Table S1. Meiotic crossovers on chromosome 2L.

| net i     | ho dp    |      |      | b                  |            | pr           |                     |
|-----------|----------|------|------|--------------------|------------|--------------|---------------------|
| I         | п        |      | ш    |                    | IV         |              | <b>///</b> v        |
|           |          |      |      |                    |            |              |                     |
| Progeny - |          | WT1  | WTO  | Materna<br>WT1 + 2 | al Genotyp | e<br>mai 0   | mai 0 mai 11        |
|           | . 1      | 1052 | 1000 | W11+2              | met-41     | <i>mei-9</i> | <i>mel-9 mel-41</i> |
| Parental  |          | 1053 | 1223 | 23/6               | 6667       | 2366         | 904                 |
|           | I        | 70   | 106  | 176                | 87         | 6            | 22                  |
|           | II       | 127  | 163  | 290                | 119        | 11           | 5                   |
| SCO       | III      | 497  | 602  | 1099               | 530        | 40           | 69                  |
|           | IV       | 89   | 65   | 154                | 286        | 8            | 39                  |
|           | V        | 23   | 16   | 39                 | 71         | 2            | 11                  |
|           | I / II   | 1    | 0    | 1                  | 3          | 0            | 3                   |
|           | I / III  | 4    | 7    | 11                 | 6          | 0            | 0                   |
|           | I / IV   | 7    | 3    | 10                 | 4          | 0            | 0                   |
|           | I / V    | 0    | 2    | 2                  | 1          | 0            | 0                   |
| DCO       | II / III | 1    | 5    | 6                  | 7          | 0            | 2                   |
| DCO       | II / IV  | 5    | 2    | 7                  | 2          | 0            | 1                   |
|           | II / V   | 8    | 5    | 13                 | 2          | 0            | 0                   |
|           | III / IV | 10   | 9    | 19                 | 8          | 0            | 0                   |
|           | III / V  | 7    | 10   | 17                 | 6          | 0            | 1                   |
|           | IV / V   | 1    | 1    | 2                  | 2          | 0            | 1                   |
| TCO       |          | 0    | 0    | 0                  | 0          | 0            | 1                   |
|           | n        | 1903 | 2319 | 4222               | 7801       | 2433         | 1059                |

**Table S1. Meiotic crossovers on chromosome 2L.** Each row lists the number of total progeny from parental or single (SCO), double (DCO), or triple (TCO) crossover classes for wild-type (*WT*) and *mei-41* null mutants. Intervals I to V correspond to schematic above. Wild-type data were collected by different individuals in different years (see Material and Methods); the individual datasets and the summed set, which was used in all analyses, are given. The TCO in *mei-9 mei-41* was intervals I/II/IV. Wild-type data are from Hatkevich *et al.* (2017), used with permission (RightsLink license 4217090536151, 27 Oct 2017).



Table S2. Meiotic crossovers on chromosome X.

| Duogony |          | Maternal Genotype |        |  |  |
|---------|----------|-------------------|--------|--|--|
| Frog    | geny     | WT                | mei-41 |  |  |
| Pare    | Parental |                   | 3929   |  |  |
|         | Ι        | 148               | 178    |  |  |
|         | II       | 333               | 370    |  |  |
| SCO     | III      | 162               | 121    |  |  |
|         | IV       | 155               | 174    |  |  |
|         | V        | 166               | 258    |  |  |
|         | I–II     | 5                 | 15     |  |  |
|         | I–III    | 18                | 14     |  |  |
|         | I–IV     | 20                | 8      |  |  |
|         | I–V      | 29                | 10     |  |  |
| DCO     | II–III   | 25                | 20     |  |  |
| DCO     | II–IV    | 44                | 22     |  |  |
|         | II–V     | 26                | 24     |  |  |
|         | III–IV   | б                 | 7      |  |  |
|         | III–V    | 14                | 6      |  |  |
|         | IV-V     | 10                | 11     |  |  |
| TCO     |          | 3                 | 7      |  |  |
| n       |          | 2179              | 5174   |  |  |

**Table S2. Meiotic crossovers on chromosome** *X***.** Each row lists the number of progeny from parental or single (SCO), double (DCO), or triple (TCO) crossover classes for wild-type (*WT*) and *mei–41* null mutants. Intervals I to V correspond to schematic above. The TCOs in wild/type flies were one each in intervals (II/III/V), (II/IV/V), and (III/IV/V). TCOs in *mei/41* were one each intervals (I/II/II), (I/II/V), (I/II/V), (I/III/V), and (II/IV/V) and two each in intervals (II/III/V) and (II/IV/V). Wild/type data are from Hatkevich *et al.* (2017), used with permission (RightsLink license 4217090536151, 27 Oct 2017).

| Correctore a              | Interval on Chromosome 2 |                 |                  |                 |                   |                  |  |  |
|---------------------------|--------------------------|-----------------|------------------|-----------------|-------------------|------------------|--|--|
| Genotype                  | Ι                        | II              | III              | IV              | V                 | I - V            |  |  |
| Genetic Size (cM ±95% CI) |                          |                 |                  |                 |                   |                  |  |  |
| WT                        | $4.74 \pm 0.64$          | $7.51 \pm 0.80$ | $27.29 \pm 1.35$ | $4.55 \pm 0.52$ | 1.73 ±0.39        | $45.81 \pm 0.90$ |  |  |
| mei-41                    | $1.29 \pm 0.25$          | $1.70 \pm 0.28$ | $7.14 \pm 0.57$  | $3.87 \pm 0.43$ | $1.05 \pm 0.23$   | $15.06 \pm 0.79$ |  |  |
| mei-9 mei-41              | $2.46 \pm 0.93$          | $1.13 \pm 0.64$ | $6.80 \pm 1.52$  | $3.87 \pm 1.16$ | $1.32 \pm 0.69$   | $15.58 \pm 2.18$ |  |  |
| mei-9                     | $0.25 \pm 0.20$          | $0.46 \pm 0.27$ | $1.64 \pm 0.51$  | $0.33\pm0.23$   | $0.08 \pm 0.11$   | $2.75 \pm 0.65$  |  |  |
| Mb w/o TEs                | 2.312                    | 2.004           | 9.006            | 5.639           | 9.438             | 28.399           |  |  |
| WT                        | $2.05 \pm 0.28$          | $3.75 \pm 0.40$ | $3.03 \pm 0.15$  | $0.81 \pm 0.09$ | $0.18\pm\!\!0.04$ | $1.61 \pm 0.05$  |  |  |
| mei-41                    | $0.56 \pm 0.09$          | $0.86 \pm 0.14$ | $0.79 \pm 0.06$  | $0.69 \pm 0.08$ | $0.11 \pm 0.03$   | $0.53 \pm 0.03$  |  |  |
| mei-9 mei-41              | $1.06 \pm 0.40$          | $0.57 \pm 0.33$ | $0.75 \pm 0.16$  | $0.69 \pm 0.19$ | $0.14 \pm 0.07$   | $0.55 \pm 0.08$  |  |  |
| mei-9                     | $0.11 \pm 0.09$          | $0.23 \pm 0.14$ | $0.18 \pm 0.05$  | $0.06 \pm 0.04$ | $0.01 \pm 0.01$   | $0.10 \pm 0.03$  |  |  |
| Mb w/ TEs                 | 2.394                    | 2.052           | 9.292            | 6.253           | 11.724            | 31.715           |  |  |
| WT                        | $1.98 \pm 0.27$          | $3.66 \pm 0.39$ | $2.94 \pm 0.15$  | $0.73 \pm 0.10$ | $0.15 \pm 0.04$   | 1.44 ±0.04       |  |  |
| mei-41                    | $0.54 \pm 0.10$          | $0.83 \pm 0.14$ | $0.77 \pm 0.06$  | $0.62 \pm 0.08$ | $0.09 \pm 0.02$   | $0.47 \pm 0.02$  |  |  |
| mei-9 mei-41              | $1.03 \pm 0.39$          | $0.55 \pm 0.31$ | $0.73 \pm 0.16$  | $0.62 \pm 0.19$ | $0.11 \pm 0.06$   | $0.49 \pm 0.07$  |  |  |
| mei-9                     | $0.10\pm0.08$            | $0.22 \pm 0.13$ | $0.18 \pm 0.06$  | $0.05 \pm 0.03$ | $0.01 \pm 0.01$   | $0.09 \pm 0.02$  |  |  |

 Table S3a. Genetic distances and crossover densities on chromosome 2.

Table S3b. Genetic distances and crossover densities on chromosome X

| Construe                  | Interval on Chromosome X |                  |                  |                  |                   |                  |  |  |
|---------------------------|--------------------------|------------------|------------------|------------------|-------------------|------------------|--|--|
| Genotype                  | Ι                        | II               | III              | IV               | V                 | I - V            |  |  |
| Genetic Size (cM ±95% CI) |                          |                  |                  |                  |                   |                  |  |  |
| WT                        | $10.09 \pm 1.26$         | $20.00 \pm 1.68$ | $10.41 \pm 1.28$ | $10.92 \pm 1.31$ | $11.42 \pm 1.34$  | $62.84 \pm 2.03$ |  |  |
| mei-41                    | $4.40\pm\!\!0.67$        | $8.87 \pm 0.77$  | $3.34 \pm 0.49$  | $4.39 \pm 0.56$  | $6.07 \pm 0.65$   | $27.09 \pm 1.21$ |  |  |
| Mb w/o TEs                | 5.018                    | 5.089            | 2.732            | 3.385            | 5.568             | 21.792           |  |  |
| WT                        | $2.01 \pm 0.25$          | $3.93 \pm 0.33$  | $3.81 \pm 0.47$  | $3.23 \pm 0.39$  | $2.05 \pm 0.24$   | $2.88 \pm 0.09$  |  |  |
| mei-41                    | $0.88 \pm 0.11$          | $1.74 \pm 0.15$  | $1.22 \pm 0.18$  | $1.30\pm0.17$    | $1.09 \pm 0.12$   | $1.24 \pm 0.05$  |  |  |
| Mb w/ TEs                 | 5.295                    | 5.233            | 2.810            | 3.521            | 6.291             | 23.150           |  |  |
| WT                        | 1.91 ±0.24               | $3.82 \pm 0.32$  | 3.71 ±0.46       | $3.10\pm0.37$    | $1.82 \pm 0.22$   | $2.71 \pm 0.08$  |  |  |
| mei-41                    | $0.84 \pm 0.11$          | $1.69 \pm 0.14$  | $1.19 \pm 0.17$  | $1.25 \pm 0.16$  | $0.96\pm\!\!0.10$ | $1.17 \pm 0.05$  |  |  |

**Table S3. Genetic distances and crossover densities.** The top section of each table gives calculated genetic distances (in cM, with 95% confidence intervals (CI); see Materials and Methods) for the five intervals on 2L (see Tables S1) and X (see Table S3). The rightmost column has the summed distance across all five intervals. The lower two sections give crossover density (cM/Mb) calculated without including transposable elements (middle) or including transposable elements (bottom). Transposable element lengths are from the *Drosophila melanogaster* reference genome and are not necessarily the same in the chromosomes we used.

| Dur      |           | Maternal Genotype |                       |  |  |
|----------|-----------|-------------------|-----------------------|--|--|
| Proş     | geny -    | WT                | mei-41 <sup>29D</sup> |  |  |
| Derentel | + + +     | 1510              | 5200                  |  |  |
| Falentai | dp Sp b   | 1897              | 3686                  |  |  |
|          | + Sp b    | 172               | 195                   |  |  |
| SCO      | dp + +    | 144               | 164                   |  |  |
| 500      | + + b     | 344               | 272                   |  |  |
|          | dp $Sp$ + | 258               | 297                   |  |  |
| DCO      | + $Sp$ +  | 4                 | 17                    |  |  |
| DCO      | dp + b    | 1                 | 5                     |  |  |
| n        |           | 3330              | 9836                  |  |  |

Table S4. Progeny counts from *dp*–*Sp*–*b* interference experiment

**Table S4. Progeny counts from** *dp*–*Sp*–*b* **interference experiment.** Each row lists the number of progeny from parental and single (SCO), or double (DCO) classes for wild-type (*WT*) and *mei-41* null mutants.

## Table S5a. X nondisjunction.

|   |                                                               | Normal  | <u>Nondisjunc</u> |               |      |           |
|---|---------------------------------------------------------------|---------|-------------------|---------------|------|-----------|
|   | Maternal Genotype                                             | Progeny | <b>XO</b> 33      | <i>XXY</i> ♀♀ | X ND | J (%)     |
| 1 | $mei-41^1$                                                    | 815     | 24                | 15            | 8.7  | $\pm 2.7$ |
| 2 | mei-41 <sup>29D</sup>                                         | 3791    | 144               | 155           | 13.6 | $\pm 1.5$ |
| 3 | mei-9 <sup>a</sup>                                            | 287     | 25                | 27            | 26.5 | ± 6.7     |
| 4 | mei-9ª mei-41 <sup>29D</sup>                                  | 499     | 27                | 20            | 15.9 | $\pm 4.4$ |
| 5 | mei-9 <sup>a</sup> mei-41 <sup>29D</sup> / mei-9 <sup>a</sup> | 354     | 31                | 37            | 27.7 | ± 6.1     |
| 6 | mei-9ª mei-41 <sup>29D</sup> / mei-9ª                         | 521     | 36                | 52            | 25.3 | $\pm 4.9$ |

**Table S5a.** *X* **nondisjunction.** *X* chromosome nondisjunction (NDJ) was scored as described in Materials and Methods. Genotypes 1-4 were homozygous for the indicated mutant alleles. All  $mei-41^{29D}$  experiments had the  $M\{UASp::mei-41\}$  and  $P\{mata::GAL4\}$  transgenes described in the text. Genotypes 5 and 6 were made by crossing each of the two stocks that were used to generate mei-9 mei-41 double mutants to  $mei-9^a$  single mutants to test for the presence of  $mei-9^a$  in the stock. The males used to generate genotype 5 were  $y M\{UASp::mei-41\}$   $mei-9^a mei-41^{29D}$  on the *X* chromosome. The males used to generate genotype 6 were  $y mei-9^a mei-41^{29D}$  on the *X*. Statistical analyses are in Table S5b, below. p values are not corrected for multiple comparisons, but such corrections would not change any conclusions.

## Genotypes Interpretation р NDJ is significantly higher in *mei-41*<sup>29D</sup> than in *mei-41*<sup>1</sup>, supporting the 0.0020 1 vs. 2 conclusion that $mei-4l^{1}$ is a hypomorphic allele. 2 vs. 3 0.0002 NDJ is significantly higher in $mei-41^{29D}$ than in $mei-9^a$ . (Genotypes 5 and 6 2 vs. 5 < 0.0001 were homozygous for *mei-9<sup>a</sup>* and heterozygous for *mei-41<sup>29D</sup>* 2 vs. 6 < 0.0001 NDJ in mei-9<sup>a</sup> mei-41<sup>29D</sup> double mutants is not significantly different from 2 vs. 4 0.3420 NDJ in *mei-41*<sup>29D</sup> single mutants. 3 vs. 5 0.8033 NDJ is not significantly different between the three mei-9 single mutants, confirming the presence of the $mei-9^a$ mutation in the stocks used to generate 3 vs. 6 0.7516 $mei-9^a mei-41^{29D}$ double mutants (also confirmed by allele-specific PCR). 0.5324 5 vs. 6

## Table S5b. Statistical comparisons of *X* nondisjunction.

**Table S5b. Statistical comparisons of** X **nondisjunction.** Methods of Zeng *et al.* (2010) was used to calculate X nondisjunction (NDJ) with 95% confidence intervals and to calculate p values based Z tests. p values are not corrected for multiple comparisons, but such corrections would not change any conclusions.

Hatkevich, T., K. P. Kohl, S. McMahan, M. A. Hartmann, A. M. Williams, and J. Sekelsky, 2017 Bloom syndrome helicase promotes meiotic crossover patterning and homolog disjunction. Curr Biol **27:** 1-5.

Zeng, Y., H. Li, N. M. Schweppe, R. S. Hawley and W. D. Gilliland, 2010 Statistical analysis of nondisjunction assays in *Drosophila*. Genetics **186**: 505-513.