ({li}) = 0 (18)

The normalization that we used so far, known as total-sum scaling [59], corresponds to185

F ({li}) = −1 +
∑
i

eli (19)

while another popular normalization scheme, known as centered-log ratio, corresponds to186

F ({li}) =
∑
i

li (20)

The requirement that F ({li}) = 0 changes the maximum entropy distribution to187

P ({li}) = δ(F ({li}))
1

ZF
e
∑
i hili+

1
2

∑
ij Jij lilj (21)

where δ(·) is the Dirac delta function, and the subscript on Z indicates that the normalization188

constant depends on the choice of F . It is easy to show the origin of Eq. (21) by replacing the hard189

constraint in Eq. (18) by a soft constraint on the moments of P ({li}). Hard constraints are rarely190

included in the maximum entropy models while the inclusion of soft constraints is the standard191

practice. Specifically, we can replace Eq. (18) by192

〈F ({li})〉 = 0

〈F 2({li})〉 = θ2
(22)

which is equivalent to Eq. (18) in the limit of θ → 0. The maximum entropy distribution satisfying193

Eq. (22) reads194

P ({li}) =
1

Zθ
e
∑
i hili+

1
2

∑
ij Jij lilje−

F2({li})
2θ2 (23)

which reduces to Eq. (21) as θ → 0.195
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The delta function or the new θ−dependent term changes the maximum entropy distribution, and196

Eq. (12) no longer hold for a general choice of F ({li}). Instead, one has to compute the first and197

second order moment of the distribution given by Eq. (21) or Eq. (23) and fit them to the means and198

covariances observed in the data. This procedure, however, cannot uniquely determine hi and Jij199

because these parameters are no longer independent. Indeed, the condition that 〈F 2({li})〉 = 0200

imposes a constraint on the values that hi and Jij can take. This constraint is the consequence201

of the fact that normalization destroys one dimension of the data. The maximum entropy model202

“inherits” this property, so any change in hi could in part be due to the compositional bias.203

Accounting for compositional affects for an arbitrary F is nontrivial and is hardly justified given204

the weak compositional effects in the IBD data set. The analysis is, however, quite straightforward205

for F given by Eq. (20), which corresponds to the normalization by the geometric rather than206

arithmetic mean of microbial abundances. We now use this choice of F to illustrate the general207

principles outlined above and to demonstrate that our implementation of DAA already accounts208

for the compositional bias for this normalization scheme.209

For F given by Eq. (20), the soft constraint introduces a factor that keeps P ({li}) a multivariate210

Gaussian distribution. Therefore, Eq. (23) is equivalent to our original model given by Eq. (2)211

with J replaced by J (θ) defined as212

J
(θ)
ij = − 1

θ2
+ Jij (24)

In the matrix notation, this definition takes the following form213

J (θ) = − 1

θ2
E + J (25)

where E is the matrix with all elements equal to 1.214

Equations (12) then continue to hold and can be used to infer h(θ) and J (θ). As θ → 0, J (θ) → J215

in the subspace of
∑

i li = 0, i.e. except in the direction of (1, 1, ..., 1, 1)T , which becomes the216

eigenvector of J (θ) with a very large eigenvalue. This direction is also an eigenvector of C, and the217

corresponding eigenvalue tends to zero. Thus, compositional effects render C degenerate. Strong218

microbial interactions can have the same effect, and we indeed found a few vanishingly small219

eigenvalues of C. The variation in the data along the degenerate directions is eliminated when220

we calculate C−1 using the singular value decomposition [114] as explained in the corresponding221

section above.222

This procedure does not artificially exclude taxa from the analysis. For example, if two microbes223

are perfectly correlated with each other, DAA reports both as significant associations if their224

abundances vary between health and disease. Since DAA dramatically reduces the number of225

associations compared to conventional MWAS, we conclude that most of the spurious associations226

are driven by microbial interactions rather than the compositional bias. Further, the small number227

of associations found by DAA with quite different relative abundances makes it unlikely that they228

arise due to compositional effects.229
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Nevertheless, the maximum entropy model does “inherit” a constraint on the parameters from the230

compositional nature of the data. For F ({li}) =
∑

i li, it is easy to see that
∑

i hi cannot be231

uniquely determined from the data. Indeed, adding the same constant to every hi changes the232

exponent in the expression for P ({li}) by a factor proportional to
∑

i li, which must vanish due233

to the delta function. One can then choose an arbitrary value for
∑

i hi, say set it to zero. This234

condition reflects the residual compositional bias left in the maximum entropy model. Similarly,235

due to the compositional constraint on li, the constraint on hi can force hi to be different for236

all taxa, even if only one of them is directly affected by the host phenotype. The effect of the237

constraint, however, should scale as one over the number of the taxa that fluctuate independently.238

For a diverse ecosystem such as the gut, the effect of the compositional bias should, therefore, be239

small and detectable only with very large sample sizes. In the synthetic data, we start seeing the240

compositional effects at about 5000 samples which is 10 times the number of samples in the IBD241

data set; see Fig. S14.242

To test for compositional biases in the results of DAA, we analyzed the IBD data set with several243

widely-used normalization schemes [55, 59], including total-sum scaling, centered-log ratio, cumu-244

lative sum scaling, and no normalization at all (Figs. S10 and S13). All analyses identified about245

the same number of associations (and the same taxa) using either traditional MWAS or DAA.246

Finally, we note that our synthetic data has the same amount of compositional bias as in the IBD247

data. For both data sets, the top 10 most abundant taxa account for 80 % of the reads, and we248

normalized the synthetic data by the total number of reads in the sample prior to performing DAA.249

Generation of synthetic data250

Here, we describe how we generated the synthetic data shown in Fig. 2A of the main text. This251

data was generated to evaluate the likelihood of spurious associations in MWAS. We introduced a252

known number of direct associations, but ensured that all other properties of the data correspond253

to that of the human gut microbiota.254

The data for the control group were directly subsampled from the IBD data set. To generate the255

data for the disease group, we first inferred the covariance matrix using the entire data set and256

the mean abundances using just the control group. Then, equation (12) was used to compute h.257

These values of h described normal microbial abundances in subjects without IBD. To introduce258

a difference between cases and controls, we modified the values of h for 6 randomly chosen species259

by 10% - 40%; these are typical changes in h identified by DAA. Finally, we computed the ex-260

pected microbial abundance using equation (12) and then sampled from a multivariate Gaussian261

distribution with these means and the covariance matrix defined above.262

We also tested that our conclusions hold for other diseases with potentially different effect sizes.263

Specifically, we repeated the analysis in Fig. 2A for two other synthetic data sets: one with smaller264

and one with larger effect sizes. The results are qualitatively similar to what we reported in the265

main text and are shown in Fig. S14. The values of the effect sizes are given in Tab. S2.266

Data analysis267

For correlation analysis, we used Pearson correlation coefficient for log-transformed abundances.268

For logistic regression classifier, we used L1 penalty to ensure sparseness and generalizability. In269
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all classifiers default parameters were used in scikit-learn version 0.17.2.270

For hierarchical clustering of the correlation matrix, we used the Nearest Point Algorithm method271

of the linkage function in scipy with a correlation distance metric.272

Threshold for matrix inversion273

For our analysis of the IBD and synthetic data sets we set λmin to 0.01. To test whether our results274

are robust to the value of the threshold, we varied the number of eigenvalues of Λ−1 not set to275

zero; see Fig. S15. When only a few eigenvalues where included, DAA detected a large number of276

associations because many taxa were perfectly correlated, and it was impossible to distinguish direct277

from indirect associations. As the number of included eigenvalues increased, the performance of278

DAA improved and reached a plateau. In this plateau region, the results were largely insensitive to279

the value of the threshold used. Our choice of the theshold corresponded to this plateau region. At280

all taxonomic levels, we found one or two almost zero eigenvalues that were below λmin (Fig. S11);281

all other eigenvalues were included in the analysis.282

Computer code283

We include here the link to computer code that loads the data and outputs all figures and tables:284

https://github.com/rajitam/DAA-figures-and-tables285
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Fig. S1. Microbial abundances follow the log-normal distribution. The histograms show probability
distributions of the relative log-abundance for the species and genera detected by DAA (summarized in
Fig. 3). The best fit of a Gaussian distribution is shown in green.

Fig. S2. Pairwise interactions are sufficient to explain the patterns of microbial co-occurence.
The parameters in our maximum entropy model were chosen to fit only the first and the second moments
of the multivariate distribution of microbial abundances. Nevertheless, the model captures most of the
higher-order correlations in the data suggesting pairwise interactions are sufficient to accurately describe
the patterns of microbial co-occurences. (A) For each choice of three genera, the third order moment was
computed by averaging the product of the log-abundances over all the samples in the IBD data (“observed”)
or from Eq. (17) (“predicted”), which states the predictions of the maximum entropy model. The plot shows
excellent agreement between the two quantities. (B) For each choice of three genera (“index”), we plot the
third-order central moment computed from the IBD data (“observed”) and from an equally-sized sample
drawn from our maximum entropy model (“Gaussian distribution”). The latter quantifies the expected
deviations between the observations and predictions due to the finite size of the sample. (C) Same as (A),
but for the fourth-order central moment. The expected level of noise is quantified via a sample from the
maximum entropy model that obeys Eq. (17) exactly in the limit of infinite sample size. The correlation
coefficient between “observed” and “predicted” values from this sample sets the upper bound on the expected
correlation coefficient in IBD data.

Fig. S3. Microbial interactions are only weakly affected by host phenotype. To determine whether
Crohn’s disease drastically alters the pattern of microbial interactions, we computed and compared the
covariance matrixes CCD and Ccontrol for CD and control groups respectively. The results of this calculation
for IBD data are shown in blue. Each dot corresponds to a matrix element of Cij , which is the covariance
between the log-abundances of genera i and j. The x-coordinate is the covariance computed in the control
group and the y-coordinate is the covariance computed in the CD group. To estimate the expected level
of noise, we carried out the same analysis on two random partitions of the data that contain both controls
and subjects with CD (shown in magenta). Since the groups are drawn from the same distribution, their
covariance matrices must be identical on average. The spread of the magenta data points, therefore, sets
the upper limit on the correlation coefficient between CCD and Ccontrol. We note, however, that this upper
bound is unlikely to be reached for IBD data because some taxa have different noise levels in CD and control
groups: eg. the taxa depleted in CD have a low abundance in this group and, therefore, higher error in the
estimates of the correlation coefficients with other taxa. Overall, both IBD and partitioned data lie close
to the diagonal and exhibit similar levels of variation. Thus, using the same covariance matrix for both CD
and control groups is a reasonable first approximation. This approximation is valuable because it reduces
the uncertainty in Cij by allowing us to use the entire data to compute covariances and because it improves
the stability of DAA to errors in C (see Fig. S12).

Fig. S4. Taxa directly associated with Crohn’s disease. Note that the Green Genes database [116]
used in QIIME [117] places Turicibacter under Erysipelotrichales and has a unique order of Turicibacterales.
This apparent inconsistency may reflect insufficient understanding of Turicibacter phylogeny. The effect
sizes and statistical significance are summarized in Tab. S3 and compared between DAA and conventional
MWAS in Tab. S4.

Fig. S5. Comparison between correlations and direct interactions. The matrix of microbial inter-
actions J is shown in (A) and the correlation matrix C is shown in (B), which is the same as Fig. 1B of the
main text. Both matrices are inferred from the IBD data set. Note that J is sparser than C. For greater
clarity, the matrices are hierarchically clustered; therefore, the order of species in A and B is not the same.
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Fig. S6. Comparison of networks inferred by Pearson correlation, SparCC, and DAA at the
genus level. Three networks quantifying microbial co-occurrence or interactions have been inferred: one
based on the Pearson correlation coefficient between log-abundances (which is closely related to the covariance
matrix C), one using SparCC package from Ref. [56] that attempts to reduce compositional bias, and one
based on the direct interactions J from DAA. In each network, we kept only links that were statistically
different from 0 under a permutation test with 5% false discovery rate. The panels display Venn diagrams
showing unique and overlapping links in these networks. All links are included in (A), and the comparison
is done irrespective of the sign of the link, i.e. agreement is reported even if one method reports a positive
link and another method reports a negative link. In contrast, (B) and (C) show only positive and negative
links respectively. Three conclusions can be drawn from these comparisons. First, the high overlap between
SparCC and Pearson networks shows that log-transforms have largely accounted for the compositional bias.
Second, all three methods agree on a large number of links suggesting that all methods are sensitive to some
strong interactions. Third, DAA reports fewer links and identifies a few links not detected by other methods.
This reflect the different nature of DAA links. While both Pearson correlation and SparCC infer correlation,
which could be either direct or indirect (i.e. induced; see main text). DAA removes indirect correlations,
thus reducing the total number of links, but also reveals pairwise interactions that could have been masked
by strong correlations with a third species.

Fig. S7. The network based on the correlation coefficient between log-transformed abun-
dances. We plotted the correlation-based network for the species detected by DAA. Note the similarities
and differences with the interaction network shown in Fig. 3 of the main text. Only the links with the
correlation coefficient greater than 0.27 or lower than -0.15 are shown, and all links are statistically signifi-
cant (q < 0.05). All correlation coefficients and direct interactions are summarized in Tab. S6 for the genera
and species detected by DAA.

Fig. S8. Direct associations retain full diagnostic power. The same as Fig. 4B of the main text, but
for two other classifiers: random forest [65, 66] in (A) and support vector machine [67] in (B).

Fig. S9. DAA detects all directly associated taxa in synthetic data, provided the sample size
is sufficiently large. The same as Fig. 2A in the main text, but with the x-axis extended to larger sample
sizes. Note that DAA recovers all 6 directly associated taxa when the sample size is greater than about 1200.

Fig. S10. Compositional bias has a negligible effect on DAA performance. All panels are the
same as Fig. 2C in the main text, but with different normalization of the data prior to the analysis. (A) No
normalization: the analysis is done on the counts from the OTU table, which do not add up to a constant
number. (B) Total-sum scaling: The counts are converted into relative abundances by dividing by the
total number of counts (reads) per sample. This plot is the same as Fig. 2C. (C) Centered-log ratio: First
log-abundances were computed from unnormalized counts with a pseudocount of 1. Then, the mean log-
abundances of the taxa was computed by averaging over the samples. Finally, the mean-log abundance of
every taxon was subtracted from the log-abundances of this taxon in all samples. This procedure corresponds
to normalizing by the geometric mean of the counts because it ensures that the mean log-abundance of a
taxon is zero [55]. (D) Cumulative sum scaling: A normalization scheme proposed specifically for microbiome
analyses was implemented following Ref. [59]. The results of the analyses in A-D are very similar suggesting
that compositional bias does not lead to major artifacts. In particular, the number of associations in A grows
at the same rate with the sample size as in B-D. This would not be the case if the compositional bias was
strong because spurious associations due to normalization would lead to a greater number of detected taxa.
Thus, we conclude that interspecific interactions rather than compositional effects are the primary source of
spurious associations.
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Fig. S11. The inference of the eigenvalues of the covariance matrix is robust to variation
in sample size and bootstrapping. We repeatedly subsampled the IBD data set to half of its size
and computed the eigenvalues of the covariance matrix C. The means and standard deviations from this
bootstrap procedure are shown in green, and the eigenvalue inferred from the entire data are shown in black.
The agreement between the different sample sizes and the small variation due to subsampling indicate that
the spectral properties of C can be inferred quite accurately.

Fig. S12. Results of DAA are robust to variation in sample size and bootstrapping. Similar to
Fig. S11, we repeatedly subsampled the IBD data set to half of its size and carried out DAA on each of the
subsamples. (A) shows that there is a modest variation in inferred h. To a large extent, this variation is
driven by the uncertainty in C and its inverse J . (B) shows a much smaller variation in ∆h between control
and CD groups (green symbols). The noise is reduced because, even though C changes from subsample to
subsample, the same C is used to infer h for control and disease groups. Therefore, the variability in C has a
much weaker effect on ∆h. For comparison, we also show ∆h obtained by bootstrapping the entire data set
without preserving the diagnosis labels (black symbols). These data show the expected distribution of ∆h
under the null hypothesis of no associations. For genera detected by DAA, the black and the green error
bars do not overlap suggesting that the results of DAA are not affected by the uncertainty in C and are
robust to variation in sample size and bootstrapping.

Fig. S13. Results of DAA are not significantly affected by compositional effects. The quantity
∆h between control and CD groups is the test statistic used to infer direct associations, and the variation
of ∆h due to sampling shows whether the statistical analysis is robust to small changes in the data set. To
quantify these variations in ∆h, we consider a sample drawn from the maximum entropy model fitted to the
IBD data set and define two δ∆h: one between normalized and not normalized sample and the other between
the not normalized sample and the values of h in the maximum entropy model. The first δ∆h quantifies the
variability due to normalization, while the second δ∆h quantifies the variability due to sampling. The plot
shows the distribution of the absolute values of the difference between the absolute values of these δ∆h across
genera for three normalization schemes: total-sum scaling (TSS), centered-log ratio (CLR) and cumulative
sum scaling (CSS). The absolute ∆h values of significant taxa in IBD RISK data (red rectangles) lie well
outside of the distributions shown.

Fig. S14. Spurious associations in synthetic data with small and large effect sizes. The same
analysis as in Fig. 2AB of the main text, but for synthetic data with smaller (A, B, C) and larger (D, E,
F) effect sizes. (A) and (D) show the number of associations detected by traditional MWAS and DAA.
(B) and (E) show the median effect sizes (median fold change) for the taxa detected by conventional MWAS.
(C) and (E) show the effect sizes in both h and l for the taxa detected by DAA. The effect size for h was
quantified as the relative percent difference in host-field between cases and controls, while the l-effect size
was computed as described in the main text. Overall the results are similar to those in Fig. 2. In addition,
(A) and (B) show that DAA can recover all directly associated taxa given a large number of samples without
any false positives. For sample sizes exceeding 5000, DAA starts to detect indirect associations due to
compositional effects.

Fig. S15. Sensitivity of DAA to eigenvalue threshold λmin. Large λmin retains only a few eigenvalues
and imposes an artificially strong correlation structure on the data. As a result, DAA detects a large number
of associations because it cannot distinguish direct from indirect effects. The performance of DAA improves
as more eigenvalues are included and reaches a plateau. The dashed lines show the number of eigenvalues
included for λmin = 0.01 used throughout our analysis. The insets show the eigenvalues of Λ in decreasing
order.

13



Table S1. The list of genera used in the analysis. We included all genera that were present in more
than 60% of either control or IBD subjects. The indices were chosen to hierarchically cluster the correlation
matrix shown in Fig. 1b of the main text (index corresponds to the position of the genus on the x axis).

index genus name index genus name index genus name

1 [Prevotella] 17 Corynebacterium 33 Fusobacterium
2 Prevotella 18 Pseudomonas 34 Bacteroides
3 Dialister 19 Acinetobacter 35 Anaerostipes
4 Phascolarctobacterium 20 Erwinia 36 Parabacteroides
5 Epulopiscium 21 Actinomyces 37 [Eubacterium]
6 Eggerthella 22 Streptococcus 38 Odoribacter
7 Clostridium 23 Granulicatella 39 Oscillospira
8 Akkermansia 24 Neisseria 40 Lachnospira
9 Bilophila 25 Rothia 41 Roseburia
10 Bifidobacterium 26 Eikenella 42 Faecalibacterium
11 Collinsella 27 Campylobacter 43 Dorea
12 Sutterella 28 Veillonella 44 [Ruminococcus]
13 Parvimonas 29 Actinobacillus 45 Ruminococcus
14 Porphyromonas 30 Aggregatibacter 46 Blautia
15 Turicibacter 31 Haemophilus 47 Coprococcus
16 Staphylococcus 32 Holdemania

Table S2. Genera modified in synthetic data. Taxa indices are the same as in Table S1. Effect size is
the percent change in the value of h.

taxon
index

effect size
data 1 (main text)

effect size
data 2 (small)

effect size
data 3 (large)

1 −18% −17% −44%
11 +24% +14% +129%
19 −36% −12% −72%
27 +17% +16% +67%
33 −13% −14% −28%
45 +18% +13% +112%
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Table S3. Direct associations identified by DAA across phylogenetic levels.

taxon
name

direct effect,
hCD

direct effect,
hctrl

difference,
∆h/|hctrl|

p-value q-value

Order level
Burkholderiales −0.47 −0.66 +0.29 0.00013 0.0029
Turicibacterales −1.7 −1.4 −0.18 0.00031 0.0036
Pasteurellales −0.51 −0.69 +0.26 0.00068 0.0052
Campylobacterales −1.6 −1.8 +0.1 0.00696 0.04
Erysipelotrichales −2.5 −2.3 −0.083 0.0095 0.044

Family level
Alcaligenaceae −0.68 −0.86 +0.21 0.00027 0.01
Clostridiaceae −1.2 −0.99 −0.18 0.0026 0.049
Pasteurellaceae −0.31 −0.47 +0.35 0.0033 0.049

Genus level
Roseburia −1.2 −0.86 −0.35 0.000098 0.0046
Sutterella −0.63 −0.80 +0.22 0.00043 0.01
Oscillospira −2.4 −2.6 +0.097 0.0015 0.023
Turicibacter +0.46 +0.69 −0.34 0.003 0.035

Species level
B.adolescentis −0.23 +0.073 −4.12 0.00013 0.0037
E.dolichum −0.51 −0.31 −0.65 0.0028 0.039
F.prausnitzii −0.97 −0.81 −0.20 0.0042 0.039
A.segnis −0.072 −0.25 +0.71 0.0056 0.04
B.producta −0.75 −0.54 −0.38 0.0064 0.04
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Table S4. Comparison between changes in h and in l for the taxa identified by DAA.

taxon
name

abundance
lCD/lctrl

direct effect
∆h/|hctrl|

q-value, l q-value, h

Order level
Burkholderiales +1.6 +0.29 0.04 0.0029
Turicibacterales +0.45 −0.18 0.00002 0.0036
Pasteurellales +4.2 +0.26 0 0.0052
Campylobacterales +2.1 +0.1 0.000001 0.04
Erysipelotrichales +0.34 −0.083 0 0.044

Family level
Alcaligenaceae +1.7 +0.21 0.03 0.01
Clostridiaceae +0.25 −0.18 0 0.049
Pasteurellaceae +4.2 +0.35 0 0.049

Genus level
Roseburia +0.21 −0.35 0 0.0046
Sutterella +2.0 +0.22 0.004 0.01
Oscillospira +0.84 +0.097 0.33 0.023
Turicibacter +0.50 −0.34 0.0004 0.035

Species level
B.adolescentis +0.43 −4.12 0.00004 0.0037
E.dolichum +0.43 −0.65 0.00004 0.039
F.prausnitzii +0.41 −0.20 0.000003 0.039
A.segnis +2.8 +0.71 0 0.04
B.producta +0.67 −0.38 0.03 0.04
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Table S5. Indirect associations identified by uncorrected abundance analysis across phyloge-
netic levels.

taxon name
abundance,
lCD

abundance,
lctrl

ratio,
lCD/lctrl

p-value q-value

Order level
Erysipelotrichales 0.43 1.3 0.34 0 0
Clostridiales 18.4 31.1 0.59 0 0
Pasteurellales 1.2 0.29 4.2 0 0
Fusobacteriales 0.25 0.08 3.2 0 0
Enterobacteriales 2.8 0.81 3.4 0 0
Campylobacterales 0.017 0.008 2.1 0.000001 0.000004
Neisseriales 0.029 0.013 2.1 0.000002 0.000006
Turicibacterales 0.006 0.013 0.45 0.000008 0.00002
Bifidobacteriales 0.041 0.09 0.47 0.00004 0.0001
Bacteroidales 25.5 38.8 0.66 0.00008 0.00019
Gemellales 0.026 0.015 1.7 0.00023 0.00048
Verrucomicrobiales 0.017 0.036 0.48 0.0016 0.003
Sphingomonadales 0.010 0.007 1.4 0.02 0.04
Burkholderiales 1.3 0.86 1.6 0.02 0.04

Family level
Lachnospiraceae 4.9 11.5 0.42 0 0
Erysipelotrichaceae 0.44 1.3 0.34 0 0
Clostridiaceae 0.11 0.42 0.25 0 0
Pasteurellaceae 1.3 0.3 4.2 0 0
Fusobacteriaceae 0.25 0.08 3.3 0 0
Enterobacteriaceae 2.8 0.84 3.4 0 0.000001
Neisseriaceae 0.029 0.014 2.1 0.000002 0.00001
Ruminococcaceae 5.3 9.9 0.54 0.000002 0.00001
Turicibacteraceae 0.006 0.013 0.44 0.000006 0.00002
Bifidobacteriaceae 0.04 0.09 0.46 0.00003 0.0001
Campylobacteraceae 0.013 0.007 1.7 0.00012 0.0004
Christensenellaceae 0.007 0.01 0.55 0.00015 0.0005
Porphyromonadaceae 0.39 0.81 0.48 0.0002 0.0005
Gemellaceae 0.026 0.016 1.7 0.0003 0.0009
Bacteroidaceae 21.6 32.8 0.66 0.0004 0.001
Veillonellaceae 1.4 0.88 1.5 0.001 0.002
Verrucomicrobiaceae 0.018 0.038 0.47 0.001 0.003
Micrococcaceae 0.014 0.010 1.4 0.009 0.018
Alcaligenaceae 1.0 0.58 1.7 0.02 0.03
Prevotellaceae 0.04 0.07 0.58 0.02 0.04
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taxon name
abundance,
lCD

abundance,
lctrl

ratio,
lCD/lctrl

p-value q-value

Genus level
Roseburia 0.042 0.20 0.21 0 0
Blautia 0.17 0.52 0.33 0 0
Aggregatibacter 0.11 0.022 5.0 0 0
Haemophilus 1.41 0.33 4.3 0 0
Lachnospira 0.022 0.076 0.29 0 0
Actinobacillus 0.025 0.009 2.7 0 0
Fusobacterium 0.36 0.10 3.7 0 0
Coprococcus 0.35 0.87 0.40 0 0
[Eubacterium] 0.048 0.13 0.36 0 0
Veillonella 0.30 0.13 2.2 0.000001 0.000006
Campylobacter 0.018 0.009 1.9 0.000002 0.000009
Eikenella 0.018 0.009 2.1 0.000002 0.000009
Neisseria 0.019 0.010 1.9 0.000002 0.000009
Faecalibacterium 1.92 4.27 0.45 0.000003 0.000009
Erwinia 0.016 0.009 1.9 0.000024 0.000076
Dialister 0.25 0.091 2.7 0.000035 0.0001
Holdemania 0.02 0.036 0.54 0.000039 0.0001
Turicibacter 0.008 0.017 0.5 0.00015 0.0004
[Ruminococcus] 0.57 0.91 0.62 0.00018 0.0004
Ruminococcus 0.57 0.91 0.62 0.00018 0.0004
Parabacteroides 0.44 0.91 0.49 0.0003 0.0008
Bifidobacterium 0.058 0.11 0.53 0.0007 0.001
Rothia 0.016 0.011 1.5 0.0008 0.002
Porphyromonas 0.018 0.010 1.7 0.001 0.002
Sutterella 1.46 0.73 2.0 0.002 0.004
Dorea 0.48 0.73 0.66 0.002 0.004
Bacteroides 1.22 41.9 0.75 0.005 0.01
Akkermansia 0.023 0.044 0.53 0.006 0.01
Anaerostipes 0.012 0.018 0.7 0.01 0.02
Staphylococcus 0.02 0.014 1.4 0.02 0.03
Granulicatella 0.034 0.024 1.4 0.02 0.03
Phascolarctobacterium 0.038 0.061 0.62 0.03 0.04

Species level
H. parainfluenzae 3.42 0.83 4.1 0 0
A. segnis 0.064 0.023 2.8 0 0
F. prausnitzii 5.0 12.3 0.41 0 0.000003
B. adolescentis 0.028 0.066 0.43 0.000005 0.00004
E. dolichum 0.10 0.23 0.44 0.000007 0.00004
V. parvula 0.06 0.033 1.82 0.00002 0.0001
V. dispar 0.51 0.27 1.91 0.0002 0.0008
N. subflava 0.041 0.025 1.62 0.0008 0.0027
Ros. faecis 0.023 0.035 0.65 0.0008 0.0027
P. copri 0.052 0.11 0.46 0.001 0.003
A. muciniphila 0.061 0.13 0.48 0.002 0.006
Bac. uniformis 0.71 1.2 0.58 0.012 0.027
R. mucilaginosa 0.039 0.028 1.39 0.015 0.031
Bl. producta 0.031 0.046 0.67 0.015 0.031
C. catus 0.045 0.067 0.67 0.021 0.039
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Table S6. A summary of interaction strengths and log-abundance correlation coefficients for
the core IBD network shown in Fig. 3 of the main text. Statistical significance was estimated by a
permutation test. Specifically, we independently permuted the abundance of each taxa across samples and
then computed the correlation and interaction matrices on the permuted data to generate the probability
distribution for the null hypothesis of no interaction.

interacting taxa
correlation
strength, Cij

interaction
strength, Jij

q-value,
correlation

q-value,
interaction

A.segnis-B.producta +0.16 +0.14 0.0011 0.0041
A.segnis-Oscillospira −0.16 −0.17 0.0014 0.0011
A.segnis-Roseburia −0.15 −0.19 0.0034 0.0006
A.segnis-Sutterella −0.015 +0.046 0.80 0.41
A.segnis-Turicibacter +0.18 +0.12 0 0.021
B.adolescentis-A.segnis +0.19 +0.19 0 0.0006
B.adolescentis-B.producta +0.26 +0.16 0 0.0019
B.adolescentis-Oscillospira +0.069 −0.067 0.17 0.24
B.adolescentis-Roseburia +0.25 +0.24 0 0
B.adolescentis-Sutterella +0.036 +0.055 0.50 0.34
B.adolescentis-Turicibacter +0.40 +0.46 0 0
B.producta-Oscillospira +0.10 +0.04 0.044 0.47
B.producta-Roseburia +0.100 +0.0063 0.047 0.92
B.producta-Sutterella +0.0012 +0.092 0.98 0.091
B.producta-Turicibacter +0.31 +0.23 0 0
E.dolichum-A.segnis −0.0063 −0.027 0.92 0.66
E.dolichum-B.adolescentis +0.19 +0.051 0.0002 0.35
E.dolichum-B.producta +0.40 +0.46 0 0
E.dolichum-F.prausnitzii +0.075 +0.0087 0.13 0.92
E.dolichum-Oscillospira +0.27 +0.29 0 0
E.dolichum-Roseburia +0.25 +0.21 0 0
E.dolichum-Sutterella −0.080 −0.19 0.11 0
E.dolichum-Turicibacter +0.20 +0.057 0 0.33
F.prausnitzii-A.segnis −0.086 +0.0064 0.086 0.92
F.prausnitzii-B.adolescentis +0.15 +0.20 0.0021 0
F.prausnitzii-B.producta −0.065 −0.15 0.19 0.0032
F.prausnitzii-Oscillospira +0.32 +0.29 0 0
F.prausnitzii-Roseburia +0.35 +0.35 0 0
F.prausnitzii-Sutterella +0.25 +0.204 0 0.0006
F.prausnitzii-Turicibacter −0.095 −0.18 0.053 0.0003
Roseburia-Oscillospira +0.29 +0.16 0 0.0034
Roseburia-Sutterella +0.099 +0.019 0.05 0.76
Roseburia-Turicibacter +0.099 +0.053 0.05 0.34
Sutterella-Oscillospira +0.23 +0.24 0 0
Turicibacter-Oscillospira +0.036 +0.076 0.50 0.18
Turicibacter-Sutterella −0.12 −0.15 0.012 0.0026
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