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1. Graph theory-based approximation of gene expression and signaling activity 

1-1. Random asynchronous Boolean simulation for model evaluation 

A Boolean network model represents genes with variables that can take on only two possible values: 

1 (ON), indicating the gene is sufficiently expressed to drive its downstream regulatory effects, or 0 

(OFF) otherwise. A Boolean network with n variables can have 2n possible states consisting of all 

combinations of ON/OFF gene expression profiles. We employed asynchronous Boolean simulation 

(ABS)(Albert and Thakar, 2014; De Cegli et al., 2013), such that individual variables are updated in 

a random order within each iteration. This strategy accounts for the stochastic nature of gene 

expression updates(Albert and Thakar, 2014). In ABS, each model state has up to 2n
 successor states, 

including the state itself. Thus, there are up to 2n × 2n = 22n possible transitions between states of the 

model. The state transition graph of a simulated model comprises all the states (nodes) and transitions 

(directed edges) that were encountered in the simulation. The Boolean network we constructed 

contains 29 variables; therefore, its state transition graph has a maximum of 5.37 × 108 possible states 

and 2.88 × 1017 possible transitions between states. Practically, however, the state transition graph 

limited by the network topology, the update functions, and the presence of stable cycles (e.g. limit 

cycles and steady states). Because of this, states outside of stable cycles can generally be assumed to 

be negligible in terms of their frequency of appearance. 
 Based on this assumption, we employed random asynchronous Boolean simulation (R-

ABS) to make exploration of the large simulation space more computationally tractable. In R-ABS, 

simulation trajectories are calculated from a randomly sampled set of initial states. For this study, 700 

consecutive iterations from each of 700 random initial states were simulated for each condition. Since 

independent simulations converged upon similar population-averaged expression probabilities, five 

independent simulations for each condition were sufficient to yield robust results (see Section 5-3). 

R-ABS was performed in Python using the BooleanNet package, version 1.2.6 

(http://code.google.com/p/booleannet/). 

 

1-2. Strongly connected components as simulated analogues of dynamic heterogeneity in 

pluripotent stem cell populations 

A strongly connected component (SCC) is defined as a set of states wherein each state is reachable 

from every other state in the set (Appendix Figure S1.1). This is reminiscent of observations of 

dynamic heterogeneity within pluripotent stem cell (PSC) populations, in which individual cells can 

transition among numerous states that are high or low in their expression of specific pluripotency 

genes(Filipczyk et al., 2015; Singer et al., 2014). In this study, we assume that model states in an SCC 
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are analogous to cellular states in a stable yet heterogeneous population of pluripotent stem cells 

(PSCs). Conversely, since steady states are single states at dead ends in the state transition graph, we 

assume these reflect relatively homogeneous cell populations, such as differentiated cell states. Note 

that SCCs are not necessarily closed systems, and SCCs with outgoing transitions were also 

considered in our analysis. SCCs in a state transition graph can be identified by iterative removal of 

disconnected states and steady state attractors, which lack either an incoming or outgoing transition 

edge (Tarjan’s algorithm). State transition graph analysis and SCC identification was performed in 

Python using the NetworkX version 1.2.6. 

 

Appendix Figure S1.1. Schematic of SCC identification.  
SCCs are defined as the set of nodes (GRN profile) where there is a path between any two nodes. 

 

1-3. Calculation of average expression profile of an SCC 

To calculate the average expression profile over all states in an SCC, we first define a transition 

matrix for the SCC. Consider an SCC with 𝑁 states, identified as 𝑠#, 𝑠%, … 𝑠' , in which each state 

is a binary vector of the ON/OFF expression level of each gene (ex. 00101). The transition matrix 𝑀 
is an 𝑁×𝑁 matrix where each element (𝑚+,) in row 𝑖 and column 𝑗 is the probability of transitioning 

from a source profile 𝑠, to its target profile 𝑠+. For our R-ABS strategy, the transition probability 𝑚+, 

is the frequency of transitions from 𝑠, to 𝑠+ divided by the frequency of transitions from 𝑠, to any 

other state in the SCC (𝑠/ ∈ SCC). for all simulation trajectories. Note that transitions to states outside 

the SCC (i.e. to 𝑠/ ∉ SCC). 

Consider a vector 𝑣 0 , in which each element 𝑣+ 0  is the probability that the simulation initially 

occupies state 𝑠+. After one Boolean update step, the probabilities that the simulation will occupy each 

state in the SCC can be calculated using the transition matrix, such that 𝑣 1 = 𝑀𝑣 0 . In general 

Steady-state atractor
Profile transition w/ probability

Dynamic stable state (SCC)
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terms, the probability distribution of each state in the SCC after 𝑡 Boolean updates is calculated as a 

Markov process, with 𝑣 𝑡 = 𝑀𝑣 𝑡 − 1 = 𝑀8𝑣 0 . Based on the theory of Markov processes, after 

an indefinite number of Boolean updates (i.e. as 𝑡 → ∞), this probability distribution approaches a 

stable probability distribution, 𝑣, such that 𝑣 = 𝑀𝑣. In other words, 𝑣 is the principal eigenvector of 

𝑀, and 𝑣+ approximates the biological probability that a given cell in a stable PSC population will 

have the expression profile corresponding to state 𝑠+. 
The average expression profile for an SCC is thus calculated as the expected value of the ON/OFF 

profiles over all states in the SCC based on each state’s stable probability: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑜𝑓𝑆𝐶𝐶 = 𝑣+𝑠+

'

+

 

1-4. Calculation of sustainability of an SCC 

The sustainability of an SCC measures the probability of remaining within the SCC following a 

Boolean update step, and is a quantitative metric for the intrinsic stability of the SCC. An SCC in 

which transitions between states within the SCC are much more common than transitions to states 

outside the SCC has high sustainability (close to 1). This score can be used to estimate the stability 

of each SCC which reflects the intrinsic stability of the GRN over time in the absence of extrinsic 

perturbations (see Section 4. “Characterization of PSCs via pluripotency, sustainability and 

susceptibility”). Mathematically, we define the sustainability score as follows: 

𝑆JKK = 1 − 𝑣+ ∙ 𝑚+/
/

'

+

 

where 𝑣+ indicates the stable probability of state 𝑠+ which has an outgoing transition edge to state 𝑠/ ∉ 

SCC. The transition probability from 𝑠/ to 𝑠+ (𝑚+/) is calculated by the same procedure as above, but 

considering all successor states of 𝑠 /, including those outside of the SCC. 

 Since outgoing transitions are excluded from the calculation of the stable probabilities, 𝑣, 

of an SCC, a high frequency of outgoing edges may lead to overestimation of 𝑣. Additionally, states 

in an unstable SCC can easily exit the SCC and transit to another stable state. Thus, sufficiently high 

sustainability is needed to accurately calculate population-average expression levels and mimic 

experimentally-observed stable cell states. The size of an SCC is also considered an indicator of the 

biological accessibility of the SCC-associated population; the larger the SCC, the more accessible it 

is. Accordingly, we applied thresholds to include only those SCCs with size > 10 and sustainability > 

0.7. With these thresholds, only one pluripotency-associated SCC can be found in each of the two 

standard mESC culture conditions, LIF+Serum (LS) and LIF+2i (2iL). 
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1-5. Calculation of population-average gene expression levels in simulated PSC conditions 

Each state in the state transition graph of a simulated Boolean network is a combination of the binary 

ON/OFF values for all variables, biologically interpreted as a gene expression profile. Based on the 

probability and binary levels of each state in an SCC, the average expression level of each variable 
(𝑔) in that SCC, 𝑝M,JKK , can be calculated as the weighted sum of all states where the variable is ON: 

𝑝M,JKK = 𝑣+ ∙
1, 𝑠+ 𝑔 = 𝑂𝑁
0, 𝑠+ 𝑔 = 𝑂𝐹𝐹

'

+

 

SCCs were classified to different subtypes based on their average expression levels of the marker 
genes Cdx2, EpiTFs, Gata6, and Oct4. SCCs with 𝑝KPQR,JKK  > 0.7 were classified as trophectoderm 
(TE). Those with 𝑝ST+UVW,JKK  > 0.2 were classified as epiblast (Epi). Those with 𝑝XY8YZ,JKK  > 0.5 were 

classified as primitive endoderm (PE). Those with 𝑝[\8],JKK  were classified as PSCs. SCCs that co-

expressed Cdx2, EpiTFs, and Gata6 were classified as mesendoderm (ME). Note that SCCs with 

coinciding high levels of Oct4 and EpiTFs were assumed to be in the “primed” PSC state, whereas 

those with high levels of Oct4 alone were assumed to be in the “naïve” PSC state. 

Large dynamic stable states of PSCs are more likely to dominate the total cell population over time 

and thus will become a larger determinant of the population-average gene expression levels. Thus, 

population-average gene expression levels are defined as a function of both size and sustainability of 

each SCC: 

𝑝M,^_T`aY8+_b =
𝑝M,JKK ∙ 𝑛JKK ∙c

JKK 𝑆JKK
𝑛JKKc

JKK
 

where R is the set of all SCCs found under the given condition meeting the above-mentioned 

thresholds. An example of this calculation is shown in Appendix Figure S1.2. 

  

 
Appendix Figure S1.2. Calculation example of population-average gene expression levels. 

This figure assumes that four distinct SCCs are found from the given input. SCC#2 and SCC#4 are excluded from the 
population-average calculation due to low sustainability and small number of nodes, respectively. The rest of the SCCs 
(SCC#1 and SCC#3) are considered in the final population-average expression level.  
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1-6. In silico subpopulation analysis 

Unlike steady states and completely closed SCCs (sustainability = 1), states within non-closed SCCs 

(sustainability < 1) can transit to other SCCs and steady states. The probability of transitioning 

between distinct SCCs, and thus between distinct PSC subpopulations, can be calculated from the 

state transition graph. Specifically, the transition probability from one SCC (A) to another (B), 𝑇e→f, 

is the product of the probability of each transition for all possible trajectories from A to B. 

𝑇e→f = 𝑣+

'

+

∙ 𝑘,
,hi

 

where 𝑣+ is the stable probability of state 𝑠+ in A, 𝐿+ is the set of possible trajectories from 𝑠+ to any 
state in B after eliminating all cycles, and 𝑘, is the probability of each transition along the trajectory. 

It follows that if all transitions from A collapse into B, then 𝑇e→f = 1. 

 

2. Graphical Gaussian Modeling (GGM) to infer GRNs in mESCs 
 

2-1. mESC-datasets and the configuration of GGM 

Conventionally, overexpression and knockdown/knock-in studies of genes of interest and subsequent 

biochemical experiments have been performed to identify regulatory networks within specific 

conditions in mESCs. High-throughput genome binding studies such as chromatin immuno-

precipitation, coupled with massively parallel short-tag-based sequencing have also been used to infer 

important regulatory edges in the relevant GRN. Although the resulting data exhibits large variations 

across cell lines and between datasets from different labs, phenotypic responses to in vitro 

manipulation of signaling cues are reasonably robust, leading us to argue that the individual regulatory 

“rules” underlying GRN connectivity are conserved among cell lines across environmental situations. 

Thus, inference of GRNs using a large collection of unbiased expression data should effectively yield 

consensus network topologies. A number of computational reverse engineering approaches have been 

developed for reconstructing cellular transcription networks from gene expression data, including 

those of mESCs(De Cegli et al., 2013). One method employed in some of these approaches is partial 

correlation (pcor), which infers direct dependencies among pairs of genes x and y by removing the 

effects of a third gene z. Given the Pearson correlation value of the different combinations of the three 
genes (𝑟Qk, 𝑟Ql, 𝑟kl), the partial correlation of x and y is calculated as:  

𝑟Qk,l =
𝑟Qk − 𝑟Ql ∙ 𝑟kl
1 − 𝑟QlR 1 − 𝑟klR

 

We collected 1,295 Affymetrix Mouse 430 2.0 Array microarray datasets on mESCs from 

the Gene Expression Omnibus (GEO) database at the US National Center for Biotechnology 



 

7 

Information (NCBI) and ArrayExpress at the European Bioinformatics Institute (EBI) (See Appendix 

of this Supplementary Note). It is important to use the expression data from the same platform because 

the sensitivities of probes for a certain target region are not uniform over different platforms. All 

microarray datasets were collected regardless of cell line, manipulation type (e.g. knock-in/out), 

whether experiments were timecourses or dose responses. We did so with the rationale that if there 

are direct and robust regulations from gene x to gene y, the positive or negative correlation between 

x and y will be conserved in all expression data regardless of perturbation, lab, or cell line. 

Graphical Gaussian Modeling (GGM) was used to infer partial correlations between gene 

pairs (Appendix Figure S2.1). GGM permits analysis of complex networks involving a large number 

of nodes (large network size) and multiple edges between nodes (high network connectivity), as is 

the case in mammalian GRNs(Ma et al., 2007). Data for all 45,101 probe sets were first normalized 

with a quantile algorithm in the ‘limma’ package of R/Bioconductor. The probe sets were then 

converted into 13,879 individual genes by taking mean values of probes with the same gene 

annotation. 

 
Appendix Figure S2.1. Flow-chart of network reconstruction  

based on Graphic Gaussian Modeling. 
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In the GGM network construction, 1,000 genes were randomly sampled to estimate partial 

correlations in 20,000 total iterations. It is estimated that, over all iterations, each gene pair is sampled 

200 times on average. Significant partial correlations (pcor) for each iteration were selected if they 

met two conditions: (1) absolute Pearson correlation value of the gene pair wasgreater than 0.3 and 

(2) the p-value was less than 0.05. The final pcor value was estimated by taking the lowest pcor value 

for each gene pair after completion of all iterations. The calculation of pcor in each iteration was 

performed using the R/GeneNet package and the whole GGM algorithm, including the random 

sampling of genes, was scripted using Python. 

 

2-2. Assessment of the performance of GGM-based GRN inference 

We first tested for batch effects in the collected expression datasets. The datasets were divided 

randomly into two groups with constraints that array samples from the same studies were kept in the 

same group and that the number of total samples within each group did not exceed 500. The gene-to-

gene relationships were estimated within each group using Context Likelihood of Relatedness (CLR). 

The output of CLR was then binarized based on various thresholds ranging from the 70th to 98th 

percentiles. Using the binarized CLR output of one of the two groups as a template, the area under 

the Receiver Operating Characteristic curves (AUC-ROC) was calculated between two groups. The 

average AUC-ROC for 1,000 random samples of the experimental datasets was maximized (0.82) at 

the 90th percentile threshold (Appendix Figure S2.2a). The low standard deviation (0.025) indicates 

that batch effects among the collected datasets are negligible for inference of the GRN. To further 

characterize the robustness of GRN inference to the input microarray data, we compared the gene-

gene relationships inferred by CLR using the full set of microarray data (1,295 samples) to those 

inferred from variously-sized partial datasets from of randomly selected microarray profiles 

(Appendix Figure S2.2b). The results indicated that a relatively small number of samples (>200) are 

feasible to replicate the full dataset showing correlation coefficients as high as 0.9, and sufficient for 

robust GRN inference. 
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Appendix Figure S2.2. Assessment of the robustness of the expression dataset. 
a. Small dot indicates the result in each sampling where experimental samples are divided into two groups. b. 

Small dots represent Pearson’s correlation coefficient between gene-to-gene relationships inferred by CLR 

algorithm based on either the full (1,295) dataset or the partial dataset where the number of samples is indicated 

in x-axis. 

 Next, to assess the reliability of our network inference approach, we compared the predicted 

regulations against the ESCAPE database (Embryonic Stem Cell Atlas from Pluripotency Evidence; 

www.maayanlab.net/ESCAPE). ESCAPE is a collection of directed gene-to-gene interactions 

supported by published expression datasets, supplemented by loss-of-function (LOF) or gain-of-

function (GOF) analyses of various transcription factors (TFs) and results from ChIP-chip/ChIP-seq 

studies. We confirmed that high-scoring inferred interactions could be predicted more accurately than 

random selection by plotting a Precision-Recall graph (Appendix Figure S2.3a). To account for the 

lack of directionality (i.e. positive or negative), the scores of inferred interactions from the 

experimentally tested genes were converted into absolute values. The interactions that were found as 

significant in any of the experiments (i.e. LOF, GOF or ChIP-chip/ChIP-seq) were considered as 

biologically-observed interactions. 
 We then compared the performance of our GRN inference approach against other well-

established algorithms including Algorithm for the Reconstruction of Accurate Cellular Networks 

(ARACNe(Margolin et al., 2006a, 2006b)), Context Likelihood of Relatedness (CLR(Faith et al., 

2007)), TwixTrix(Qi and Michoel, 2012) and simple Pearson’s correlations (PPC) using the same 

expression datasets. Our GGM-based approach had the best performance among all tested algorithms 

when the ROC curves of the top 10,000 inferred interactions of each algorithm were compared against 

ESCAPE data (Appendix Figure S2.3b). Interestingly, our approach, in contrast to all other algorithms, 

detected the experimentally-verified negative relationship between Nanog and Gata6 (highest 

negative correlation for Nanog).  
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Appendix Figure S2.3. Performance of GGM-based GRN inference. 

a. Precision-Recall graph of predicted interactions against ESCAPE dataset. Random value of precision is indicated with 
a dotted line (calculated by taking the total of 107,663 interactions found in ESCAPE versus possible interactions among 
13,879 genes and 107 experimentally tested genes excluding self-regulating interactions). The gray line indicates the 
average precision value. b. ROC curve for each different algorithm.  ROC curve shows the true positive rate (TPR) and 
the false positive rate (FPR). Our GGM-based approach, ARACNe, CLR, TXIXTRIX and PCC are indicated with black, 
red, yellow, green, and blue lines, respectively. Random value (TPR=FPR) is shown with dotted line. Top 10,000 inferred 
interactions were considered. 

 For the 29 genes included in the model, the precision of the GGM-based inference 

approach (black) was higher than that of the non-iterative GGM (orange) approach (i.e. GGM for all 

genes), achieving a lower recall range with higher precision (Appendix Figure S2.4). However, the 

accuracy was still close to random (Accuracy: 0.52, Sensitivity: 0.45, Specificity: 0.69 at the highest 

accuracy). This may be because our approach only keeps interactions above the specified statistical 

threshold, or because of limitations in the collected experimental datasets, including biological 

noise and the biased selection of genes. Indeed, even for well-analyzed biological systems (E. coli, 

yeast, etc.), individual GRN inference algorithms and community prediction are only marginally 

more accurate than random selection.(Marbach et al., 2012; Hase et al., 2013). 

 

 
Appendix Figure S2.4. Performance of GGM-based GRN inference for the genes included in 
the model. 
a. Precision-Recall graph of predicted interactions against the ESCAPE dataset of the gene pairs each of which is included 
in the model. Our GGM-based approach, ARACNe, CLR, TXIXTRIX and regular GGM are indicated with black, red, 
yellow, green, and orange lines, respectively. b. ROC curve for the set of algorithms in a. 
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To further investigate the generalizability of our GRN inference approach, we applied it to the 

transcriptome datasets of E. coli for the DREAM5 network inference challenge(Marbach et al., 

2012) and compared the results with the reported benchmarks of other approaches. Interestingly, our 

GGM-based approach scored higher for area under the precision-recall curve than the community 

prediction (Appendix Fig. S2.5), which indicates the robustness of our approach. 

 
Appendix Figure S2.5. Performance of GGM-based GRN inference  

on e.coli datasets of DREAM5 network inference challenge. 
a. Precision-Recall curves and b. ROC curves for the individual methods (gray), the integrated community predictions 
for them (red), and the predictions with our GGM-based approach (blue) against the selected gold standards with strong 
experimental support. In the prediction, 1,000 genes out of 4,297 genes were randomly sampled to estimate partial 
correlations for each 20,000 iteration. The potential regulatory relationships among 304 transcription factors and 4,297 
genes were considered in the plots. 

 

 

3. Reconstruction of Consensus Gene Regulatory Networks in mESCs 
 

3-1. Genes considered in the model 

Based on knowledge from literature and the inferred gene pairs with positive/negative correlations, 

the model gene list was condensed to 29 genes. We first focused on the central pluripotency genes 

(Oct4, Sox2 and Nanog [OSN]), genes supporting somatic cell reprogramming(Takahashi and 

Yamanaka, 2006) (Klf4 and Myc), other known pluripotency regulators around OSN and naïve-PSC 

specific TFs(De Los Angeles et al., 2015; Heng et al., 2010; Loh et al., 2006; Masui et al., 2008; 

Varlakhanova et al., 2010) (Esrrb, Tbx3, Gbx2, Lrh1, Jarid2, Klf2, Mycn, Pecam1 and Rex1). Key 

lineage specifiers (Tcf3, Gata6, Gcnf and Cdx2) which contribute to the exit of pluripotency and which 

participate in negative regulatory loops with OSN were also included in the model(Chickarmane and 

Peterson, 2008; Tam et al., 2008). For computational efficiency, we aggregated EpiSC-enriched genes 

such as Brachyury (T), Fgf5, Eomes and Otx2 into a single component in the model termed EpiSC-

enriched transcription factors (EpiTFs). We also considered an epigenetic aspect of the GRN where 

DNA methylation status alters enhancer sites of Oct4 by the availability of Dnmt3b and Klf2 (see 

section 3-4 for details). The gene list was further extended to include genes which are predicted to be 

highly correlated with the previously noted core pluripotency genes (Pitx2 and Dusp6). 

a b 
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We also included components of key signaling pathway activities: canonical WNT, BMP4, 

Activin A/Nodal, and FGF signaling. These included receptors (Fgfr2), cytokine-coding genes (Bmp4, 

Nodal, Fgf4), and inhibitors (Lefty1 – negative regulator for Activin A/Nodal signaling(Thisse and 

Thisse, 1999), Smad6 – negative regulator of BMP4 signaling(Hata et al., 1998), and Smad7 – 

negative regulator for both Activin A/Nodal and BMP4 signaling(Yan et al., 2009). Note that these 

genes are also predicted to be highly correlated with the core pluripotency genes). Note that Cdx2 is 

considered an inhibitor of WNT signal activity, based on work done by Liu and colleagues(Liu et al., 

2012) as well as the observed high positive correlation between Cdx2 and Dkk1 (pcor=0.043)(Lewis 

et al., 2008). Pitx2 and Dusp6 were also included as both downstream targets of signals (WNT- and 

Activin A/Nodal for Pitx2, and FGF for Dusp6) and as regulators of core TFs (e.g. Klf2). 
Note that other TFs reported to have important roles for pluripotency maintenance such as 

Tcfcp2l1 and Klf5 were not included due to significant overlaps in correlated gene partners with Esrrb 

and Klf4 (p-values < 10-270 for positively correlated genes), respectively. 
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3-2. Signed and directed regulatory edges among the genes 

Based on the inferred GRN, the links among 29 genes were identified as highly correlated gene pairs 

(as high as ±0.03). The directionality of regulation for each pair was determined by experimental 

evidence, either by curating published low-throughput experiments or by scoring high-throughput 

data from ESCAPE with weighted majority voting: 

𝐸+,, = ⌈
𝑁h[V 𝑖, 𝑗
𝑇 𝑖 h[V

⌉ + 0.3 ∙ ⌈
𝑁X[V 𝑖, 𝑗
𝑇 𝑖 X[V

⌉ + 0.5 ∙
𝑁Ks+T 𝑖, 𝑗
𝑇 𝑖 Ks+T

 

where N(i,j) is the number of experiments which show positive effects (activation; positive values) or 

negative effects (inhibition; negative values) from gene i to gene j, according to LOF or GOF, or 

ChIP-seq/-chip studies in the ESCAPE database, and T(i,j) is the total number of experiments testing 

the effects of gene i. The positive/negative directions (D(i,j)) were evaluated by the summation of 

NLOF (i,j) and NGOF (i,j). 

 Our GGM analysis suggested interesting interplays between core pluripotency TFs and 

signaling activities. For example, Nanog and Oct4 were predicted to be negative regulators for Fgfr2, 

which codes for a receptor of FGF signaling. Both Nanog and Oct4 have been shown to bind the 

Fgfr2 promoter by multiple genome-binding studies and confirmed to downregulate Fgfr2 by loss of 

function (LOF) studies. 

As shown in Appendix Table S1a, the directionalities of 76 out of 86 inferred gene-gene 

regulatory links were determined in this evidence-based step. The directionalities of two gene pairs 

(Lefty1-Activin A/Nodal and Nr5a2(Lrh1)-Oct4) were modified based on literatures(Gu et al., 2005; 

Guo and Smith, 2010; Heng et al., 2010). Lefty1 is a known inhibitor and direct target of 

Nodal/Activin A signaling(Lee et al., 2011). Our GRN inference may have captured the latter 

relationship as a positive correlation. Following this step, there remained 10 gene pairs with 

undetermined directionalities that are highlighted in gray in Appendix Table S1. The directionalities 

of these 10 edges were eventually determined with best-fit model selection by calculation of 

difference in population-average gene expression levels among the possible models and the single 

cell expression data of mESCs in LS(Kolodziejczyk et al., 2015; MacArthur et al., 2012) (Section 3-

6). 
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Source Gene Target Gene
Actions on

directionality
Evidences (PubMed ID) +/- GGM Di,j Ei,j LOF GOF ChIP

Tbx3 Smad7 Determined  Target not TF + 0.099 0 NE

Klf4 Smad7 Determined  Target not TF/ 21501463; + 0.080 -1 1- 1

Klf4 Tbx3 Determined Evaluation by ESCAPE + 0.080 2 1+ 1+ 2

EpiTF(Otx2) Dnmt3b Determined  Target not TF/ Evaluation by ESCAPE + 0.076 1 NE 1+ NE

Nanog Esrrb Defined / Determined Evaluation by ESCAPE + 0.072 2 2++ 2

Klf2 Esrrb Determined 18264089; + 0.071 NE NE NE

Esrrb Klf4 Defined / Determined Evaluation by ESCAPE + 0.070 2 2++ NE 1

Klf4 Esrrb Defined / Determined Evaluation by ESCAPE + 0.070 1 1+

Lefty1 Nodal/ActivinA Defined  Target not TF/ 10518210; 0.069 NE NE NE NE NE

Gbx2 Myc Predicted --- + 0.065 NE NE NE NE NE

Myc Bmp4 Determined  Target not TF/ 10457277;16010442 + 0.062 0 NE 1

Sox2 Klf4 Determined Evaluation by ESCAPE + 0.062 2 2++

Esrrb Smad7 Determined  Target not TF/ Evaluation by ESCAPE + 0.054 0 NE 1

Dusp6 EpiTF(Eomes,Fgf5,Otx2) Predicted --- + 0.052 NE NE NE NE

Gata6 Smad6 Determined  Target not TF + 0.051 NE NE NE NE NE

Tbx3 Bmp4 Determined  Target not TF/ Evaluation by ESCAPE + 0.051 1 1+ NE 1

Pitx2 EpiTF(Eomes,Fgf5) Predicted --- + 0.050 NE NE NE NE NE

Mycn Klf2 Determined 19495417; + 0.048 0 NE

Sox2 Klf2 Determined Evaluation by ESCAPE + 0.047 2 1.5 2++ 4

Nr6a1 Fgfr2 Determined  Target not TF + 0.046 NE NE NE NE NE

Klf2 Klf4 Defined / Determined Evaluation by ESCAPE + 0.044 NE NE NE 1

Klf4 Klf2 Defined / Determined Evaluation by ESCAPE + 0.044 0 1+ 1- 3

Gbx2 Bmp4 Determined  Target not TF + 0.043 NE NE NE NE NE

Mycn Dnmt3b Determined  Target not TF + 0.043 0 NE

Nanog Smad7 Determined  Target not TF/ Evaluation by ESCAPE + 0.043 0 3

Cdx2 Fgfr2 Determined  Target not TF/ Evaluation by ESCAPE + 0.042 1 NE 1+

Pou5f1 Nodal/ActivinA Determined  Target not TF/ Evaluation by ESCAPE + 0.041 2 2++ 4

Tbx3 Nanog Defined / Determined  19571885; 20734354; + 0.040 0 NE

Nanog Tbx3 Defined / Determined Evaluation by ESCAPE + 0.040 0 4

Tbx3 Nr5a2 Determined Evaluation by ESCAPE + 0.039 0 1

Tcf3 Dnmt3b Predicted (Posi/Nega)  Target not TF/ Evaluation by ESCAPE + 0.037 -1 1- 3

Nanog Pou5f1 Defined / Determined Evaluation by ESCAPE + 0.036 2 1+ 1+ 5

Pou5f1 Nanog Defined / Determined Evaluation by ESCAPE + 0.036 1 2++ 1- 5

Cdx2 Nr6a1 Determined 18941526; + 0.035 0 NE

Nr5a2 Nanog Determined 20096661;20734354; + 0.035 0 NE

Nanog Sox2 Defined / Determined Evaluation by ESCAPE + 0.035 1 1+ 5

Sox2 Nanog Defined / Determined Evaluation by ESCAPE + 0.035 0 3

Esrrb Tbx3 Determined Evaluation by ESCAPE + 0.034 1 1+ NE 1

Klf4 Nanog Defined / Determined Evaluation by ESCAPE + 0.033 1 1+ 3

Nanog Klf4 Defined / Determined Evaluation by ESCAPE + 0.033 1 1+ 1

Klf4 Jarid2 Determined Evaluation by ESCAPE + 0.032 0 3

Pou5f1 Mycn Determined Evaluation by ESCAPE + 0.032 3 3+++ 3

Jarid2 Gbx2 Determined Evaluation by ESCAPE + 0.032 0 2

Sox2 Mycn Determined Evaluation by ESCAPE + 0.031 1 1+ 4

Mycn Lefty1 Determined Evaluation by ESCAPE + 0.031 1 NE 1+ 1

Pou5f1 Lefty1 Determined Evaluation by ESCAPE + 0.031 3 3+++ 5

Sox2 Nr5a2 Determined Evaluation by ESCAPE + 0.031 2 2++ 1

Esrrb Fgf4 Determined Evaluation by ESCAPE + 0.031 2 2++ NE 1

Klf4 Nr5a2 Determined Evaluation by ESCAPE + 0.031 2 1+ 1+

Pou5f1 Smad7 Determined  Target not TF/ Evaluation by ESCAPE + 0.031 1 1+ 3

Esrrb Gbx2 Determined Evaluation by ESCAPE + 0.031 1 1+ NE 1

Nanog Fgf4 Determined Evaluation by ESCAPE + 0.031 2 2++ 3

Pou5f1 Jarid2 Determined Evaluation by ESCAPE + 0.031 1 1+ 4

Klf2 Pou5f1 Determined 20875146; + 0.031 NE NE NE

Sox2 Lefty1 Determined 16954384 (positive regulation) + 0.031 -2 1- 1- 3

Klf4 Pou5f1 Defined / Determined Evaluation by ESCAPE + 0.030 1 1+ 3

Pou5f1 Klf4 Defined / Determined Evaluation by ESCAPE + 0.030 2 1.3 3+++ 1-

Nr5a2 Pou5f1 Defined / Determined 15831456;20096661; + -0.032 1 1+ NE

Pou5f1 Nr5a2 Defined / Determined 18522731;19884255;24332857; + -0.032 1 2++ 1- 1

Sox2 Nodal/ActivinA Determined  Target not TF/ Evaluation by ESCAPE - -0.033 -2 1- 1- 3

Jarid2 Pitx2 Determined Evaluation by ESCAPE - -0.034 0 2

Sox2 Pitx2 Determined Evaluation by ESCAPE - -0.036 -3 2-- 1- 1

EpiTF(Eomes) Nr6a1 Predicted --- - -0.0416 0 NE NE

Fgf4 Gata6 Predicted --- - -0.045 NE NE NE NE NE

Pou5f1 Smad6 Determined  Target not TF/ Evaluation by ESCAPE - -0.048 -2 2-- 1

Sox2 EpiTF(Eomes) Determined Evaluation by ESCAPE - -0.049 -1 2-- 1+

Gbx2 Nodal/ActivinA Determined  Target not TF - -0.050 0 NE NE NE NE

Jarid2 Smad7 Determined  Target not TF/ Evaluation by ESCAPE - -0.052 -1 1-

Klf2 Gata6 Predicted --- - -0.053 NE NE NE

Pitx2 Klf2 Predicted --- - -0.053 NE NE NE NE NE

Gbx2 Smad7 Determined  Target not TF - -0.056 NE NE NE NE NE

Pou5f1 Fgfr2 Determined  Target not TF/ Evaluation by ESCAPE - -0.059 -2 2-- 3

Fgf4 Lefty1 Predicted --- - -0.059 NE NE NE NE NE

Dusp6 Klf2 Predicted --- - -0.059 NE NE NE NE

Jarid2 Lefty1 Determined Evaluation by ESCAPE - -0.060 -1 1-

EpiTF(Fgf5, Otx2) Esrrb Determined Evaluation by ESCAPE - -0.062 -1 NE 1- NE

Nanog Mycn Determined Evaluation by ESCAPE - -0.064 -1 1- 4

Gata6 Nanog Defined / Determined 11937486; 17605826; - -0.074 NE NE NE NE NE

Nanog Gata6 Defined / Determined 15983365;16456133; - -0.074 0 1- 1+

Tbx3 Gbx2 Determined Evaluation by ESCAPE - -0.080 -1 1- NE

Nanog Fgfr2 Determined  Target not TF/ Evaluation by ESCAPE - -0.082 -2 1- 1- 4

Cdx2 Dnmt3b Determined  Target not TF/ Evaluation by ESCAPE - -0.086 -1 NE 1-

EpiTF (Otx2) Klf4 Determined Evaluation by ESCAPE - -0.102 -1 NE 1- NE

Klf4 EpiTF (Otx2) Determined Evaluation by ESCAPE - -0.102 -3 2-- 1-

Klf4 Dnmt3b Determined  Target not TF/ Evaluation by ESCAPE - -0.107 -2 1- 1- 1

Cdx2 EpiTF(Eomes,Fgf5) Predicted (Posi/Nega) --- - -0.109 1 NE 1+

a. 
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Appendix Table S1: The regulatory relationships considered in the model 

 and their experimental evidence. 
(a) Inferred gene-to-gene relationships and (b) known regulations including self-activations which were not captured in 
the GRN inference. The predicted positive or negative correlation strength is indicated in the ‘GGM’ column. The 
observations from high-throughput experiments accumulated in the ESCAPE database are shown in the ‘LOF/GOF/ChIP’ 
columns. The ESCAPE-based evaluation score and positive/negative directionalities are shown in the columns indicated 
as ‘E(i,j)’ and ‘D(i,j)’, respectively. In the cases where one of the paired genes is not a TF (e.g. Smad6, Dnmt3b), the gene 
was assigned as a target gene of the regulatory edge. The gene pairs in bold have bi-directional regulations. The gene 
pairs in blue are the links whose positive/negative directions were refined by literature. The gene pairs highlighted in gray 
are links for which direction could not be determined in this step. 
 

3-3. Representation of signaling pathway activities and GRNs 

The activities of seven signaling pathways were considered in the PSC simulation: LIF-Stat3, BMP4-

Smad1/3/5, Activin A/Nodal-Smad2/3, WNT, FGF, ERK, and PI3K. Importantly, the activity of every 

signaling pathway is regulated by variables in the model. For example, the expressions of genes 

coding autocrine proteins (e.g. Bmp4, Activin A/Nodal or Fgf4) are downstream targets of their own 

signaling pathways. Also, some signaling receptors or signaling inhibitors are predicted to be 

correlated with TFs or other signals: e.g. Oct4 was predicted to be a negative regulator of both Smad6 

and Fgfr2, which are the components of signaling pathways under BMP4 and FGF, respectively. To 

model these complexities, we defined the activities of these seven signaling pathways based on the 

ON/OFF-values of each pathway’s components, including cytokines, inhibitors or receptors as listed 

in Appendix Table S2. Assuming that signaling events occur faster and more deterministic than gene 

transcription, signaling activities were calculated at each simulation step based on the ON/OFF values 

of the variables, and these were used immediately in the following stochastic update for the genes 

under the control of signaling activities. As a consequence, we can calculate the probability of each 

signaling pathway being active in an SCC as a value ranging from 0 to 1 and therefore estimate the 

endogenous signaling activity in the associated PSC subpopulation. 

 
 

 

  

Source Gene Target Gene Actions on Evidences (PubMed ID) +/- GGM Di,j Ei,j LOF GOF ChIP
Nanog Nanog Curated (Self-regulation) 15860457; + 0.000 2 2++ 4

Klf4 Klf4 Curated (Self-regulation) 22337869;23667633 + 0.000 0 1+ 1- 4

Tbx3 Tbx3 Curated (Self-regulation) + 0.000 1 1+ NE

Pou5f1 Pou5f1 Curated (Self-regulation) 25422984;25582194 + 0.000 2 3+++ 1- 4

Cdx2 Cdx2 Curated (Self-regulation) 18941526; + 0.000 1 NE 1+

Sox2 Sox2 Curated (Self-regulation) 16547000;17239249 + 0.000 0 1+ 1- 3

Gata6 Gata6 Curated (Self-regulation) 11937486;18941526; + 0.000 NE NE NE NE NE

Tcf3 Nanog Curated 16894029;18347094;18483421; - 0.000 -2 1- 1- 2

Nanog Tcf3 Curated 18483421; + 0.000 -1 1- 3

Pou5f1 Sox2 Curated 16153702;16518401; + 0.000 1 2++ 1- 5

Sox2 Pou5f1 Curated 16153702;16518401; + 0.000 -1 1- 4

Gata6 Nr6a1 Curated 18941526; + 0.000 NE NE NE NE NE

Pou5f1 Tcf3 Curated 18483421; + 0.000 -1 1- 5

Nanog Myc Curated 18614019;19884255;21499299; - 0.000 0

Nr6a1 Pou5f1 Curated 11578963;11702949; - 0.000 NE NE NE NE NE

Tcf3 Tbx3 Curated 18467660; - 0.000 -1 1- 2

Tcf3 Nr5a2 Curated 24648413; - 0.000 -2 1- 1- 1

Pou5f1 Cdx2 Curated 16153702;16518401; - 0.000 -2 2-- 4

Cdx2 Pou5f1 Curated 16325584;22942124 - 0.000 -1 NE 1-

b. 
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Pathway Definition 
Target genes 

LIF 
(SignalLIF) 

ON or OFF (treated as input parameter) 
Gbx2, Klf4, Myc 

WNT 
(SignalWNT) 

(iGSK3b or SignalPI3K) and (not Cdx2) and (not Tcf3) and (not iWNT) 
  * iGSK3b: GSK3ß inhibitor 
Esrrb, Gbx2, Fgf4, Lefty1, Pitx2, Myc, Tcf3 (repressive effect) 

BMP 
(SignalBMP) 

Bmp4 and (not Smad6) and (not Smad7) and (not iBMP) 
Bmp4, EpiTFs, Smad6, Cdx2 

FGF 
(SignalFGF) 

Fgfr2 and (Fgf4 or bFGF) 
Fgfr2 

ERK 
(SignalERK) 

SignalFGF and (not SignalBMP) and (not iERK) 
Gata6, Dusp6, Myc, Tbx3 (repressive effect) 

ActivinA/Nodal 
(SignalACT) 

ActivinA-Nodal and (not Smad7) and (not iACT) 
ActivinA-Nodal, Nanog, Lefty1, Pitx2 

PI3K 
(SignalPI3K) 

SignalLIF and SignalFGF 
Tbx3 

 
Appendix Table S2: Definition of signaling pathway activities and their downstream targets. 

 

3-4. Consideration of epigenetic-dependent usage of Oct4 enhancer regions  

There is increasing evidence of pluripotent state transitions and stabilization being driven by 

epigenetic mechanisms(Bao et al., 2009; ten Berge et al., 2011; Tesar et al., 2007). As a starting point 

to consider epigenetic effects on the GRN, we have taken into account two regulatory regions (distal 

enhancer and proximal promoter) of Oct4 and the switching between them. The OCT4-SOX2 

complex(Yeom et al., 1996), NANOG, KLF4, and KLF2 are known to bind to both sites and 

positively regulate Oct4 expression. LRH1 was considered as a regulator for the proximal site. OCT4-

CDX2 complex and GCNF bind to and repress the distal and proximal sites, respectively(Niwa, 2007). 

Switching between the two sites was modeled as opposing functions of Klf2 and Dnmt3b. Dnmt3b is 

predominantly responsible for DNA methylation in EpiSCs(Chen et al., 2003), while Klf2 is reported 

to block the methylation of the proximal promoter of Oct4(Gillich et al., 2012) synergistically with 

Prdm14(Borgel et al., 2010). Under these circumstances, the switching mechanism was abbreviated 

and modeled as follows: the states “Dnmt3b-ON AND Klf2-OFF” use the rule for the proximal 

regulatory site, and the other states (“Klf2-ON OR Dnmt3b-OFF”) use the one for the distal enhancer 

to update Oct4 (Appendix Figure S3.1). 
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Appendix Figure S3.1. Model assumption for switching the Oct4 regulatory region between 
distal enhancer and proximal promoter.  
a. Modeled distinct regulatory rules between Oct4 distal- and proximal-sites. b. Usage of the regulatory regions in the 
predicted pluripotent populations under distinct input conditions. In EpiSC maintenance conditions (Activin A and bFGF 
as inputs), proximal promoter usage is predicted to increase. In LIF+2i conditions, most of the pluripotent cells use the 
distal enhancer to regulate Oct4 expression. 
 

3-5. Boolean logical functions for the regulatory edges 

The regulatory edges were abstracted as Boolean logic functions such that positive and negative 

inputs were combined using OR-functions and AND-functions, respectively. For example, when a 

gene has two activators (A1, A2) and two repressors (R1, R2) as upstream regulations, the update 

function of a target gene will be present when one of the activators is present (A1 OR A2) while none 

of the repressors are present (NOT R1 AND NOT R2, or, NOT (R1 OR R2)). This is currently the most 

established rule that can widely reflect biological phenomena(Albert and Thakar, 2014; Dunn et al., 

2014; Raeymaekers, 2002).  
Exceptions were made for genes which code for proteins known to form a complex, such 

as OCT4-SOX2(Chew et al., 2005) and OCT4-CDX2(Erwin et al., 2012). As denoted in the main 

text, the model component ‘EpiTFs’ is a conceptual aggregation of the EpiSC-enriched genes, 

Brachyury (T), Fgf5, Eomes and Otx2. However, some pluripotency factors have distinct effects on 

the EpiSC-enriched genes, resulting in a see-saw-like lineage induction(Shu et al., 2013). In the above 

GGM-based GRN prediction, both Sox2 and Klf4 have significant negative correlations with Eomes 

and Otx2, respectively. These negative regulatory edges from Sox2/Klf4 to EpiTFs were confirmed 

via the ESCAPE database (Appendix Table S1). However, while experimental data from the ESCAPE 

database suggest that Sox2 has a positive effect on Otx2 expression (confirmed by two genome-

binding studies, two LOF studies, and one GOF study) and Klf4 has a positive effect on Eomes 

expression (confirmed by two genome-binding studies and one LOF study), the overall negative 

regulation of the aggregate EpiTFs by both Sox2 and Klf4 outweigh these individual discrepancies. 

We therefore modeled (Sox2 AND Klf4) as a repressor of EpiTFs. It was also inferred that both Sox2 
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and Klf4 are required to repress the aggregated EpiTF activity. We therefore modeled (Sox2 AND 

Klf4) as a repressor of EpiTFs. 
In the model, LIF signaling activity was modeled as an input parameter, can only take on 

ON or OFF values. However, the strength of the signaling effect may differ among its direct 

downstream targets (Klf4, Gbx2 and Myc). Given this and to expand the space of the model 

predictions, we considered three types of Boolean functions for these genes, which were optimized 

in the following section 3-6: 

F1: Signal AND (A1 OR A2)  Both Signal and one activator required 

F2: Signal OR A1 OR A2 Either Signal or one activator required 

F3: Signal OR (A1 AND A2) Either Signal or both activators required 

The signal has greater impact on the gene state for functions F1 and F3 than for F2. The presence of 

the signal is necessary in F1, but is sufficient in F2 and F3 (Appendix Figure S.3.2). 

 
Appendix Figure S.3.2. Boolean Truth table for the functions F1-F3. 

Current profile of signal and two activators (upper) and the resultant gene state in the following Boolean update (lower). 

 

3-6. Consensus Gene Regulatory Networks in mESCs 

Based on the steps described above, we confirmed most of the regulatory edges and assigned Boolean 

logic functions to them. The remaining uncertainties (10 edge directionalities and three Boolean 

function options on three genes in section 3-5) gave us 27,648 possible models. To define one 

consensus model among the possibilities, we took a best-fit strategy where the simulated gene 

expression levels were compared with experimentally-measured single cell gene expression 

frequencies. We employed published single cell RNA-seq data(Kolodziejczyk et al., 2015) and qPCR 

data(MacArthur et al., 2012) on mESCs in LIF+Serum (LS) for model evaluation. mRNA expression 

(either fpkm, Fragments Per Kilobase of transcript per Million mapped reads for RNA-seq; or ddCt, 

delta-delta Ct value for qPCR) in single cells were binarized into ON (gene expressing) and OFF 

(gene non-expressing) clusters by applying k-means clustering on the expression data across all 

samples with k=2. The frequency of gene-expressing single-cells in the population was then 

calculated. As there are two series of single-cell transcriptomic profiles in the reference, we took the 

average levels of the two datasets. The expression level value for EpiTFs was calculated by taking 

mean levels of Otx2, Eomes and Fgf5. 

Signal ON ON ON ON OFF OFF OFF OFF
A1 ON ON OFF OFF ON ON OFF OFF
A2 ON OFF ON OFF ON OFF ON OFF

F1 ON ON ON OFF OFF OFF OFF OFF
F2 ON ON ON ON ON ON ON OFF
F3 ON ON ON ON ON OFF OFF OFF
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Appendix Figure S3.3. A diagram to define consensus mESC-GRN.  

Gray rectangles indicate the operative processes, while white rectangle indicate key objects to define consensus mESC-
GRN and its model. 

 

All the candidate models were simulated for the LIF/Serum (LS) condition, and the best-fit model 

was selected to minimize the total Euclidean distance between simulation and experimental data for 

all genes (Appendix Figure S3.3 and Figure S2a). The full representation of this best-fit model model 

is in Supplementary Table S1. 

4. Characterization of PSCs via pluripotency, sustainability, and susceptibility 

Pluripotency is supported in part by the expression of core transcription factor network components 

Oct4, Sox2, and Nanog. These three core TFs (OSN) are positively regulated by other supporting TFs, 

Esrrb, Klf2/4, and Tbx3. Alternatively, spontaneous expression of lineage-specific TFs—Cdx2 and 

Gata6—and early differentiation markers—Brachyury (T), Fgf5, Eomes, and Otx2—is also observed 

in mESCs. These components are known to have bidirectional inhibitory relationships with Oct4, 

Nanog, and Sox2. This competition between TFs gives rise to fluctuations in gene expression over 

time. PSC populations with higher, more homogeneous OSN expression overcome these fluctuations 

and are surmised to have more robust characteristics of pluripotency. We measured this strength of 

pluripotency using a pluripotency score that is a summation of OSN expression levels averaged across 
the whole population: 𝑝[\8] + 𝑝J_QR + 𝑝'Yb_M. 

The sustainability score can be used to estimate the stability of PSC populations, defined 

as a single, large SCC in a given input condition. Sustainability reflects how intrinsically stable the 

GRN is over time in the absence of any extrinsic perturbations. The sustainability score is defined as 

a subtraction of this out-going cell probability from 1, thus it also ranges from 0 to 1 (see Section 1-

4). We applied the thresholds for SCCs to be considered in the analysis as those which demonstrate a 

sustainability score > 0.7. This was based on the assumption that a more stable PSC is more likely to 

persist over time and that it will become a larger determinant of population-average expression levels. 

Alternatively, if the PSC-GRN stabilized under a given input condition is structurally 

sensitive to extrinsic stimuli, such as perturbations in either signaling pathway activities or gene 

expression levels, the PSCs will alter gene expression profiles and change into a different state. This 
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concept of susceptibility to extrinsic stimuli was quantified using a susceptibility score. High 

susceptibility of the pluripotency score may reflect a higher probability of exiting pluripotency (i.e. 

differentiation commitment or cell death). It follows that reduced susceptibility to a specific stimulus 

(or set of stimuli) indicates robustness of the GRN towards the stimulus, due in part to support by 

network redundancy or feedback motifs. Susceptibility is measured as the change of variance of the 

gene expression profiles in PSCs after removing individual regulatory edges from the model:.  

𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒 =
1
𝑁 ∙

𝑝+x − 𝑝+,\_b8
𝑝+,\_b8

R'

+

 

where 𝑝+x is a level of the gene after removal of the edge i and 𝑝+,\_b8 is that of un-perturbed model, 

and N denotes number of regulatory edges. To assess susceptibility towards input signal conditions, 

the coefficient of variation (CV) for the genes of interest is calculated for each of the perturbed models.  

 

 
Metrics Definitions 

 
Pluripotency score 
 

 
PSC population with higher (homogeneous) OSN expression has more 
robust characteristics of pluripotency and higher differentiation potential to 
multiple lineages. 
 

 
Sustainability 
 

 
PSC population where single cells (profiles) are more likely to remain within 
the population over time (i.e. less likely to escape the metastable state) has 
higher sustainability. 
 

 
Susceptibility 
 
 

 
If redundant regulatory interactions confer robustness to the PSC state (i.e. 
gene expression pattern), the population is less sensitive to extrinsic 
perturbations. 
Meanwhile, a PSC population with high susceptibility is more sensitive to 
perturbations in signal activity or genetic manipulations, and thus has a 
higher chance of differentiating upon small perturbations. 
 

Appendix Table S3. PredicAppendix Table Setrics of PSCs and their biological relevancies. 

 

5. Simulation of stabilized PSC populations in various culture conditions 

 

5-1. In silico and in vitro manipulation of signal inhibition 

To predict the impact of manipulating exogenous signaling using inhibitory small molecules, we 

defined inhibitory (i)-Signals for ERK, Activin A/Nodal, BMP4, and WNT signaling. Signaling 

activity is defined as follows: Signal activity = (Signal components) and (NOT i-Signal). As small 

molecule-based inhibition cannot completely eliminate basal signaling activity experimentally, we set 

i-Signal as a random value whose status is determined randomly and independently from the other 



 

21 

network components. It follows that the average probability of i-Signal in each SCC is around 0.5. In 

this way, the signaling activity in silico decreases but does not vanish. The default settings of i-Signals 

are OFF, except in the cases where inhibitors are specifically added. 

Due to the switch-like response observed in LIF signaling, we did not include an i-Signal 

and defined only ON (1) or OFF (0) inputs. As a result the in silico LIF-OFF condition corresponds 

both to removal of exogenous LIF and to active suppression of LIF signaling using an inhibitor to 

Janus Kinase (JAKi). The signal manipulation settings we explored are listed in Appendix Table S4. 

Note that the JAK inhibitor utilized in this study has been used in a number of studies as a 

blocker of endogenous LIF/Stat3 in mESCs(Lo Nigro et al., 2017; Yi and Merrill, 2010) and other 

cell types(Huen et al., 2015). The concentration of the JAK inhibitor in those studies is 1 uM or lower, 

and showed sufficient and saturated inhibitory effects on Stat3 phosphorylation in doses higher than 

1 uM. We set the concentration of the JAK inhibitor as high as 2uM and showed the clear difference 

between 2i+Jaki+Bmp4+Alki and 2i+Bmp4+Alki in their OCT4/CDX2 expression profiles, which 

indicates its efficient inhibitory effect on the LIF/Stat3 pathway. 
 

Signaling pathway Effect Symbol Experimental 
manipulation 

In silico manipulation 

LIF-pStat3 Activation +L LIF LIF = ON (1) 

LIF-pStat3 Inhibition –L JAKi LIF = OFF (0) 

Wnt-canonical Activation +W CH iGSK3b = ON(1) 

Wnt-canonical Inhibition –W Dkk1 Define (not iWnt), iWnt = Random 

BMP4-pSmad1 Activation +B BMP4 Bmp4 = ON (1) 

BMP4-pSmad1 Inhibition –B LDN Define (not iBmp), iBmp = Random 

ActivinA/Nodal Activation +W ActivinA Activin = ON (1) 

ActivinA/Nodal Inhibition –W Alki Define (not iActivin), iActivin = Random 

FGF Activation +E bFGF bFGF = ON (1) 

ERK Inhibition –E PD Define (not iERK), iERK = Random 

Appendix Table S4: Experimental and in silico manipulation of signals 

 using cytokines and small molecules. 

 

5-2. Simulation for the input conditions that mimic known PSC populations 

We simulated four conditions where PSCs can be stably maintained: 1) mESCs in LIF+Serum (LS), 

2) naïve mESCs in LIF+2i (2iL), 3) naïve mESCs in 2i without LIF (2i-L), and 4) EpiSCs in 

bFGF+Activin (bF+A). Note that as Activin A and BMP4 (and Fgf4) are secreted in an autocrine 

manner, they are considered to be variable (i.e. set as random) when no cytokines are added to the 

medium. These control conditions are defined as shown in Appendix Table S5. 
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Conditions Experiments 
Simulation inputs  

ON OFF 

LS LIF LIF 

bFGF 

iGSK3b 

iERK 

2iL 

LIF LIF 

bFGF CH iGSK3b 

PD iERK 

2i-L / 2iJ 

Jaki iGSK3b LIF 

CH iERK bFGF 

PD     

bF+A Activin A ActivinA/Nodal LIF 

  bFGF bFGF CH 
      iERK 

Appendix Table S5: Settings of control PSC conditions in the model and experiments. 
   
 

5-3. Robustness of calculated population-average gene expression levels 

For this study, we performed R-ABS from 700 randomly set initial profiles with 700 updates from 

each profile. The high reproducibility of the simulation results initiated with a lower number of input 

profiles (300 profiles, Appendix Figure S5) demonstrates the robustness of the simulation outcome. 

Moreover, the predictions of average gene expression levels were robust against varying thresholds 

for SCC classification. When changing the minimum SCC size threshold from 1 to 30 (default = 10), 

the differences in predicted Oct4 level were as small as ±0.0%, ±0.0%, ±1.58% and ±1.69, for LS, 
2iL, 2i-L and EpiSC conditions, respectively. when changing the minimum sustainability threshold 

from 0.0 to 0.7 (default = 0.7), the differences in predicted Oct4 level were ±0.0%, ±0.0%, ±0.16% 

and ±0.77% for the same conditions. We anticipate that the robustness reflects the high reachability 
of random initial profiles to the SCC, which is analogous to the population-level stabilization of PSCs 

by culture conditions in vitro. 
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Appendix Figure S5-1. Representative calculation robustness of population-average gene 
expression profile using control LS condition as an example.  
a. Changes in the size of SCC (# profiles) depending on the number of steps (i.e. updates) in one simulation run with 
varied number of initial profiles. Sustainability scores are 1.0 for all simulation settings. The results of five independent 
simulations under the condition of LS (LIF+serum) are shown. b. Change of variance (the second axis, CV: Standard 
deviations divided by the mean value) of calculated expression level of Oct4 (first axis) averaged from five independent 
simulations where the number of steps (updates) in each simulation was set to 700. 

 

5-4. Validity of the reconstructed model 

We compared the model’s predictions of OSN levels in the same signal conditions as those in Fig. 4f, 

both with and without 10 edges not validated in the literature or ESCAPE (highlighted in gray in 

Appendix Table S1). As shown in Appendix Figure S5-2, the partial model, which is the model 

excluding the above 10 interactions, failed to predict the expression levels of Sox2 and Nanog in the 

LS (orange triangle), LIF+Dkk+PD (gray circles) and LIF+2i conditions (red circles and triangle) 

measured by immuno-fluorescent microscopy. The fitting scores based on R-square values were 0.63 

(Oct4), 0.76 (Sox2) and 0.71 (Nanog) for the full model (Fig. 4f), while the scores for the partial 

model were 0.38 (Oct4), 0.03 (Sox2) and 0.26 (Nanog). This result strongly supports the validity of 

the 10 novel edges in our PSC model which were predicted without supporting literature or ESCAPE 

evidence.  

 
Appendix Figure S5-2. Expression frequency of OSN. 
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Observed (x-axis) and predicted using the partial model without predicted edges (y-axis). Each condition is tested under 
activated and repressed Activin A/Nodal- and BMP-signals by addition of cytokines or inhibitors (±A±B).  
Circles are 16 combinatorial signal conditions indicated in Fig. 4f and triangles are the three control PSC conditions, 
2iL(red), 2i-L(blue), and LS(green), respectively. 

 

In addition to the effects of the novel edges, we tested whether manual curation of genes was 

necessary for our experimentally verified predictions. We “deleted” single or double genes in silico 

from the full model and directly compared the simulated results to experimental data. As shown in 

Appendix Figure S5-3, the genes we tested (Esrrb, Gbx2, Klf2, Jarid2, Lefty1, Mycn and Pitx2) and 

their combinations were not generally necessary to predict the Oct4 expression profile under control 

PSC conditions including LS, 2iL, 2i-L and bF+A. One exception to this observation was that our 

Jarid2-null model did not yield the experimentally verified EpiSC-related (Oct4 positive) SCC in the 

simulated bF+A condition. Importantly, all models with combinatorial deletions failed to predict the 

upregulation of Cdx2 in the 2i-L+B-A condition, even though this response was robustly validated 

using five independent experimental strategies (single cell flow, qPCR, RNAseq, reporter line 

measurements and immunohistochemistry). 

 
Appendix Figure S5-3. Effects of gene deletion from the original (full) model. 

(a) and (b): Predicted Oct4 levels in control PSC conditions (LS; orange, 2iL;red , 2i-L; blue and EpiSC (bFGF+Activin 
A); green). (c) and (d): Predicted change in Cdx2 levels between LS and 2i-L+B-A condition 
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