Table 3: Disease states associated with alterations in gut microflora in dogs

Disease State	Alterations in Fecal Microbiome	Source
Chronic	Higher abundance of Lactobacillales, Actinobacteria, and	Allenspach
enteropathy of	Erysipelotrichales in the duodenum	2010
unknown		
cause		
Diarrhea,	Lower abundance of <i>Bacteroidetes</i> , notably <i>Bacteroides</i>	Chaban
undetermined	vulgaris in the feces	2012
cause		
Acute	Lower fecal abundances of <i>Blautia</i> and <i>Rumonococcaceae</i>	Suchodolski
hemorrhagic	but higher abundances of Sutterella and Clostridium	2012
diarrhea	perfingens in dogs with hemorrhagic diarrhea. Higher	
	fecal abundance of Clostridium in dogs with non-	
	hemorrhagic diarrhea. Reduction in relative proportion of	
	species known to produce SCFAs	
IBD	Lower species richness and lower abundance of	Xenoulis
	Bacteroidetes but higher abundances of	2008
	Enterobacteriaceae and Clostridiaceae in the duodenum	
IBD	Higher abundance of <i>Proteobacteria</i> and lower abundance	Suchodolski
	of Clostridia in the duodenum. Higher counts of	2010
	Pseudomonas, Acinetobacter, Conchifomibious,	
	Achromobacter, Brucella, and Brevundimonas in the	

	duodenum	
IBD	Lower abundance of Fusobacteria, Bacteroidaceae,	Suchodolski
	Prevotellaceae, and Clostridiales in the duodenum. Lower	2012
	counts of Firmicutes and Bacteroidetes and higher counts	
	of specific genera of Proteobacteriaceae, including	
	Diaphorobacter and Acinetobacter	
Obesity	No significant changes in microbial diversity or	Handl 2013
	composition associated with obesity. Beagles fed ad lib	
	had increased Clostridiales and whereas dogs fed a	
	calorie-restricted diet had decreased fecal	
	Gammaproteobacteria and Alphaproteobacteria	
Exocrine	High abundance of <i>C. perfingens</i> on culture of duodenal	Williams, et
pancreatic	juice, associated with marked reductions in mucosal brush	al.
insufficiency	border enzyme activities.	