Supplementary material

Rat telemetry study design

AZ1 was dosed at 10 (single dose), 100 (daily dosing for three days) and 450 mg/kg (single dose). Regorafenib was dosed at 8 and 16 mg/kg (daily dosing for three days). The study design is outlined in Table 1. In Speed *et al.*, rat PK was performed at 15 mg/kg sunitinib (single dose) and in Engle *et al.*, rat telemetry was performed at 5 and 50 mg/kg (daily dosing for three days) (Engle & Watson, 2016; Speed et al., 2012).

Compound	AZ1	Regorafenib			
n size	6	6			
Test occasion 1:	Day 0: control (vehicle)	Day 0: control (vehicle)			
Day, test item and dose	Day 1: AZ1 (450 mg/kg)	Day 1: Regorafenib 8 mg/kg			
		Day 2: Regorafenib 8 mg/kg			
		Day 3: Regorafenib 8 mg/kg			
Test occasion 2:	Day 0: control (vehicle)	Day 0: control (vehicle)			
Day, test item and dose	Day 1: AZ1 (10 mg/kg)	Day 1: Regorafenib 16 mg/kg			
		Day 2: Regorafenib 16 mg/kg			
		Day 3: Regorafenib 16 mg/kg			
Test occasion 3:	Day 0: control (vehicle)	-			
Day, test item and dose	Day 1: AZ1 (100 mg/kg)				
	Day 2: AZ1 (100 mg/kg)				
	Day 3: AZ1 (100 mg/kg)				
Dose volume	10 ml/kg	5 mL/kg			

Supplementary Table 1: Study design for rat telemetry study with AZ1 and regorafenib.

<u>Plasma concentrations in rat telemetry study</u>

Supplementary table 2 shows the observed mean concentrations at 2 hour post dose of AZ1 and

regorafenib. Concentrations were below the limit of quantification on vehicle dosed days.

Supplementary [*]	Table 2: Concentrations	obtained at 2 hours post	dose in the rat telemetry study.
----------------------------	-------------------------	--------------------------	----------------------------------

Compound	Dose level (mg/kg)	Test occasion	Day	Mean concentration 2 hours post dose (SD) (μΜ)
AZ1	450	1	1	112 (9.32)
	10	2	1	8.7 (0.949)
	100	3	1	54.0 (6.79)
	100	3	2	56.7 (10.9)
	100	3	3	64.6 (5.15)
Regorafenib	8	1	1	0.246 (0.118)

8	1	2	0.413 (0.184)
8	1	3	0.461 (0.237)
16	2	1	0.347 (0.168)
16	2	2	0.555 (0.272)
16	2	3	0.663 (0.271)

Literature reports of clinical BP exposure-response at steady state

The literature PKPD reports used in the analysis for BP elevation are shown in supplementary table

3.

Supplementary Table 3 Overview of Clinical PKPD models of BP changes with VEGFR-2 inhibitors used in analysis.

Compound	Axitinib	Sunitinib	Sunitinib	Sunitinib
Report	(Chen <i>et al.,</i> 2015)	(Houk <i>et al.,</i> 2010)	(Khosravan <i>et al.,</i> 2016)	(Lindauer et al., 2010)
Dose schedule	2-10 mg BD for 15 days	25-150 mg QD or QOD	25-75mg QD: continuous, 4weeks on 2 off, or 2 weeks on 1 off	50 mg QD for 4 weeks
Patient population	Metastatic renal cell carcinoma (RCC)	Advanced solid tumours, including gastrointestinal stromal tumour (GIST) and RCC	GIST and RCC	Healthy subjects
DBP/SBP simulated	DBP	DBP	DBP	DBP
PK model	Linear 2 compartment with first order absorption	Not reported	2 compartment with first order absorption and elimination for sunitinib and its metabolite SU12662	2 compartment model for sunitinib with pre-systemic and systemic metabolism to metabolite SU12662 and transit compartment for delayed absorption.
PD model	Type 3 indirect response model (IDR) with Emax function	Emax function	Type 2 IDR with linear drug function	Proportional function with immediate and slow (transducing) functions

Results of PKPD modelling analysis in rat

The parameter estimates derived from the PKPD analysis of the in house telemetry studies (AZ1 and regorafenib) are shown in supplementary tables 4 and 5 respectively. The PKPD model fits versus observations for AZ1 and regorafenib are shown in supplementary figures 1 and 2. Supplementary table 6 shows the parameter estimates obtained using the literature mean BP data for sunitinib in the rat, and the model fit versus observations is shown in supplementary figure 3.

Supplementary Table 4: Final parameter estimates for PKPD model estimated from rat telemetry study with AZ1 (PK was fixed). A handling effect was included as described in Equation 1

Estimate (dose	%RSE	%BSV	%IOV	
in mg/kg)		(%RSE)	(%RSE)	
0.26 (10)	-	-	-	
0.1357 (100)				
0.0226 (450)				
0.701 (10)	-	-	-	
0.247 (100)				
0.0477 (450)				
0.66 (10)	-	-	-	
1.87 (100)				
5.49 (450)				
15.1	8.0	22.4	-	
		(27)		
0.028	14.2	-	-	
0.45	8.7	-	-	
137.0	1.2	-	3.1	
			(28)	
0.013	14.1	66	-	
		(12)		
	Estimate (dose in mg/kg) 0.26 (10) 0.1357 (100) 0.0226 (450) 0.701 (10) 0.247 (100) 0.0477 (450) 0.66 (10) 1.87 (100) 5.49 (450) 15.1 0.028 0.45 137.0 0.013	Estimate (dose in mg/kg) %RSE 0.26 (10) - 0.1357 (100) - 0.0226 (450) - 0.701 (10) - 0.247 (100) - 0.247 (100) - 0.0477 (450) - 0.66 (10) - 1.87 (100) - 5.49 (450) 15.1 15.1 8.0 0.028 14.2 0.45 8.7 137.0 1.2 0.013 14.1	Estimate (dose %RSE %BSV (%RSE) 0.26 (10) - - 0.1357 (100) - - 0.1357 (100) - - 0.0226 (450) - - 0.701 (10) - - 0.247 (100) - - 0.0477 (450) - - 0.66 (10) - - 1.87 (100) - - 5.49 (450) - - 15.1 8.0 22.4 (27) 0.028 14.2 - 0.45 8.7 - 137.0 1.2 - 0.013 14.1 66 (12)	

Supplementary Table 5: Final parameter estimates for PKPD model estimated from rat telemetry study with regorafenib (PK was fixed). No handling effect was required.

Parameter	Estimate	%RSE	%BSV (%RSE)	%IOV (%RSE)
k _a (h ⁻¹)	0.071	-	-	-
V (L/kg)	7.24	-	-	-
k _e (h⁻¹)	0.213	-	-	-

slope (µM) ⁻¹	12.1	15.7	41.3	-
E₀ (mm Hg)	130.5	4.0	32.9 (58)	216.6 (158)
k _{e0} (h ⁻¹)	0.047	14.5	3.0 (37)	-

Supplementary Table 6: Sunitinib Rat telemetry parameter estimates (PK was fixed during PD estimation) using PK model estimated from data in Speed *et al* and average rat BP from Engle *et* al. No mixed effects (i.e. IIV or IOV) or handling effect was included in the final model fit.

Parameter	Estimate	%CV
k _a (h ⁻¹)	0.115	-
V (L/kg)	14.8	-
CL (L/h/kg)	1.72	-
slope (μM) ⁻¹	22.62	36.7
E _{BL} (mm Hg)	99.43	1.4
k _{e0} (h ⁻¹)	0.0057	51
Amp	2.80	17.3
Tshift	17.45	10.1
Freq	22.7	1.7

PKPD model parameters used in simulations for human PKPD reports

Supplementary table 7 contains the parameter estimates and equations used in the simulation of PK metric versus BP elevation. The time course of effects could not be replicated for Lindauer et al. since the data was converted to a ratio of BP increase rather than raw BP effect, where the model was driven by concentrations of sunitinib and its active metabolite SU12662, which are at similar concentrations following dosing with the parent drug. In the model these are assumed to be equipotent so rather than simulate the time course which included an immediate and slow transducing effect, the underlying steady state relationship accounting for both effects was used.

This dual drug effect function at steady state which predicted ~11 mm Hg change at 100 ng/mL which was in line with the observed level of effect. The resulting PK metrics were converted into μ M units for comparison to VEGFR-2 potency.

Compound	Axitinib	Sunitinib	Sunitinib	Sunitinib
Report	(Chen <i>, et al</i> .,	(Houk <i>et al.,</i> 2010)	(Khosravan <i>et al.,</i>	(Lindauer et al.,
	2015)		2016)	2010)
Dose range	0.2 to 20 mg	C _{trough} 0.0001 to 0.1	1-75mg	Total
simulated		ug/mL		Concentrations up
				to 100 ng/mL
РК	k _a =0.482 h ⁻¹	-	k _a =0.126 h ⁻¹	-
parameter	V _c /F=47.3 L		V _c /F=2700 L	
estimates	V _p /F=393 L		V _p /F=774 L	
	Cl/F=14.6 L/h		Cl/F=34.1 L/h	
	Q/F=4L/h		Q/F=0.688 L/h	
	Tlag=0.454 h			
PD model	dDBP/dt=k _{in}	DBP(t)=E0+E _{max} .C _{trou}	$dDBP/dt=k_{in}.(k_{PD}.C)$ -	DBP(t)=E ₀ .(1+
equations	-(1+E _{max} .C)/(EC ₅₀ .C	$_{gh}/C_{trough}+EC_{50}$	k _{out} .BP	α _{dia} (2.INH))
))-k _{out} .BP			
		BP change=DBP(t)-	$k_{in}=k_{out}.E_0$	INH=C.f _u /(kd+ C.f _u)
	BP	Eo		
	change=DBP(t)-E ₀		BP change=DBP(t)-	BP change=DBP(t)-
			E ₀	E ₀
PD	E ₀ =72.4 mm Hg	E ₀ =74 mm Hg	k _{PD} =0.00184 (mg/L)⁻	E ₀ =67.6 mmHg
Parameter	k _{out} =0.254 h⁻¹	E _{max} =17	1	k _d =4 ng/mL
estimates	E _{max} =0.208	EC ₅₀ =0.084 μg/mL	E ₀ =74.6 mm Hg	α_{dia} =0.145
	EC ₅₀ =12.4 ng/mL		k _{out} =0.0288 h ⁻¹	f _u =0.05

Supplementary Table 7: Overview of approach to simulate exposure-response relationship for clinical PKPD reports.

VEGFR-2 potency

The IC_{50} values obtained in the different assays together with relevant species' f_u are summarised in

supplementary table 8 and table 9.

Supplementary Table 8 VEGFR-2 IC_{50} values from HUVEC, PAE and SPR assays, and rat and human f_u where relevant. *was obtained from Wilhelm *et al.*, 2011.

Compound	<i>HUVEC, IC₅</i> ₀ (μM)	<i>ΡΑΕ, ΙC</i> 50 (μΜ)	<i>SPR, IC</i> ₅₀ (μM)	rat PPB <i>f</i> _u	
AZ1	0.341	0.836	0.439	0.065	
wat DDD for free at:		nat alaamaa anatain	hin din a		

rat PPB fu = fraction unbound based on rat plasma protein binding

Reported incidence of clinical hypertension

The patient population and references for each reported incidence of clinical hypertension used in the analysis is detailed in supplementary table 9. The PK metrics were converted into μ M units for comparison to VEGFR-2 potency.

Drug	MW	Dose (mg/day)	Free Cmax (μM)	Free AUC (µM.hr)	Free Cav (μM)	HT Grade 1-4 (%)	HT Grade 3-4 (%)	PPB f _u	HUVEC IC₅₀ (μM)	SPR IC₅₀ (μM)	ΡΑΕ ΙC₅₀ (μΜ)	Cmax/HUVEC (µM)	Cmax/SPR (µM)	Cmax/PAE (µM)	AUC/HUVEC (µM)	AUC/SPR (μM)	AUC/PAE (μM)	Cav/HUVEC (µM)	Cav/SPR (μM)	Cav/PAE (μM)	References
		4	0.000673	0.005	0.0004	0						12.7	8.9	1.1	89.7	62.6	7.8	7.5	5.2	0.6	(Rugo et al., 2005)
		10	0.000699	0.007	0.0006	0						13.2	9.2	1.1	126.4	88.3	10.9	10.5	7.4	0.9	
A 111 11	206	10	0.00163	0.012	0.0010	0		0.01		0 00000	0 0006	30.9	21.6	2.7	221.0	154.4	19.1	18.4	12.9	1.6	(LOCALI EL AL.,
AXILIIID	500	15	0.002122	0.019	0.0008	17		0.01	5.26E-05	0.00008	0.0006	40.2	28.1	3.5	351.4	245.4	30.4	14.6	10.2	1.3	2014)
		40	0.004192	0.056	0.0047	50						79.4	55.4	6.9	1063.9	743.1	92.0	88.7	61.9	7.7	
		10		0.008	0.0007	54									154.9	108.2	13.4	12.9	9.0	1.1	
Brivanib	370	800	0.23	2.2	0.1	41	13	0.013	0.0118	0.0308	0.0375	19.6	7.5	6.2	186.2	71.6	58.8	7.8	3.0	2.4	(Jonker et al., 2011)
		100	0.06	0.42	0.02	0	0					0.05	0.03	0.01	0.33	0.21	0.08	0.02	0.01	0.00	(Lewis et al., 2009)
		200	0.14	0.93	0.04	0	0					0.11	0.07	0.03	0.74	0.46	0.19	0.03	0.02	0.01	
Crenolanib	444	280	0.22	2.06	0.10	0	0	0.0796	1.258	>2	>5	0.17	0.11	0.04	1.64	1.03	0.41	0.08	0.05	0.02	
		340	0.31	2.75	0.13	0	0					0.25	0.16	0.06	2.18	1.37	0.55	0.10	0.06	0.03	
		120	0.09	0.58	0.05	0	0					0.07	0.05	0.02	0.46	0.29	0.12	0.04	0.03	0.01	
		50	0.00	0.019	0.001	0	0					0.0062	0.001	0.0005	0.02485	0.004	0.002	0.0010	0.0002	0.0001	(Aplenc et al.,
		65	0.01	0.031	0.001	0	0					0.0168	0.003	0.0013	0.03987	0.006	0.003	0.0017	0.0003	0.0001	2011)
		85	0.01	0.042	0.002	0	0					0.0155	0.002	0.0012	0.05467	0.008	0.004	0.0023	0.0004	0.0002	(Domotri et al
		110	0.02	0.057	0.002	0	0					0.0234	0.004	0.0018	0.07331	0.011	0.006	0.0031	0.0005	0.0002	(Definetitiet al., 2009)
		35	0.00	0.007	0.000	0	0					0.0021	0.000	0.0002	0.00949	0.001	0.001	0.0004	0.0001	0.0000	20037
Dasatinih	488	50	0.00	0.014	0.001	0	0	0 0425	>0 771	>5	>10	0.0049	0.001	0.0004	0.01785	0.003	0.001	0.0007	0.0001	0.0001	
Dusutinis	400	70	0.00	0.014	0.001	0	0	0.0423	20.771	23	10	0.0028	0.000	0.0002	0.01819	0.003	0.001	0.0008	0.0001	0.0001	
		70	0.00	0.028	0.002	0	0					0.0056	0.001	0.0004	0.03671	0.006	0.003	0.0031	0.0005	0.0002	
		90	0.01	0.043	0.002	0	0					0.0094	0.001	0.0007	0.05557	0.009	0.004	0.0023	0.0004	0.0002	
		90	0.01	0.024	0.002	0	0					0.0081	0.001	0.0006	0.03095	0.005	0.002	0.0026	0.0004	0.0002	
		100	0.00	0.018	0.002	0	0					0.0059	0.001	0.0005	0.02338	0.004	0.002	0.0019	0.0003	0.0002	
		120	0.01	0.034	0.001	0	0					0.0111	0.002	0.0009	0.04473	0.007	0.003	0.0019	0.0003	0.0001	

Supplementary Table 9: References for studies used to determine the incidence of hypertension for tyrosine kinase inhibitors

Drug	MW	Dose (mg/day)	Free Cmax (μM)	Free AUC (µM.hr)	Free Cav (μM)	HT Grade 1-4 (%)	HT Grade 3-4 (%)	PPB f _u	HUVEC IC₅₀ (μM)	SPR IC₅₀ (μM)	ΡΑΕ ΙC₅₀ (μΜ)	Cmax/HUVEC (µM)	Cmax/SPR (µM)	Cmax/PAE (µM)	AUC/HUVEC (μM)	AUC/SPR (μM)	AUC/PAE (μM)	Cav/HUVEC (µM)	Cav/SPR (μM)	Cav/PAE (μM)	References
		120	0.01	0.018	0.002	0	0					0.0068	0.001	0.0005	0.02338	0.004	0.002	0.0019	0.0003	0.0002	
		160	0.02	0.044	0.002	0	0					0.0201	0.003	0.0016	0.05670	0.009	0.004	0.0024	0.0004	0.0002	
		25	0.001	0.01	0.000	0	0					0.032	0.001	0.025	0.3	0.012	0.2	0.01	0.0005	0.01	(Sarker et al.,
		50	0.002	0.04	0.002	0	0					0.097	0.004	0.075	1.6	0.073	1.2	0.07	0.003	0.05	2008)
Dovitinib		75	0.004	0.06	0.002	0	0					0.162	0.007	0.125	2.6	0.116	2.0	0.11	0.0048	0.08	(Angevin et al.,
		100	0.004	0.07	0.003	0	0					0.194	0.009	0.149	3.2	0.145	2.5	0.13	0.0061	0.10	
	392	100	0.004	0.07	0.003	6	0	0.0285	0.022467	>0.5	0.0292	0.194	0.009	0.149	3.2	0.145	2.5	0.13	0.0061	0.10	2013)
		125	0.007	0.09	0.004	0	0					0.291	0.013	0.224	4.0	0.182	3.1	0.17	0.0076	0.13	
		175	0.007	0.11	0.005	0	0					0.323	0.015	0.249	4.8	0.218	3.7	0.20	0.0091	0.16	
		500	0.022	0.32	0.013	27	0					0.981	0.044	0.756	14.3	0.641	11.0	0.59	0.027	0.46	
		600	0.023	0.32	0.013	20	20					1.013	0.046	0.781	14.4	0.646	11.1	0.60	0.0269	0.46	
Fulatinih	202	100	0.14	0.082	0.0034	0	0	0.050	<u>ک</u> ۵ ۲		>10	0.28	0.071	0.014	0.16466	0.041	0.008	0.0069	0.0017	0.00034	(Herbst et al.,
Enotinib	393	150	0.17	0.103	0.0043	0	0	0.059	20.5	>2	>10	0.34	0.085	0.017	0.20635	0.052	0.010	0.0086	0.0021	0.00043	2005)
		252	0.00034	0.006	0.0003	36	0					0.074	0.008	0.011	1.4	0.14	0.21	0.06	0.0059	0.0086	(Eder et al., 2010)
Foretinib	633	80	0.00007	0.001	0.00005	75	17	0.001	0.00457	0.0449	0.03	0.016	0.002	0.002	0.3	0.028	0.041	0.01	0.0012	0.0017	(Shapiro et al., 2013)
		400	0.31	5.0	0.4	0	0					0.0062	0.062	0.031	0.100	1.001	0.500	0.008	0.083	0.042	(Reardon et al.,
		600	0.36	5.7	0.5	0	0					0.0072	0.071	0.036	0.115	1.149	0.574	0.010	0.096	0.048	2008)
Imatinib	494	800	0.33	4.1	0.3	0	0	0.05	49.86	>5	>10	0.0065	0.065	0.033	0.082	0.820	0.410	0.007	0.068	0.034	
		1000	0.31	4.3	0.4	0	0					0.0062	0.062	0.031	0.086	0.857	0.428	0.007	0.071	0.036	
		1200	0.22	3.5	0.3	0	0					0.0043	0.043	0.022	0.071	0.705	0.353	0.006	0.059	0.029	
		750	0.0008	0.006	0.0003	0	0					0.00050	0.0004	0.000075	0.00427	0.003	0.0006	0.00018	0.0001	0.00003	(Thiessen et al.,
Lapatinib		1000	0.0001	0.001	0.0000	0	0					0.00009	0.0001	0.000014	0.00057	0.000	0.0001	0.00002	0.0000	0.00000	2010)
	581	1500	0.0004	0.004	0.0002	0	0	0.0001	1.49	>2	>10	0.00030	0.0002	0.000045	0.00293	0.002	0.0004	0.00012	0.0001	0.00002	
		900	0.0003	0.005	0.0002	0	0					0.00022	0.0002	0.000033	0.00338	0.003	0.0005	0.00014	0.0001	0.00002	(Nakagawa et al.,
		1200	0.0003	0.004	0.0002	0	0					0.00020	0.0001	0.000030	0.00297	0.002	0.0004	0.00012	0.0001	0.00002	2009)

Drug	MW	Dose (mg/day)	Free Cmax (μM)	Free AUC (µM.hr)	Free Cav (μM)	HT Grade 1-4 (%)	HT Grade 3-4 (%)	PPB f _u	HUVEC IC₅₀ (μM)	SPR IC₅₀ (μM)	PAE IC₅₀ (μM)	Cmax/HUVEC (µM)	Cmax/SPR (µM)	Cmax/PAE (µM)	AUC/HUVEC (µM)	AUC/SPR (μM)	AUC/PAE (μM)	Cav/HUVEC (µM)	Cav/SPR (μM)	Cav/PAE (μM)	References
		1600	0.0005	0.009	0.0004	0	0					0.00036	0.0003	0.000054	0.00590	0.004	0.0009	0.00025	0.0002	0.00004	
		1800	0.0004	0.007	0.0003	0	0					0.00027	0.0002	0.000040	0.00456	0.003	0.0007	0.00019	0.0001	0.00003	
Linifanib		7	0.002	0.058	0.0024	33	0					6.3	0.12	2.4	161.5	3.2	61.7	6.7	0.13	2.57	(Wong et al., 2009)
	375	700	0.004	0.076	0.0032	66	0	0.007	0 000358	0.02	0 000037	10.9	0.21	4.2	213.6	4.2	81.6	8.9	0.17	3.40	
	575	18	0.005	0.108	0.0045	58	0	0.007	0.000558	0.02	0.000557	13.0	0.25	5.0	302.1	5.9	115.4	12.6	0.25	4.81	
		21	0.006	0.147	0.0061	100	0					17.7	0.35	6.8	411.5	8.0	157.2	17.1	0.34	6.55	
		125	0.13	0.39	0.02	47	23					46.8	8.1	18.9	140.9	24.4	56.9	5.9	1.0	2.4	(Benjamin et al.,
		125	0.09	0.33	0.01	27	10					32.8	5.7	13.2	120.3	20.9	48.5	5.0	0.9	2.0	2011) (Schlumberger et
		125	0.12	0.62	0.03	56	25					43.8	7.6	17.7	222.2	38.5	89.7	9.3	1.6	3.7	
		50	0.09	0.20	0.01	0	0					31.2	5.4	12.6	73.0	12.7	29.4	3.0	0.5	1.2	
		100	0.06	0.36	0.02	100	0				0.0069	21.7	3.8	8.8	128.1	22.2	51.7	5.5	0.9	2.2	al., 2009)
		125	0.10	0.31	0.01	67	0			0.016		35.6	6.2	14.4	110.8	19.2	44.7	4.6	0.8	1.9	(Sherman et al.,
		50	0.03	0.15	0.01	42	20					11.9	2.1	4.8	54.1	9.4	21.8	2.3	0.4	0.9	2008)
Motesanib	373							0.0577	0.002775												(Fujisaka et al., 2010)
		125	0.05	0.30	0.01	63	14					19.7	3.4	8.0	107.5	18.6		4.5	0.8	1.8	(Rosen et al. <i>,</i> 2007)
																					(Sawaki et al., 2010)
		50-200		0.2	0.006	0	0								0.043	0.076	0.015	0.002	0.003	0.001	(Kantarjian et al.,
		400		0.2	0.010	0	0								0.069	0.121	0.024	0.003	0.005	0.001	2006)
Nilotinib	530	600- 1200	0.068289	0.6	0.025	0	0	0.016	>3.518	>2	>10	0.019411	0.034144	0.006829	0.172	0.302	0.060	0.007	0.013	0.003	
		800		0.9	0.038	0	0								0.258	0.453	0.091	0.011	0.019	0.004	
		1200		1.2	0.050	0	0								0.344	0.604	0.121	0.014	0.025	0.005	

Drug	MW	Dose (mg/day)	Free Cmax (µM)	Free AUC (μM.hr)	Free Cav (μM)	HT Grade 1-4 (%)	HT Grade 3-4 (%)	PPB f _u	HUVEC IC₅₀ (μM)	SPR IC₅₀ (μM)	РАЕ IС₅о (µМ)	Cmax/HUVEC (µM)	Cmax/SPR (µM)	Cmax/PAE (µM)	AUC/HUVEC (μM)	AUC/SPR (μM)	AUC/PAE (μM)	Cav/HUVEC (µM)	Cav/SPR (μM)	Cav/PAE (μM)	References
		50	0.002	0.036	0.0015	0						1.1	ND	0.7	19.9	-	12	0.8	-	0.5	(Hurwitz et al.,
		100	0.003	0.037	0.0015	0						1.4	ND	0.9	20.4	-	13	0.9	-	0.5	2009)
		200	0.005	0.088	0.0037	0						3.0	ND	1.9	48.9	-	30	2.0	-	1.3	(Chihata at al
		600	0.008			0						4.7	ND	2.9	0.0	-			-		(Shibata et al.,
		400	0.005	0.102	0.0043	0						2.8	ND	1.7	56.8	-	35	2.4	-	1.5	2013)
		800	0.008			0						4.6	ND	2.8	0.0	-			-		(Yau et al., 2011)
		600	0.004	0.076	0.0032	0						2.3	ND	1.4	42.4	-	26	1.8	-	1.1	
		800	0.010	0.170	0.0071	33						5.7	ND	3.5	94.4	-	58	3.9	-	2.4	
		1000	0.012	0.182	0.0076	33						6.8	ND	4.2	101.1	-	63	4.2	-	2.6	
		1400	0.007	0.123	0.0051	33						4.2	ND	2.6	68.1	-	42	2.8	-	1.8	
		2000	0.012	0.197	0.0082	33						6.7	ND	4.1	109.2	-	68	4.6	-	2.8	
		50	0.002	0.024	0.0010	33	25					1.0	ND	0.6	13.3	-	8	0.6	-	0.3	
		100	0.002	0.027	0.0011							1.1	ND	0.7	15.3	-	9	0.6	-	0.4	
Pazopanib	438	200	0.002	0.033	0.0014			0.0001	0.0018	ND	0.00291	1.3	ND	0.8	18.1	-	11	0.8	-	0.5	
		600	0.001	0.022	0.0018							0.8	ND	0.5	12.2	-	8	1.0	-	0.6	
		400	0.003	0.036	0.0015							1.4	ND	0.9	20.0	-	12	0.8	-	0.5	
		800	0.004	0.063	0.0052							2.5	ND	1.5	34.9	-	22	2.9	-	1.8	
		600	0.008	0.091	0.0038							4.6	ND	2.8	50.8	-	31	2.1	-	1.3	
		800	0.012	0.060	0.0099		4					6.6	ND	4.1	33.1	-	20	5.5	-	3.4	
		400	0.005	0.029	0.0048		11					2.9	ND	1.8	15.9	-	10	2.6	-	1.6	
		800	0.008	0.040	0.0067		7					4.3	ND	2.6	22.4	-	14	3.7	-	2.3	
		200	0.005	0.028	0.0047		15					2.8	ND	1.7	15.5	-	10	2.6	-	1.6	
		400	0.004	0.022	0.0036		0					2.2	ND	1.4	11.9	-	7	2.0	-	1.2	
		100	0.001	0.003	0.0005		0					0.3	ND	0.2	1.6	-	1	0.3	-	0.2	
		200	0.002	0.011	0.0019		0					1.2	ND	0.7	6.2	-	4	1.0	-	0.6	
		200	0.007	0.035	0.0058	50						3.8	ND	2.3	19.2	-	12	3.2	-	2.0	
		400	0.007	0.038	0.0063	82						4.0	ND	2.5	21.0	-	13	3.5	-	2.2	

Drug	MW	Dose (mg/day)	Free Cmax (μM)	Free AUC (µM.hr)	Free Cav (μM)	HT Grade 1-4 (%)	HT Grade 3-4 (%)	PPB f _u	HUVEC IC₅₀ (μM)	SPR IC₅₀ (μM)	PAE IC₅₀ (μM)	Cmax/HUVEC (µM)	Cmax/SPR (µM)	Cmax/PAE (µM)	AUC/HUVEC (μM)	AUC/SPR (μM)	AUC/PAE (μM)	Cav/HUVEC (µM)	Cav/SPR (μM)	Cav/PAE (μM)	References
		600	0.007	0.029	0.0049	50						3.7	ND	2.3	16.4	-	10	2.7	-	1.7	
		800	0.009	0.049	0.0082	40						5.0	ND	3.1	27.2	-	17	4.5	-	2.8	
		10	0.005379	0.06	0.002	33						2.1	2.5	0.5	21.9	26.0	4.9	0.9	1.1	0.2	(Mross et al.,
		30	0.015984	0.19	0.008	20						6.1	7.3	1.4	72.8	86.4	16.2	3.0	3.6	0.7	2012)
Regorafenib		60	0.041965	0.49	0.020	17	17					16.1	19.2	3.6	188.7	224.0	41.9	7.9	9.3	1.7	(Eisen et al., 2012)
	100	120	0.043883	0.47	0.019	25		0.0040	0.0026	0.00210	0.0117	16.9	20.0	3.8	179.4	213.0	39.9	7.5	8.9	1.7	
	485	120	0.044857	0.52	0.022			0.0049	0.0026	0.00219	0.0117	17.3	20.5	3.8	198.8	236.0	44.2	8.3	9.8	1.8	
		160	0.03958	0.59	0.025	50	17					15.2	18.1	3.4	227.4	270.0	50.5	9.5	11.3	2.1	
		220	0.045263	0.65	0.027							17.4	20.7	3.9	248.6	295.2	55.3	10.4	12.3	2.3	
		160	0.045568	0.59	0.025	49						17.5	20.8	3.9	227.6	270.2	50.6	9.5	11.3	2.1	
		50	0.04	0.6	0.02	0	0					0.035	ND	0.0035	0.5893	-	0.29	0.025	-	0.002	(Hannon et al.,
Saracatinib	542	125	0.09	1.4	0.06	0	0	0.2	>1	ND	>10	0.091	ND	0.0091	1.3619	-	0.68	0.057	-	0.006	2010)
		175	0.16	2.8	0.12	0	0					0.164	ND	0.0164	2.7999	-	1.40	0.117	-	0.012	
Constant in	220	136	0.574943	0.457	0.0191	0	0	0.05	0.05	0.015	0.0070	11.49886	38.330	5.925715	9.14873	30.496	4.7146	0.38120	1.2707	0.19644	(Lockhart et al.,
Semaxanıb	238	232	0.721826	0.993	0.0414	16	0	0.05	0.05	0.015	0.0970	14.43653	48.122	7.439584	19.85022	66.167	10.2294	0.82709	2.7570	0.42623	2006)
		800	0.05	0.001	0.0177	43	29					15.86	3.09	3.41	0.31	0.061	0.067	6.1	1.2	1.3	(Fukudo et al.,
		200	0.04	0.001	0.0219	0	0					12.88	2.51	2.77	0.19	0.038	0.042	7.5	1.5	1.6	2014)
		400	0.03	0.000	0.0171	0	0					9.57	1.86	2.06	0.15	0.029	0.033	5.9	1.1	1.3	
	465	800	0.07	0.001	0.0507	0	0	0.005	0 000000	0.045	0.0426	22.82	4.45	4.90	0.45	0.087	0.096	17.4	3.4	3.7	(Clark, Eder, Ryan,
Soratenib	465	1200	0.07	0.001	0.0581	0	0	0.005	0.002923	0.015	0.0136	24.29	4.73	5.22	0.51	0.100	0.110	19.9	3.9	4.3	Lathia & Lenz,
																	0.158				2005)
		1600	0.13	0.002	0.0832	33	33					45.27	8.82	9.73	0.73	0.143		28.5	5.5	6.1	(Strumberg et al., 2007)
		50	0.0089	0.16	0.0066	0	0					0.46	7.34	2.27	8.21	131.71	40.73	0.34	5.49	1.70	(Faivre et al.,
Sunitinib	398	75	0.0509	0.30	0.0126	9	9	0.049	0.0194	0.0012	0.0039	2.62	42.07	13.01	15.58	249.80	77.26	0.65	10.41	3.22	2006)
	330	100	0.0221	0.36	0.0150	50	50					1.14	18.29	5.66	18.61	298.38	92.28	0.78	12.43	3.85	

Drug	MW	Dose (mg/day)	Free Cmax (μM)	Free AUC (µM.hr)	Free Cav (μM)	HT Grade 1-4 (%)	HT Grade 3-4 (%)	PPB f _u	HUVEC IC₅₀ (μM)	SPR IC₅₀ (μM)	ΡΑΕ ΙC₅₀ (μΜ)	Cmax/HUVEC (µM)	Cmax/SPR (µM)	Cmax/PAE (µM)	AUC/HUVEC (μM)	AUC/SPR (μM)	AUC/PAE (μM)	Cav/HUVEC (µM)	Cav/SPR (μM)	Cav/PAE (μM)	References
		20	0.011	0.09	0.007	0	0					1.6	ND	0.8	12.8	-	6.5	1.1	-	0.5	(Eskens et al.,
		75	0.015	0.13	0.011	17	0					2.2	ND	1.1	18.4	-	9.4	1.5	-	0.8	2009)
		300	0.016	0.10	0.008	33	0					2.2	ND	1.1	14.0	-	7.2	1.2	-	0.6	
Telatinib	410	600	0.066	0.41	0.034	33	0	0.034	0.00702	ND	0.0137	9.4	ND	4.8	57.8	-	29.5	4.8	-	2.5	
		1200	0.068	0.42	0.035	17	0					9.7	ND	5.0	59.8	-	30.6	5.0	-	2.5	
		900	0.094	0.54	0.045	0	0					13.4	ND	6.9	77.1	-	39.4	6.4	-	3.3	
		3000	0.133	1.01	0.085	33	0					19.0	ND	9.7	144.5	-	73.8	12.0	-	6.2	
		1	0.00012	0.002	0.0001	33	0			0.00016	0.0011	0.7	0.8	0.1	9.5	10.8	1.5	0.4	0.4	0.1	(Niwakawa et al.,
		1	0.00016	0.011	0.0001	0	0		0.000185			0.8	1.0	0.1	60.2	68.6	9.8	0.6	0.6	0.1	2013)
		1.5	0.00053	0.003	0.0005	50	0					2.8	3.3	0.5	13.6	15.6	2.2	2.5	2.9	0.4	
Tiyozanih	155	1.5	0.00105	0.020	0.0009	44	22	0.005				5.6	6.4	0.9	108.6	125.3	17.9	4.5	5.2	0.7	
TIVOZATILO	455	1	0.00055	0.009	0.0004	39	28	0.003		0.00010	0.0011	2.9	3.4	0.5	49.8	57.7	8.3	2.1	2.4	0.3	
		1.5	0.00074	0.013	0.0005	62	62					3.9	4.5	0.7	68.3	79.6	11.4	2.8	3.3	0.5	
		2	0.00121	0.022	0.0009	100	71					6.3	7.4	1.1	114.9	134.7	19.3	4.8	5.6	0.8	
		1.5	0.00104	0.018	0.0008	45	0					5.4	6.4	0.9	93.9	110.7	15.8	3.9	4.6	0.7	
		100	0.05	1.7	0.1	8	0				ND	-	0.9	-	-	32.2	-	-	1.3	-	(Zhang et al.,
Vandetanib	475	100	0.08	1.6	0.1	0	0	0.07	ND	0.05		-	1.4	-	-	29.6	-	-	1.2	-	2011)
		300	0.30	5.7	0.2	17	0					-	5.5	-	-	105.7	-	-	4.4	-	

HT Grade = Grade of hypertension observed. PPB fu = fraction unbound based on human plasma protein binding. ND, not determined.

References

Angevin E, Lopez-Martin JA, Lin CC, Gschwend JE, Harzstark A, Castellano D, *et al.* (2013). Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin Cancer Res 19: 1257-1268.

Aplenc R, Blaney SM, Strauss LC, Balis FM, Shusterman S, Ingle AM, *et al.* (2011). Pediatric phase I trial and pharmacokinetic study of dasatinib: a report from the children's oncology group phase I consortium. J Clin Oncol 29: 839-844.

Benjamin RS, Schoffski P, Hartmann JT, Van Oosterom A, Bui BN, Duyster J, *et al.* (2011). Efficacy and safety of motesanib, an oral inhibitor of VEGF, PDGF, and Kit receptors, in patients with imatinib-resistant gastrointestinal stromal tumors. Cancer Chemother Pharmacol 68: 69-77.

Chen Y, Rini BI, Bair AH, Mugundu GM, & Pithavala YK (2015). Population pharmacokineticpharmacodynamic modelling of 24-h diastolic ambulatory blood pressure changes mediated by axitinib in patients with metastatic renal cell carcinoma. Clin Pharmacokinet 54: 397-407.

Clark JW, Eder JP, Ryan D, Lathia C, & Lenz HJ (2005). Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 11: 5472-5480.

Demetri GD, Lo Russo P, MacPherson IR, Wang D, Morgan JA, Brunton VG, *et al.* (2009). Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res 15: 6232-6240.

Eder JP, Shapiro GI, Appleman LJ, Zhu AX, Miles D, Keer H, *et al.* (2010). A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin Cancer Res 16: 3507-3516.

Eisen T, Joensuu H, Nathan PD, Harper PG, Wojtukiewicz MZ, Nicholson S, *et al.* (2012). Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a singlegroup phase 2 trial. Lancet Oncol 13: 1055-1062.

Engle SK, & Watson DE (2016). Natriuretic Peptides as Cardiovascular Safety Biomarkers in Rats: Comparison With Blood Pressure, Heart Rate, and Heart Weight. Toxicol Sci 149: 458-472.

Eskens FA, Steeghs N, Verweij J, Bloem JL, Christensen O, van Doorn L, *et al.* (2009). Phase I dose escalation study of telatinib, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor 2 and 3, platelet-derived growth factor receptor beta, and c-Kit, in patients with advanced or metastatic solid tumors. J Clin Oncol 27: 4169-4176.

Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, *et al.* (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24: 25-35.

Fujisaka Y, Yamada Y, Yamamoto N, Shimizu T, Fujiwara Y, Yamada K, *et al.* (2010). Phase 1 study of the investigational, oral angiogenesis inhibitor motesanib in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 66: 935-943.

Fukudo M, Ito T, Mizuno T, Shinsako K, Hatano E, Uemoto S, *et al.* (2014). Exposure-toxicity relationship of sorafenib in Japanese patients with renal cell carcinoma and hepatocellular carcinoma. Clin Pharmacokinet 53: 185-196.

Hannon RA, Clack G, Rimmer M, Swaisland A, Lockton JA, Finkelman RD, *et al.* (2010). Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J Bone Miner Res 25: 463-471.

Herbst RS, Johnson DH, Mininberg E, Carbone DP, Henderson T, Kim ES, *et al.* (2005). Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 23: 2544-2555.

Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, & Motzer RJ (2010). Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66: 357-371.

Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, *et al.* (2009). Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15: 4220-4227.

Jonker DJ, Rosen LS, Sawyer MB, de Braud F, Wilding G, Sweeney CJ, *et al.* (2011). A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann Oncol 22: 1413-1419.

Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B, *et al.* (2006). Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354: 2542-2551.

Khosravan R, Motzer RJ, Fumagalli E, & Rini BI (2016). Population Pharmacokinetic/Pharmacodynamic Modeling of Sunitinib by Dosing Schedule in Patients with Advanced Renal Cell Carcinoma or Gastrointestinal Stromal Tumor. Clin Pharmacokinet 55: 1251-1269.

Lewis NL, Lewis LD, Eder JP, Reddy NJ, Guo F, Pierce KJ, *et al.* (2009). Phase I study of the safety, tolerability, and pharmacokinetics of oral CP-868,596, a highly specific platelet-derived growth factor receptor tyrosine kinase inhibitor in patients with advanced cancers. J Clin Oncol 27: 5262-5269.

Lindauer A, Di Gion P, Kanefendt F, Tomalik-Scharte D, Kinzig M, Rodamer M, *et al.* (2010). Pharmacokinetic/pharmacodynamic modeling of biomarker response to sunitinib in healthy volunteers. Clin Pharmacol Ther 87: 601-608.

Locati LD, Licitra L, Agate L, Ou SH, Boucher A, Jarzab B, *et al.* (2014). Treatment of advanced thyroid cancer with axitinib: Phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer 120: 2694-2703.

Lockhart AC, Cropp GF, Berlin JD, Donnelly E, Schumaker RD, Schaaf LJ, *et al.* (2006). Phase I/pilot study of SU5416 (semaxinib) in combination with irinotecan/bolus 5-FU/LV (IFL) in patients with metastatic colorectal cancer. Am J Clin Oncol 29: 109-115.

Mross K, Frost A, Steinbild S, Hedbom S, Buchert M, Fasol U, *et al.* (2012). A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 18: 2658-2667.

Nakagawa K, Minami H, Kanezaki M, Mukaiyama A, Minamide Y, Uejima H, *et al.* (2009). Phase I dose-escalation and pharmacokinetic trial of lapatinib (GW572016), a selective oral dual inhibitor of ErbB-1 and -2 tyrosine kinases, in Japanese patients with solid tumors. Jpn J Clin Oncol 39: 116-123.

Niwakawa M, Yamaguchi R, Onozawa Y, Yasui H, Taku K, Naito T, *et al.* (2013). Phase I study of highly selective inhibitor of VEGFR tyrosine kinase, tivozanib, in Japanese patients with solid tumors. Cancer Sci 104: 1039-1044.

Reardon DA, Desjardins A, Vredenburgh JJ, Sathornsumetee S, Rich JN, Quinn JA, *et al.* (2008). Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: phase 1 trial in adults with malignant glioma. Neuro Oncol 10: 330-340.

Rosen LS, Kurzrock R, Mulay M, Van Vugt A, Purdom M, Ng C, *et al.* (2007). Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors. J Clin Oncol 25: 2369-2376.

Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, *et al.* (2005). Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol 23: 5474-5483.

Sarker D, Molife R, Evans TR, Hardie M, Marriott C, Butzberger-Zimmerli P, *et al.* (2008). A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res 14: 2075-2081.

Sawaki A, Yamada Y, Komatsu Y, Kanda T, Doi T, Koseki M, *et al.* (2010). Phase II study of motesanib in Japanese patients with advanced gastrointestinal stromal tumors with prior exposure to imatinib mesylate. Cancer Chemother Pharmacol 65: 961-967.

Schlumberger MJ, Elisei R, Bastholt L, Wirth LJ, Martins RG, Locati LD, *et al.* (2009). Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol 27: 3794-3801.

Shapiro GI, McCallum S, Adams LM, Sherman L, Weller S, Swann S, *et al.* (2013). A Phase 1 doseescalation study of the safety and pharmacokinetics of once-daily oral foretinib, a multi-kinase inhibitor, in patients with solid tumors. Invest New Drugs 31: 742-750.

Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, *et al.* (2008). Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359: 31-42.

Shibata SI, Chung V, Synold TW, Longmate JA, Suttle AB, Ottesen LH, *et al.* (2013). Phase I study of pazopanib in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. Clin Cancer Res 19: 3631-3639.

Speed B, Bu HZ, Pool WF, Peng GW, Wu EY, Patyna S, *et al.* (2012). Pharmacokinetics, distribution, and metabolism of [14C]sunitinib in rats, monkeys, and humans. Drug Metab Dispos 40: 539-555.

Strumberg D, Clark JW, Awada A, Moore MJ, Richly H, Hendlisz A, *et al.* (2007). Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12: 426-437.

Thiessen B, Stewart C, Tsao M, Kamel-Reid S, Schaiquevich P, Mason W, *et al.* (2010). A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother Pharmacol 65: 353-361.

Wong CI, Koh TS, Soo R, Hartono S, Thng CH, McKeegan E, *et al.* (2009). Phase I and biomarker study of ABT-869, a multiple receptor tyrosine kinase inhibitor, in patients with refractory solid malignancies. J Clin Oncol 27: 4718-4726.

Yau T, Chen PJ, Chan P, Curtis CM, Murphy PS, Suttle AB, *et al.* (2011). Phase I dose-finding study of pazopanib in hepatocellular carcinoma: evaluation of early efficacy, pharmacokinetics, and pharmacodynamics. Clin Cancer Res 17: 6914-6923.

Zhang L, Li S, Zhang Y, Zhan J, Zou BY, Smith R, *et al.* (2011). Pharmacokinetics and tolerability of vandetanib in Chinese patients with solid, malignant tumors: an open-label, phase I, rising multiple-dose study. Clin Ther 33: 315-327.

Time (hr)

Supplementary Figure 1. Observed systolic blood pressure (SBP) over time following dosing of vehicle and AZ1 to male Han Wistar rats, versus the individual and population PKPD model fit for each animal. The black circles indicate the observations the population model fit is represented as the black line, the individual model fit as the grey line. Top row for test occasion 1 high dose (450 mg/kg), middle row for test occasion 2 low dose (10 mg/kg) and bottom row for test occasion 3 mid dose (100 mg/kg).

Regorafenib test occasion 18 mg/kg

Time (hr)

Supplementary Figure 2. Observed systolic blood pressure (SBP) over time following dosing of vehicle and regorafenib to male Han Wistar rats, versus the individual and population PKPD model fit for each animal. The black circles indicate the observations the population model fit is represented as the black line, the individual model fit as the grey line. Top panel for test occasion 1 low dose (8 mg/kg) and bottom panel for test occasion 2 high dose (16 mg/kg) as indicated.

Supplementary Figure 3. Observed mean aortic blood pressure (MBP) over time following repeated daily dosing of vehicle, 5 and 50 mg/kg of sunitinib in male Sprague Dawley rats (n=4), versus the PKPD model fit. The dots indicate the observations after vehicle (diamonds), 5 mg/kg (squares) and 50 mg/kg, the model fit for vehicle represented as grey line, 5 mg/kg in dashed black line, 50 mg/kg as solid black line. Data-points extracted from (Engle & Watson, 2016; Speed et al., 2012).