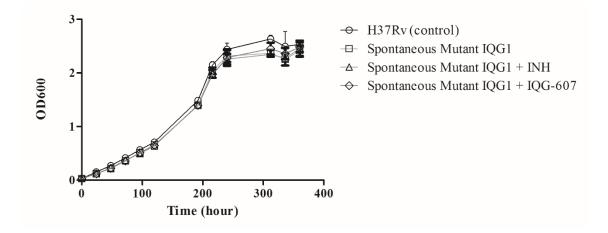
Supplementary Material

Revisiting activation of and the mechanism of resistance to the compound IQG-607 in *Mycobacterium tuberculosis*

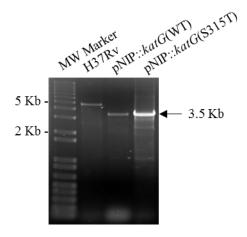
<u>Bruno L. Abbadi</u>,^{a,b} Anne D. Villela,^{a#} Valnês S. Rodrigues-Junior,^a Fernanda T. Subtil,^{a,b} Pedro F. Dalberto,^{a,b} Ana P. S. Pinheiro,^{a,b} Diógenes S. Santos,^{a,c,†} Pablo Machado,^{a,c} Luiz A. Basso,^{a,b} Cristiano V. Bizarro^{a,b#}

^aInstituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga 6681 – Prédio 92A TECNOPUC, 90619-900, Porto Alegre, RS, Brazil.

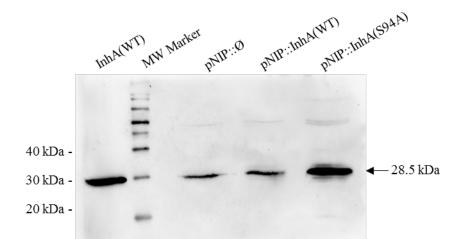
^bFaculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga, 6681 – Prédio 12, 90619-900, Porto Alegre, Brazil.


^cFaculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681 – Prédio 12, 90619-900, Porto Alegre, Brazil.

†Deceased.


#Address Correspondence to Anne D. Villela, annevillela@gmail.com or Cristiano V. Bizarro, cristiano.bizarro@pucrs.br.

Contents:


- Supplementary Fig. S1
- Supplementary Fig. S2
- Supplementary Fig. S3
- Supplementary Table S1
- Supplementary Table S2

Supplementary Fig. S1. Growth monitoring of the spontaneous mutant selected with IQG-607 (IQG1) in the absence (square) or in the presence of 16 mg/L of INH (triangle) or IQG-607 (diamond) over 15 days. H37Rv strain (circle) was used as a positive growth control of the experiment. The data were expressed as a mean value of triplicate optical density (OD_{600}) measurements. Two-way ANOVA with Bonferroni's post hoc test was employed to compare the growth of this mutant between the treatments.

Supplementary Fig. S2. Standard PCR confirming the disruption of the *katG* gene by the AES (<u>allelic exchange substrate</u>). The exchange of the WT *katG* by the AES, which contains the kanamycin gene resistance, reduces the original sequence size from 5.0 Kb to approximately 3.5 Kb. MW Marker = 1 Kb Plus DNA Ladder (Thermo Fisher).

Supplementary Fig. S3. Western Blot of cell extracts from *M. tuberculosis* strains overexpressing the InhA(WT) or InhA(S94A) enzymes. Each culture was grown until reach an OD₆₀₀ between 0.8 and 1.0. Protein extraction and Western Blot assay were performed as previously described (1). Each well was loaded with 0.5 μ g of protein extracts. The purified WT InhA protein (0.5 μ g) with 28.5 kDa was obtained as described elsewhere (2), and was used as a positive control of the experiment. MW Maker = MagicMark XP Standard (Thermo Fisher). There was an increase of 1.5- and 3.7-fold in the InhA(WT) and InhA(S94A) expression, respectively, when compared to the underlying levels of the wild-type enzyme (pNIP::Ø).

1. Villela AD, Rodrigues VD, Pinto AF, Wink PL, Sánchez-Quitian ZA, Petersen GO, Campos MM, Basso LA, Santos DS. 2017. Characterisation of iunH gene knockout strain from *Mycobacterium tuberculosis*. Mem Inst Oswaldo Cruz 112:203–208.

2. Basso LA, Zheng R, Musser JM, Jacobs WR, Blanchard JS. 1998. Mechanisms of isoniazid resistance in *Mycobacterium tuberculosis*: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis. 178:769-75.

Name	Sequence	Purpose
KatG_F_SEQ	ATCGATGGGCTTCAAGACGT	Primers for katG
oligo_SEQ_R_001_katG	ATCAGCTTGTACCAGGCCTT	
SEQ_F_008_katG	GGAGGTCATCTACTGGGGTC	
SEQ_R_009_katG	ACGTAGATCAGCCCCATCTG	
SEQ_F_014_katG	CTGGAACACCCCGAGGAAT	sequencing
SEQ_R_015_katG	ATGTCGAGCAGGTTCACGAA	
PCR_R_013_KO_katG	AGACCAACCGTGTAGGCAAA	
SEQ_F_002_Prom_fabG- inhA	CTCGATGACGCAGATCTCGT	Primers for
SEQ_R_003_Prom_fabG- inhA	GTCACATTCGACGCCAAACA	<i>inhA</i> promoter sequencing
SEQ_F_004_ORF_inhA	TGCGAGCTATATCTCCGGTG	Primers for
SEQ_R_005_ORF_inhA	CAGGACGGCATCAAATTGCA	<i>inhA</i> ORF sequencing
PCR_inhA_WT_F_006	tttcatatgATGACAGGACTGCTGGACG	Primers for
PCR_inhA_WT_R_007	tttaagctttctagaCTAGAGCAATTGGGTGTGCG	WT inhA PCR
t280g_sense_MUT_S94A	CGACGGGGTGGTGCATGCGATTGGGTTCA	Primers for <i>inhA</i> site-
t280g_antisense_MUT_S94A	TGAACCCAATCGCATGCACCACCCCGTCG	directed mutagenesis
K_katG_UF	ttttGAATTCTGGTGGTCGGCAAG	Primers for
K_katG_UR	ttttgcatgCGGCCGTCCGGAGCTGTTC	PCR of the
K_katG_DF	ttttgcatgcGCCTGGGACAAGGTGATGAa	up/downstream
K_katG_DR	ttttaagcttactagTGGGCTTGTTCGATCCCCATA	<i>katG</i> sequences
PCR_F_010_KO_katG	GGACTGTACGTGCACTGGAT	Primers for <i>katG</i> knockout
PCR_R_011_KO_katG	ATGTCAATCCCCACCGCATA	confirmation
C_katG_F	tttttctagaGGACTGGCTGGGACACAA	Primer for
C_katG_R	tttttctagaAAATCGCGCCGGGCAAAC	<i>furA+katG</i> operon PCR
MSD_katG_F	CGGTAAGGACGCGATCACCACCGGCATCGAG GTCGTATGG	Primers for katG site-
MSD_katG_R	CCATACGACCTCGATGCCGGTGGTGATCGCG TCCTTACCG	directed mutagenesis

Supplementary Table S1. Primers used in this study.

Compound	∑FIC ^a	Outcome ^b
Rifampicin	2	Indifferent
Ethambutol	1	Indifferent
Moxifloxacin	1	Indifferent
Streptomycin	1	Indifferent
Pyrazinamide	1	Indifferent
D-cycloserine	2	Indifferent

Supplementary Table S2. Evaluation of IQG-607 in combination with other drugs by the checkerboard assay.

^{*a*}Fractional inhibitory index (\sum FIC) were calculated based on the results from three independent experiments. ^{*b*} \sum FICs of ≤ 0.5 suggest synergy and ≥ 4.0 indicates antagonism; values between suggest that both drugs act independently (indifferent). The highest concentration for each compound was: 10 mg/L for streptomycin, ethambutol and IQG-607; 50 mg/L for D-cycloserine and pyrazinamide; 0.3 mg/L for rifampicin and moxifloxacin.