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1 Long-term evolution experiment

The LTEE consists of 12 replicate populations of Escherichia coli B. Six of the populations are
founded from strains isogenic to REL606 [1, 2], and are labelled Ara−1 through Ara−6. The other
six populations (Ara+1 to Ara+6) are derived from strain REL607, which differs from REL606 by
a point mutation in the araA gene that restores the ability to grow on arabinose, and a second
mutation in recD that has no known phenotype [3]. The 12 populations are grown with daily
100-fold dilutions in 10 ml Davis minimal medium with 0.025% glucose (DM25), and incubated in
50-ml flasks with orbital shaking at 37◦C. The cells grow until they exhaust the limiting nutrients,
reaching a stationary-phase cell density of ∼ 5 × 107 per ml before they are diluted into fresh
media [1, 4]. This protocol results in ∼ 6.67 generations per day and an effective population size of
Ne ∼ 3×107. Aliquots from every 500 generations are mixed with glycerol as a cryoprotectant and
frozen at −80◦C for long-term storage. No statistical methods were used to predetermine sample
size. The investigators were not blinded to allocation during experiments and outcome assessment.

2 Competitive fitness trajectories

To contrast the rates of molecular and phenotypic evolution, we compared our metagenomic data
with competitive fitness assays previously carried out by Wiser et al. [5] and Lenski et al. [6].
In each assay, whole-population samples from an evolved population were mixed with a reference
strain with the opposite ara marker and propagated under the standard LTEE conditions for ∆t
generations; the relative frequencies of the evolved and reference subpopulations at the beginning
and end of the assay were measured by plating on tetrazolium arabinose agar. Raw colony counts
were downloaded from the corresponding Dryad repositories [7, 8], and relative (log) fitness was
defined as

∆X ≡ 1

∆t
log

[
Ne(∆t)

Nr(∆t)
· Nr(0)

Ne(0)

]
, (1)

where Ne(t) and Nr(t) are the number of evolved and reference colonies, respectively. We chose
this measure because it provides the most direct connection to the fitness parameters in population
genetics, which describe how allele frequencies change timescales much longer than a single dilution
cycle. For completeness, we also calculated fitness using the ratio of the competitors’ realized
Malthusian parameters,

W ≡
log
(
Ne(∆t)·2∆t

Ne(0)

)
log
(
Nr(∆t)·2∆t

Nr(0)

) , (2)

which has traditionally been used to quantify fitness in the LTEE (see Wiser et al. [5] for more
details). Though quantitatively different, the two measures are correlated, and both support the
qualitative claim that fitness gains decline more rapidly than the rate of mutation accumulation.

The fitness assays in Figs 2a and S1 were carried out by Wiser et al. [5] using the ancestral
reference strains and a single day of competition (∆t ≈ 6.7). More precise measurements of
the fitness gains after generation 40,000 were carried out by Lenski et al. [6], using a higher-
fitness reference clone isolated from the Ara−5 population at generation 40,000, and a three day
competition period (∆t ≈ 20). We compare these late fitness gains to the corresponding mutation
gains over the same period in the nonmutator populations in Fig. S2. Estimates of the average
fitness gain per mutation are shown in Fig. S3.
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Figure S1: Fitness trajectories from Fig. 2a replotted using the traditional W measure from Eq. (2).
Each population is colored as in Fig. 2. For comparison, the corresponding mutation trajectories
from Fig. 2b are replotted in the bottom panel.
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Figure S2: Fitness and mutation gains between generation 40,000 and 60,000 in the nonmutator
populations. Top: fitness gains ∆Xp = Xp(t) − Xp(40, 000) calculated from the high-replication
assays performed by Lenski et al. [6]. The n = 6 independent populations are colored as in Fig. 2,
and each point includes a small amount of noise on the t-axis to enhance visibility. Vertical error
bars denote ±1s.e.m. intervals estimated from technical replicates with sample sizes described
in Lenski et al. [6]. Bottom: corresponding mutation gains obtained by shifting the mutation
trajectories in Fig. 2b by Mp,0 = median{Mp(t) : 39, 000 ≤ t ≤ 41, 000}.
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Figure S3: Estimates of the average fitness per mutation in the nonmutator populations. Left:
Competitive fitness, X(t), divided by the total allele frequency, M(t), as a function of time. Each
population is colored as in Fig. 2. Point estimates (dots) are calculated for timepoints with fitness
measurements in Wiser et al. [5], and are connected by solid lines. The ratio between the ensemble
averaged trajectories is shown in white. Right: Late fitness gains per mutation estimated from the
fitness assays in Lenski et al. [6]. Mutation gains are estimated from the slope of M(t) over the
corresponding time interval. Each population includes a small amount of noise on the t-axis to
enhance visibility.
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3 Library construction and sequencing

3.1 Metagenomic samples

We obtained metagenomic samples from frozen gylcerol stocks for each replicate line through gen-
eration 60, 000 (a full list of samples is available in Supplementary Table 1). We revived aliquots
of ∼ 10 µl overnight in 2 ml of DM25 in shaken 10-ml Falcon tubes, after which ∼ 1 ml of culture
was taken for metagenomic extraction using the GenElute Bacterial Genomic DNA Kit (Sigma).
We prepared DNA sequencing libraries using the Illumina Nextera kit as described previously [9],
and sequenced them using an Illumina HiSeq 2500 with 150bp paired-end reads at the Bauer Core
Facility at Harvard University.

3.2 Clonal isolates

To aid in variant detection, we also supplemented our metagenomic data with data from 264
clonal isolates sequenced in an earlier study of the LTEE [3]. A full list of isolates is available in
Supplementary Table 2. Raw FASTQ files were downloaded from the NCBI BioProject database
(accession PRJNA294072), and were subjected to the same variant calling pipeline described below.

4 Variant calling

We called variants using a custom pipeline that extends the breseq software package [10]. This
program identifies candidate single nucleotide variants (SNVs) and small indels by mapping se-
quencing reads to the reference genome of REL606; larger structural variants (SVs) are identified
by looking for reads that contain a junction between two distinct locations in the reference genome
[11]. Our pipeline uses a custom version of breseq v0.26 (which we term breseq-lite), which has
been modified to reduce potential double-counting of junction-supporting reads.

4.1 Identifying candidate variants

Raw sequencing reads were first trimmed using trimmomatic v0.32 [12]. We then used breseq

to align the trimmed reads to the REL606 reference genome and to generate a list of candidate
junctions for each sample in each population. Candidate junctions were extracted and merged
per-population using gdtools. We then ran breseq a second time for each sample, with junction
candidates for each sample provided by the --user-evidence-gd, using the merged junction list
for its respective population.

We used samtools mpileup and custom Python scripts to identify candidate SNVs and small
indels from the BAM files produced by the second breseq run. By counting the reads supporting the
alternate and reference alleles, we defined a trajectory of ordered pairs, (Apmt, Dpmt), representing
the alternate allele count and the total depth of coverage for mutation m in sample t from population
p. As a control, we also resequenced the ancestral REL606 population using the same protocols
as above, and we used this sample as an initial timepoint for all 12 populations. (The two point
mutations separating the REL606- and REL607-derived populations were flagged and removed from
our downstream analyses.)

For candidate indels, it is sometimes difficult for samtools mpileup to identify the correct
alternate allele in regions of repetitive reference sequence. Thus, whenever a small (< 100bp) indel
allele is detected at a site, we merged the reads of all alternate alleles in that population into a
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single “compound” mutation trajectory. Indel alleles larger than 100bp were considered structural
variants, and were processed with the remaining candidate junctions below.

Candidate junctions were processed using a second set of scripts. Like samtools mpileup, the
breseq algorithm has similar issues identifying junction alleles in regions of repetitive reference
sequence, and this problem is magnified when many timepoints are included. To address this issue,
we used a custom Python script to merge similar candidate junctions from the same population into
a single “compound” junction candidate, and we recorded an analogous trajectory (Apmt, Dpmt)
for each junction m in population p. To conserve space, candidate junctions were only recorded if
Apmt ≥ 2 in at least two samples. We then used a second Python script to merge pairs of candidate
junction trajectories into a single structural variant trajectory (e.g., an IS-mediated insertion) when
possible.

To conserve space, candidate mutations were only recorded for a population if Apmt ≥ 2 in at
least two samples, and if at least one of these samples had Dpmt ≥ 10 and an empirical frequency
fpmt ≡ Apmt/Dpmt ≥ 0.05.

4.2 Quantifying the statistical support for each candidate variant

To distinguish true mutations from sequencing errors, we sought to assess the significance of each
mutation by comparing it to an appropriate null model in which the reads supporting the alternate
allele arise purely by chance. In the most idealized case, such a null model might be of the form

Apmt ∼ Binomial(Dpmt, pm) , (3)

where pm is an error probability that may vary from site-to-site. Although this model is theoretically
appealing, our data contain many examples of errors that are highly unlikely under this model,
and would therefore be classified as real mutations. Instead, the data suggest that the correct error
model is one in which the error probability can also vary between samples and between populations,
leading us to consider models of the more general form:

Apmt ∼ Binomial(Dpmt, ppmt) . (4)

Because this model is extremely flexible, we require additional constraints on ppmt in order to
distinguish these errors from true mutations.

4.2.1 Removing low-coverage timepoints

One likely source of variation in ppmt arises when the error probability is correlated with the depth
of coverage. There are several potential ways that this could occur. First, the coverage of the
entire sample could be anomalously small due to errors in library construction or demultiplexing.
The remaining reads would therefore be more likely to reflect library construction artifacts or
contamination from other samples. To minimize these issues, we automatically eliminated samples
in which the median depth of coverage, Dpt ≡ median(Dpmt)m, was less than 5.

Mapping artifacts can also lead to error probabilities that depend on t, since they are strongly
influenced by the other mutations present in the sample and typically result in additive (rather
than multiplicative) errors in Apmt. These errors will have the largest relative impact when Dpmt

is low, so we also eliminated individual samples for which Dpmt < 5. In addition, mapping artifacts
can be particularly problematic when the reference base or its close neighbors have been deleted
from the genome, so that an anomalously large fraction of the remaining reads may actually consist
of mapping errors (even when Dpmt > 5). To mitigate these issues, we attempted to “trim” the
remaining timepoints of a trajectory if there was evidence for a deletion at that site.
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We scanned for evidence of deletions by focusing on the depth trajectory of each mutation,
defined as dpmt = Dpmt/Dpt for all metagenomic samples for which Dpt ≥ 5. Due to systematic
variation in coverage along the genome, the depth trajectory may be consistently less than unity
for some m, and substantially larger for others. We did not attempt to model this variation in m.
Instead, we wanted to know whether there is evidence for a sudden and consistent change in dpmt
as a function of t, independent of the site-specific coverage. To do so, we fit each depth trajectory
to a piecewise model

dpmt ∼ Normal(λt, σ
2
t ) , (5)

(λt, σ
2
t ) =

{
(λ0, σ

2
<) if t ≤ t∗ ,

(λ0r, σ
2
>) if t > t∗ ,

(6)

where λi, σ
2
i , and t∗ are free parameters. For a given t∗, the maximum likelihood estimates of the

remaining parameters are straightforward to calculate. If n< and n> denote the number of samples
≤ t∗ or > t∗, then

λ0(t∗) =
1

n≤

∑
t≤t∗

dpmt , (7)

r(t∗) =
1

λ0

1

n>

∑
t>t∗

dpmt , (8)

σ<(t∗) =

√
1

n<

∑
t≤t∗

(dpmt − λ0)2 , (9)

σ>(t∗) =

√
1

n>

∑
t>t∗

(dpmt − λ0r)
2 , (10)

and t∗ can be found by numerically maximizing the remaining loglikelihood,

`(t∗) = −n> log (σ<(t∗))− n> log (σ>(t∗)) . (11)

We carried out a likelihood ratio test between this model and one in which t∗ =∞, restricting the
alternate hypothesis to r < 1/2 in order to focus on potential deletions. The test statistic is

∆`({dpmt}) = max
t∗, r≤1/2

{n< log (σ/σ<) + n> log (σ/σ>)} , (12)

where σ2 = 1
n<+n>

∑
t d

2
pmt −

(
1

n<+n>

∑
t dpmt

)2
is the variance of the entire depth trajectory. We

estimated the null distribution of this test statistic by focusing on the distribution of ∆`({dpmσ̂(t)}),
where σ̂(t) is a random permutation of the sample indices. This preserves the observed variation
in dpmt (which may be larger than the parametric model above), while ensuring that the consistent
changes in dpmt arise purely by chance. Based on this null model, we defined a P -value for each
mutation trajectory,

P = Pr
[
∆`({dpmσ̂(t)}) ≥ ∆`({dpmt})

]
, (13)

which we estimated numerically by simulating a large number of permuted trajectories, dpmσ̂(t). For
the purposes of masking timepoints, we considered there to be significant evidence for a deletion
if P < 10−2. This threshold is purposely permissive in order to be conservative in the set of
unmasked timepoints. When this condition was met, we removed all samples that occurred after
t∗ from further downstream analyses.
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4.2.2 Error model for moderate-coverage timepoints

We relied on the masking scheme above to remove the most extreme cases in which the error
probabilities ppmt are correlated with the sample index t. For the remaining moderate-coverage
timepoints, the error probabilities are still too variable for the uniform model, ppmt = pm, to
apply. But we will now operate under the assumption that this variation is at least statistically
independent of t, and can be approximated by drawing ppmt from some fixed distribution.

To model ppmt, we turned to an ad hoc generative model that attempts to leverage the large
number of timepoints available per population. The basic idea is that for a true error, the pooled
distribution of the empirical frequencies, fpmt = Apmt/Dpmt, for a given m and p may provide
a reasonable approximation to the distribution of ppmt, even though the estimates for individual
t are highly overfitted. In the LTEE, we also have an additional piece of information: because
the ancestral allele in REL606 is known with high certainty, we expect the average frequency,
fpm =

∑
tApmt/

∑
tDpmt, to be less than 50% (otherwise, the alternate allele would have been

classified as the reference). Thus, we define a scale factor,

c = max
{

1, 1/2f
}
, (14)

such that the renormalized frequencies cfpmt are forced to satisfy this polarization condition. For a
true error, this renormalization should not bias the distribution of ppmt. If we again let σ̂(t) denote
a random permutation of the timepoints, we can then define a model of the error probabilities,

p̂pmt = cfpmσ̂p(t) , (15)

which preserves the observed variation in cfpmt, but erases all other temporal information. Condi-
tioned on p̂pmt, the alternate allele count under this error model is given by

Âpmt ∼ Binomial(Dpmt, p̂pmt) . (16)

However, in order to sample from the null model more efficiently, we use a slightly different con-
nection between the error probability and the read count:

αpmt ∼ Poisson [Dpmtp̂pmt] , (17a)

βpmt ∼ Poisson [Dpmt(1− p̂pmt)] , (17b)

Âpmt = round

[
αpmt

αpmt + βpmt
·Dpmt

]
, (17c)

which shares the many of the basic features of the binomial model, but is faster to simulate.
Together, these equations define an algorithm for simulating error mutation trajectories that are as
close as possible to the observed data, but with an enforced polarization condition and scrambled
temporal information.

4.2.3 Quantifying deviations from the error model

Given an error model, the next step is to quantify how the observed read counts, Apmt, differ from
the null distribution of Âpmt. Some care must be taken at this point. Due to the approximate
nature of the null model, we always expect some differences to arise (even for a true error), but
we want to prioritize those differences that are most closely associated with a real mutation. And
we want to do so in a way that the evidence for different mutation trajectories can be compared
with each other. P -values provide a natural means for carrying out this comparison. In particular,
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we choose a set of test statistics Tk({Apmt, Dpmt}), each of which is a function of the observed
mutation trajectory. To combine evidence across the different test statistics, we first define a set
of single-statistic P -values,

Pk = Pr
[
Tk({Âpmt, Dpmt}) ≥ Tk({Apmt, Dpmt})

]
, (18)

which we calculate numerically by simulating a large number of draws from {Âpmt, Dpmt}. We then
use these individual P -values to define a composite statistic,

T ({Apmt, Dpmt}) =
∑
k

θ(P ∗ − Pk) log

(
1

Pk

)
, (19)

where θ(·) is the Heaviside step function and P ∗ = (0.05)1/3. We chose this threshold so that the
composite statistic is dominated by large deviations in at least one of the individual test statistics,
rather than small or moderate deviations in all of them. Based on this definition, we then define a
single composite P -value according to

Ppm = Pr
[
T ({Âpmt, Dpmt}) ≥ T ({Apmt, Dpmt})

]
, (20)

which is again calculated numerically by simulating a large number of draws from {Âpmt, Dpmt}.
Increasing the number of test statistics generally leads to greater power to reject the null hypoth-
esis, but it also makes the test more sensitive to the specific assumptions of the error model. In
the present manuscript, we used three test statistics which were chosen to reflect the features of
putatively real mutations in the LTEE.

Autocorrelation. If the timepoints are sampled densely enough to measure the trajectory of a
mutation, we expect that the frequencies at nearby timepoints will be correlated with each other.
For example, a mutation might have ft = 0 for several consecutive timepoints until the mutation
first rises to detectable frequencies, and then it will undergo a polymorphic phase before it either
permanently survives or goes extinct. Previous work has attempted to capture these dynamics
using the autocorrelation function,

C ≡
∑
t

(ft+1 − f)(ft − f) , (21)

based on the assumption that C will be small (or negative) for errors and large and positive for a
true mutation trajectory [13]. Here, we use a modified autocorrelation function C∗ that accounts for
the discreteness and uncertainty in ft (due to finite coverage) as well as the polarization constraint
(f ≤ 50%) that should hold for a true error. In particular, we define

f = min

{∑
tApmt∑
tDpmt

,
1

2

}
, (22)

which is an average over fpmt = Apmt/Dpmt that weights each timepoint by Dpmt. Similarly,
in the sum in C∗, we weight each pair of timepoints by

√
Dpm,t+1Dpmt. To minimize rounding

artifacts, we only count differences ft − f if they correspond to at least one read count, i.e., if
|Apmt − fDpmt| ≥ 1. Putting everything together, this yields a modified autocorrelation function

C∗ =

∑
t

√
Dt+1Dt(ft+1 − f)(ft − f)θ(|At+1 − fDt+1| − 1|)θ(|At − fDt| − 1|)

f
2∑

t

√
Dt+1Dt

, (23)

where θ(z) is the Heaviside step function, and we have normalized by f
2

to obtain a coefficient of
variation.
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Derived allele sojourn weight. One disadvantage of the autocorrelation is that (for f < 1/2),
it treats positive and negative deviations from the mean symmetrically. But for true mutations,
timepoints with zero or near-zero frequencies have a special interpretation — the mutation has
not yet arisen or has gone extinct — while consecutive runs of positive frequency represent the
sojourn path of the mutation. A larger area under the curve of one of these runs provides more
evidence that the mutation is not an error. To quantify these features, we looked at runs of 2
or more timepoints, t = t1, . . . , t2, for which ft is larger than some threshold frequency f∗ for all
t1 ≤ t ≤ t2. We then recorded the run with the largest value of

I =

t2∑
t=t1

ft − f∗ . (24)

For each trajectory, we attempted to choose f∗ to be as close as possible to an unborn/extinct state,
while still allowing for error rates that can be higher than 1/Dt. To do so, let n and n0 respectively
denote the total number of timepoints and the number of timepoints for which Apmt = 0, and let
f denote the capped mean frequency in Eq. (22). We then defined the threshold f∗ as

f∗ =

{
f

1+e+(n0−0.3n)/5 if n0 > 0.3n ,
f

1+e−(0.3n−n0)/5 if n0 < 0.3n .
(25)

When more than 30% of the timepoints are zero alternate alleles, this expression weights f∗ closer
to the median, which grows closer to zero as n0/n increases. In the opposite case, when fewer than
30% of the timepoints are zero, this expression reverts back to the average, f .

Average frequency relaxation time. Because the LTEE was founded from a clonal ancestor, a
true mutation should start with zero or near-zero frequency, and only later rise to higher frequencies.
This means that the average frequency for the first several timepoints should be lower than the
average frequency for the entire timecourse. To quantify this tendency, we calculated the relaxation
time T , which is defined to be the maximum number of timepoints for which the partial average
allele frequencies from 5 to T − 1 are all less than 60% of the average allele frequency, i.e.,

T = max

{
T :

∑
t≤t′ Apmt∑
t≤t′ Dpmt

≤ 0.6 ·
∑

tApmt∑
tDpmt

∀ 5 ≤ t′ < T

}
. (26)

We set T = 0 if n0 > 0.3n.

4.3 Filtering to obtain final list of mutations

After estimating a P -value for each mutation m in each population p using the algorithm above,
we corrected for multiple hypothesis testing by converting these P -values into genome-wide Q-
values to assess significance. Since the distribution of P -values may differ between the mutator and
nonmutator populations, we calculate the Q-values separately for the two groups using the formula

Qpm = min
Q>Ppm

{
Q
∑

p′,m′ 1∑
p′,m′ θ(Q− Pp′,m′)

}
, (27)

where θ(·) is the Heaviside step function [14]. As expected, the Q-values increase with the total
number of tests performed (

∑
p′,′m′ 1), regardless of the evidence for a mutation at that site. To
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boost power, it can be useful to refrain from performing the test for sites with insufficient variation
to support a mutation, even if the P -value would seem to indicate otherwise. In other words,
we are free to define a function F ({Apmt, Dpmt}) and restrict our analysis to mutations for which
F ({Apmt, Dpmt}) = 1, provided that we modify our error model to only produce trajectories for
which F ({Âpmt, Dpmt}) = 1 as well. We implemented such a restriction here, using a function
F ({At, Dt}) that is equal to 1 if all of the following conditions are met:

1. There are at least two samples for which At ≥ 2, and at least one of these has Dt ≥ 10 and
At/Dt ≥ 0.05. This condition is always required for the null model (and fulfilled for the data)
because it was used when compiling the original list of candidate mutations.

2. In the ancestral sample, D0 ≥ 10 and A0/D0 ≤ 0.1.

3. There are at least three samples for which At ≥ 2 and Dt ≥ 5.

4. There is at least one sample for which At ≥ 3, Dt ≥ 5, and At/Dt ≥ 0.1.

5. The difference between the maximum frequency and the capped average in Eq. (22) is at least
+10%.

Given this ensemble of mutation trajectories, we calculated Q-values for each candidate mutation
in the mutator and nonmutator populations, and rejected all those candidates with Q ≥ 5%.

4.3.1 Removing mutations in repetitive regions of the genome

We excluded mutations that arose in repetitive regions of the genome, as these can be difficult
to resolve using short-read data. A site was marked as repetitive if (1) it was annotated as a
repeat region in the REL606 reference, (2) it was present in the set of masked regions compiled
by Tenaillon et al. [3], or (3) it fell within the putative prophage element identified by Tenaillon
et al. [3] (REL606 genome coordinates 880528–904682). Approximately 2× 105 sites (≈ 4% of the
reference genome) matched one of these criteria and were excluded from all downstream analyses.

4.3.2 Additional filtering using data from clonal samples

By using the read frequency At/Dt as an estimate of the population frequency, we are implicitly
assuming that a mutation is present in ≈ 100% of the reads in each mutant cell and ≈ 0% of the
reads in each wildtype cell. Certain types of mutations will violate this assumption, e.g., a SNV
that arises after a duplication event, or residual errors with enough temporal correlations to pass
through our previous filters. In either case, we wish to remove such “non-clonal” mutations from
our list, since their allele frequency trajectories could interfere with our downstream analyses.

To detect non-clonal mutations, we utilized read information from the clonal samples sequenced
by Tenaillon et al. [3], which we processed using the same pipeline as our metagenomic samples,
but have so far neglected. In principle, we expect that true mutations should be present in either
0% or 100% of the reads in each clone, but in practice, sequencing and mapping errors (which may
occur more frequently in the shorter read-lengths of the clone data) force us to employ less stringent
criteria. We filtered out non-clonal mutations using the following empirically-derived thresholds,
which were tuned to balance true and false positive rates for the most common types of errors in
our dataset. In particular, we filtered out mutations if any of the following conditions are met:

• There were ≥ 4 clones with 0.1 ≤ A/D ≤ 0.7, and of these clones, ≥ 50% were sampled at
timepoints when the population frequency of the mutation satisfied 0.2 ≤ ft ≤ 0.7.
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• All of the clones (as well as the population frequency at the timepoints when the clones were
sampled) had A/D ≤ 0.6, but there was at least one timepoint for which the clone frequency
and the population frequency was ≥ 0.1.

• There is at least one clone with 0.4 ≤ A/D ≤ 0.6 that also has a depth ratio r > 1.3 (see
Section 4.2.1), and none of the clone or population frequencies exceeded 0.9.

• There were > 10 timepoints for which the population frequency was > 0.25, the average depth
ratio for these timepoints was > 1.5 times higher than the average depth ratio in the first
10 timepoints, ≥ 90% of these timepoints had ft ≤ 0.75, and none of the clone frequencies
exceeded 0.9.

4.4 Mutation annotation

Each mutation was assigned a gene and a variant type depending on its location and alternate
allele. To do so, we first partitioned the E. coli genome into genes (including tRNA and rRNA
genes) and intergenic regions according to the annotations in the REL606 reference. In the case of
overlapping genes, priority was given to the gene with the lowest left coordinate. In addition, we
also included 100bp upstream of each gene’s start codon, which we treated as a putative promoter
region. In case of overlaps, we again gave priority to the gene with the lowest left coordinate, and
genic sequence was always given priority over promoter sequence.

Based on these annotations, we assigned each mutation to a gene (or classified it as “intergenic”)
according to its location in the genome. For deletions and other junction candidates that span
multiple bases, the location was defined to be the left-most genome coordinate. This convention
allows us to assign a unique gene to each mutation, but it throws away information about the
other genes that were modified, even if they might have been the true “target” of selection. For
example, several IS-mediated deletions with endpoints in yieO are classified to that gene, though
previous work shows that the likely target was the rbs operon [15]. Similar issues apply to larger
duplications and inversions. Because we can only identify the influenced bases in a metagenomic
sample if the mutation rises to a sufficiently high frequency, it is difficult for us to estimate which
genes are influenced by a particular structural variant without additional information (e.g. from
clone sequences [3]). We therefore chose not to account for these “off-target” genes in our present
analysis. The resulting errors (in addition to errors induced by incorrect promoter annotation and
overlapping genes) will generally reduce our power to detect genetic parallelism in Section 6, but
they avoid introducing spurious signals due to misidentified mutations.

We then assigned a variant type to each mutation depending on its gene and alternate allele.
Single-nucleotide changes in coding regions were classified as nonsense, missense, and synonymous if
they resulted in an early stop codon, an amino-acid change, or no amino-acid change, respectively,
and the remaining point mutations were classified as noncoding. Indels (< 100 bp) and larger
structural variants were annotated accordingly, regardless of whether they occurred in genes or
intergenic regions.
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5 Mutation trajectory inference

After the initial filtering step, we assume that the remaining read count trajectories (Apmt, Dmt)
provide noisy readouts of the true allele frequencies fpmt in each population through time. On
average, we expect that 〈

Apmt
Dpmt

〉
≈ fpmt , (28)

so in the absence of additional information, the naive estimator f̂pmt = Apmt/Dpmt is our best guess
for the true frequency, fpmt. We use this as our default estimator throughout the remainder of the
text, unless stated otherwise.

5.1 Rate of mutation accumulation

The expected allele frequency in Eq. (28) is also the expected probability that the mutation m is
present in a randomly sampled individual from the population. A natural measure of mutation
accumulation in each population is therefore given by

Mp(t) ≡
∑
m

f̂pmt , (29)

which is plotted in Fig. 2b in the main text. When averaged across populations, the derivative of
Eq. (29) also provides a natural measure of the rate of mutation accumulation. To estimate the
derivative in Fig. 2c, we performed local linear regression of M(t) =

∑
pMp(t)/

∑
p 1 in sliding

5, 000 generation windows, and we estimated uncertainties by randomly resampling six nonmutator
populations with replacement and recalculating this measure.

There is also variability in Mp(t) among the six nonmutator populations in Fig. 2b. The
overall magnitude of variation in any given time interval depends on the detailed parameters of
the underlying population genetic process [16], which we do not try to estimate here. Instead, we
want to ask whether there are systematic differences in the rate of mutation accumulation between
populations that are correlated over multiple time intervals.

To investigate this question, we turned to an empirically-derived null model of mutation accu-
mulation, in which the populations are assumed to be identical, while still controlling for certain
features of the observed distribution of Mp(t). Because different mutation trajectories are expected
to be correlated for times less than the typical fixation timescale, we divided the full timecourse into
six non-overlapping windows of ∆t = 10, 000 generations, and we estimated the average slope ∂tMp

for each population within each window using linear regression. This allows us to represent each
population p by a vector of mutation gains, ∆Mp,k = (∆t · ∂tMp)|t=tk , for each window k = 1, . . . , 6
(Extended Data Fig. 1).

We then define the null model of mutation accumulation by randomly permuting the popu-
lation labels within each time interval. Each permutation creates a new bootstrapped dataset of
6 trajectories in which the mutation gains are effectively uncorrelated, while still preserving the
distribution of gains in any given interval. A systematic difference in the rate of mutation accu-
mulation between lines would then be manifested in a larger-than-expected variance at the final
timepoint, e.g. arising from a population with systematically higher ∆Mk. To test this hypothesis,
we calculated the final between-line variance,

σ2
M =

1

6

6∑
p=1

(
6∑

k=1

∆Mp,k

)2

−

1

6

6∑
p=1

6∑
k=1

∆Mp,k

2

, (30)
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for both the observed and bootstrapped trajectories, and estimated a P -value according to the
number of times that the bootstrapped variance exceeded the observed value (Extended Data
Fig. 1). The observed value is significantly higher than expected under the null model (P ≈ 10−3),
indicating that the additional mutations in each window are correlated with the identity of the
population. This excess variability is still significant (though less strongly so) if we remove the
Ara+1 population (P ≈ 10−2), which we expect to be an outlier since it has been shown to harbor
an excess of IS-mediated mutations [3].

5.2 Simplest hidden Markov model

While Eq. (28) provides a reasonable estimate of the average allele frequency, there is often sub-
stantial uncertainty in this estimate, particularly near f = 0 and f = 1, where sequencing errors
can swamp the true signal. In order to detect fixation or extinction events in a robust manner, it
is therefore useful to combine information across multiple timepoints.

To do so, we require a model for the true allele frequency as a function of time, as well as an
error model connecting fmt with the read counts (Amt, Dmt). (In the following sections, we drop
the population index p, though it is implicit in all of the equations.) In simple settings, we can
obtain a model for fmt from population genetic considerations (e.g., Ref. [17]). However, because
we do not know the correct population genetic model for the LTEE, we turned to an ad hoc Markov
model that contains some of the minimal features of a true mutation trajectory, while attempting
to remain as flexible as possible.

In the simplest version of this model, all mutations start in an ancestral state A where fmt = 0,
so that alternate reads in this state are assumed to arise from sequencing errors. At each timepoint,
there is a finite probability that the mutation transitions to a polymorphic state P, where it can
spend several timepoints with frequency 0 < fmt < 1. From this polymorphic state, the mutation
can transition to either a fixed state F, where all reference reads are sequencing errors, or an
extinct state E that is similar to the ancestral state above. In rare cases, mutations are allowed to
transition from E back to A, after which it can be reborn as a recurrent mutation event.

For mutations in the polymorphic state P, we must also define how the allele frequencies
0 < fmt < 1 are chosen. In the absence of additional information, we assume that the new allele
frequency is drawn uniformly between 0 and 1, independent of the previous allele frequency. This
allows us to coarse-grain over the allele frequency fmt and obtain a simple Markov chain between
the A, P, F, and E “macrostates” which is illustrated in Fig. S4. We fixed the transition rates
empirically based on the observed properties of the experiment:

Pr[A→ P] ≈ 10−2 , Pr[P→ F] ≈ Pr[P→ E] ≈ 0.5 , Pr[E→ P] ≈ 10−6 , (31)

though the results are relatively insensitive to the precise values.
To connect this Markov model with the observed data, we also require a model for generating

read counts (Amt, Dmt) based on the current state. As in Section 4, we assume that these follow a
binomial mixture,

Amt ∼ Binomial(Dmt, pmt) , (32)

where the pmt are independent random variables whose distribution depends on the current state.
For example, in the polymorphic state we assume that pmt ≈ fmt, so that pmt is uniformly dis-
tributed in the interval (0, 1). After marginalizing over pmt, we find that

Pr[Amt|P] =
1

Dmt + 1
. (33)
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FE

Figure S4: Schematic diagram of the possible transitions between the ancestral (A), polymorphic
(P), fixed (F), and extinct (E) states in the simplest mutation trajectory HMM. The relative
weights of each transition are specified in Eq. (31). The dashed line from E → A denotes a
particularly low-probability transition that models a recurrent mutation event.

Similarly, in the A and E states, the true frequency is zero, so pmt represents the contribution from
sequencing errors. For simplicity, we assume that these are drawn uniformly between 0 and some
number 2perr,0

m , which is specific to each mutation m and which is capped at some low frequency
perr,0

max ≈ 0.025. After marginalizing over pmt, we obtain

Pr[Amt|A] =
1

Dmt + 1

∫ 2perr,0
m

0

Γ(Dmt + 2)pAmt(1− p)Dmt−Amt

Γ(Amt + 1)Γ(Dmt −Amt + 1)

dp

2perr,0
m

, (34)

and similarly for Pr[Amt|E]. An analogous situation holds for the fixed state F, except with the
roles of Amt and Dmt −Amt reversed:

Pr[Amt|F] =
1

Dmt + 1

∫ 2perr,1
m

0

Γ(Dmt + 2)pDmt−Amt(1− p)Amt

Γ(Amt + 1)Γ(Dmt −Amt + 1)

dp

2perr,1
m

, (35)

where we have allowed for the possibility that perr,0
pm 6= perr,1

pm . Thus, the polymorphic state allows
the mutation to travel beyond 2perr,0

m and 1−2perr,1
m , but at the cost of a higher state-space entropy.

Together, these equations define a simple hidden Markov model (HMM) that consists of a
sequence of hidden states Lmt ∈ {A,P,F,E} and an observed sequence of emissions, (Amt, Dmt).
We fit this model to the observed data using standard dynamic programming techniques [18]. The
primary quantity of interest is the matrix of posterior state probabilities,

Pmt` ≡ Pr[Lmt = `|data, Lm,0 = A, Lm,tf 6= A] , (36)

which can be can expressed in the form

Pmt` ∝ Pr[Lmt = `, data≤t|Lm,0 = A]︸ ︷︷ ︸
Fmt`

·Pr[Lm,tf 6= A, data>t|Lmt = `]︸ ︷︷ ︸
Bmt`

, (37)

where Fmtl and Bmt` are the canonical forward and backward tables. These satisfy the recursion
relations:

Fmt` = Pr[Amt|`]
∑
`′

Fm,t−1,`′Pr[`′ → `] , Fm,0,` ∝ δ`,A , (38a)
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Figure S5: An analogous version of Fig. 2d replotted for the six mutator populations. Each popu-
lation is colored according to the same color scheme as Fig. 2.

and

Bmt` =
∑
`′

Pr[`→ `′]Pr[Am,t+1|`′]Bm,t+1,`′ , Bm,tf ,` ∝ 1− δ`,A , (39a)

where the initial conditions ensure that all mutations must start in the A state and spend at least
one timepoint in the P state.

The recursion relations for Fmt`, Bmt`, and Pmt` above depend on the unknown error rates
perr,0
m and perr,1

m . We estimate these using an iterative scheme similar to the familiar expectation
maximization (EM) algorithm [18]. We first calculate Pmt` using an initial guess perr,0

m = perr,1
m =

0.01. Then, using the fact that

〈Amt|A〉 = 〈Amt|E〉 = perr,0
m Dmt , (40)

we obtain a new estimate of perr,0
m via the weighted average,

perr,0
m = min

{∑
mAmt(Pm,t,A + Pm,t,E)∑
mDmt(Pm,t,A + Pm,t,E)

, perr,0
max

}
, (41)

and similarly for perr,1
m . The process is repeated for ∼ 10 iterations, which is usually sufficient for

convergence. The most-likely sequence of states, L̂mt, is estimated using an analogous implemen-
tation of the Viterbi algorithm [18].

5.2.1 Fixed mutation trajectories.

After estimating the most-likely sequence of states, L̂mt, we estimate the number of fixed mutations
in each population through time using the formula:

Mfixed(t) =
∑
m

δL̂mt,F
. (42)

The corresponding fixed mutation trajectories are compared with the average mutation trajectories
from Eq. (29) in Figs. 2d (nonmutators) and S5 (mutators).
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Figure S6: The distribution of transit times estimated from Eq. (45) for each of the twelve popu-
lations. Each population is colored according to the same color scheme as Fig 2.

5.2.2 Appearance and transit times

We also use the most-likely sequence of states, L̂mt, to assign an appearance time T0,m to each
detected mutation. Roughly speaking, this is defined to be the first non-zero timepoint before the
mutation attains its maximum frequency. To estimate T0,m, we first define the reference time t∗

to be the point at which the mutation achieved its highest frequency. If the mutation finished the
experiment in the polymorphic (P) or extinct (E) states, we set t∗ to be

t∗ = argmax
{
f̂mt : L̂mt = P

}
, (43)

while we set t∗ to the final timepoint if the mutation fixed. The appearance time T0,m was then
defined as

T0,m = max
t<t∗

{
t+ 250 : L̂mt = A

}
. (44)

We also use L̂mt to estimate the time that the mutation spent in the polymorphic state before
transitioning to fixation or extinction. We refer to this as the transit time, ∆Tm, which is defined
as

∆Tm = min
t>T0,m

{
t− T0 − 250 : L̂mt ∈ {F,E}

}
. (45)

Note that this operational definition of the transit time only accounts for the of the polymorphic
phase that is spent at observable frequencies (e.g. between ∼ 1% and 99%). It neglects the
additional time required for the mutation to transit from a single copy to f ∼ 1%, or from f ∼ 99%
to fixation, which can be much larger than ∆Tm. The distribution of transit times for each of the
twelve populations is depicted in Fig. S6. The excess of very long transit times in several of the
populations provides further evidence that the “missing” fixation events in Figs. 2d and S5 persist
at intermediate frequencies for many generations.
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Figure S7: Validation of the single-clade HMM using forward-time simulations. Top: Allele fre-
quency trajectories for a simulated population with Un = 6× 10−4, Ub = 7.5× 10−5, s0 = 7× 10−3,
and Xc = 5 × 10−2. Allele frequencies are binomially downsampled to a coverage of 50x. Bottom
left: Distribution of the difference between the estimated appearance time from the HMM and
the time at which the mutation first exceeds 5% frequency, using mutations from 108 simulated
populations with the same parameters as above. Bottom right: the corresponding distribution of
the difference between the estimated transit time from the HMM and the total time spent between
5% and 95% frequency.

5.2.3 Validation with forward-time simulations

To evaluate the accuracy of the HMM classification scheme, we applied it to a synthetic set of
mutations obtained from forward-time simulations of the LTEE, which are described in Good and
Desai [19]. In these simulations, individuals acquire neutral and beneficial mutations at rate Un
and Ub, respectively. The beneficial mutations are drawn from a fitness-dependent distribution of
fitness effects,

ρ(s) =
1

s0e−X/2Xc
exp

(
s

s0e−X/2Xc

)
, (46)

which has been shown to capture the leading-order effects of diminishing returns epistasis in this
experiment [3, 5, 19, 20]. Each mutation creates a SNP at a unique site in the genome, whose
frequency can be tracked over time. Every 500 generations, the simulation records the frequencies
of all mutations that are present above 1% frequency. These true frequencies are also binomially
sampled at 50x coverage to produce a synthetic metagenomic dataset similar to those analyzed in
this work. The allele frequency trajectories for one such simulated population are shown in Fig. S7.

We then classified the mutations in this synthetic dataset using the HMM algorithm described
above, and calculated the corresponding appearance and transit times, T0 and ∆T . As ground truth
values, we used the first and last time the mutation spent in the frequency range (5%, 95%). The
error distributions for T0 and ∆T are shown in Fig. S7, based on mutations pooled across twelve
simulated populations. The estimates are generally accurate to a precision of ±1000 generations.
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Figure S8: Schematic diagram of the possible transitions between the states in the clade-aware
HMM. B, M, and m denote the basal, major, and minor clades, respectively, while B∗ represents
a recurrent mutation that occurs independently in both clades.

5.3 Adding a pair of subclades

In many of the LTEE populations, the average number of mutations M(t) is much larger than
Mfixed(t) (Figs. 2d and S5). In several of these cases, the mutations appear to accumulate in a pair
of intermediate-frequency clades that coexist for thousands of generations (Fig. S6). We therefore
extended our HMM to account for the clade background of each mutation in this scenario.

In the clade-aware version of the HMM, all mutations again start in the ancestral state A.
However, we must now differentiate between mutations that are fixed/polymorphic in the basal
clade (FB/PB) or in the major (FM/PM) or minor (Fm/Pm) subclades. Polymorphic mutations
in all three clades can transition to a common extinct state E, which can re-transition to one of
the polymorphic states in rare cases through recurrent mutation. In addition, recurrent mutation
can also spread mutations from major to minor clades or vice versa. We model these rare cases
by introducing a final polymorphic state PB∗ that cannot transition to extinction. The network of
transitions between the 9 macrostates is illustrated in Fig. S8.

We continue to model the emission probabilities using the binomial mixture in Eq. (32). The
distributions of pmt for the A, E, and FB states remain unchanged from the simple model above. To
model the emission probabilities in the other states, we must introduce two additional parameters,
fMt and fmt , which denote the sizes of the major and minor clades through time. (For concreteness,
we adopt the convention that the major clade is the one with the highest frequency at the final
timepoint.) Mutations that are fixed within the major clade must have pmt close to fMt ,

pmt|FM ∼ Uniform
(
fMt − perr,0

m , fMt + perr,0
m

)
, (47)

while polymorphic mutations in this clade can fall anywhere between 0 and fMt :

pmt|PM ∼ Uniform
(
0, fMt + perr,0

m

)
. (48)

Analogous equations apply for the minor clade. For polymorphic mutations in the basal clade
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(which is ancestral to both M and m), the frequencies are constrained to remain above fMt + fmt :

pmt|PB ∼ Uniform
(
fMt + fmt − p

err,0
d , 1

)
, (49)

while recurrent mutations in both clades are free of this constraint:

pmt|PB∗ ∼ Uniform (0, 1) . (50)

After marginalizing over pmt, we obtain a set of emission probabilities Pr[Amt|`] that define our
new HMM.

If the clade trajectories fMt and fmt were known a priori, it would be straightforward to extend
our earlier inference scheme to assign mutations to their corresponding clades. However, we typi-
cally must estimate the clade trajectories simultaneously from the data. To do so, we again turn
to an iterative scheme, loosely based on the EM algorithm. Starting with initial guesses for fMt ,
fmt , and the error probabilities perr,0

m and perr,1
m , we infer the matrix of posterior state probabilities

Pmt` and the sequence of most likely states L̂mt using the recursion relations above, and we update
the error estimates using the formulae in Eq. (41). To update the clade frequencies fMt and fmt ,
we make use of the fact that

〈Amt|FM〉 = fMt Dmt , (51)

and estimate fMt using the weighted average,

fMt =

∑
mAmtPm,t,FM

δ
(
FM, argmaxPm,tf ,`

)∑
mDmtPm,t,FM

δ
(
FM, argmaxPm,tf ,`

) , (52)

where the δ-function restricts the sum to mutations that finished in the FM state. An analogous
equation applies for the minor clade. Based on these updated parameter values, we re-estimate the
posterior state probabilities Pmt`, and this process is iterated ∼ 10 times until convergence.

By convention, we only retained clades that persisted at intermediate frequencies for a suffi-
ciently long period of time. In particular, we required that there was at least one timepoint for
which 0.2 ≤ fMt ≤ 0.8, 0.2 ≤ fmt ≤ 0.8, and fMt + fmt > 0.8 (i.e., at least one timepoint where the
major and minor clades were both large enough to be clearly observed and together accounted for
the bulk of the population). The duration of intermediate-frequency coexistence was defined to be
the difference between the latest such timepoint and the first timepoint for which fMt + fmt > 0.8.
Note that this is only a lower bound on the true duration of coexistence: there are populations
like Ara−2 where the minority clade is known to persist at frequencies much lower than 20% for
thousands of generations, without rising above this threshold again. Our algorithm is capable of
inferring these rare clade frequencies in many cases (see e.g., Fig. 3B). However, in order to be
conservative when declaring that a given population shows signs of frequency-dependence, we only
included clades where the duration of intermediate-frequency coexistence was at least 10, 000 gen-
erations; this was the case for 9 of the 12 populations in Fig. 3B. By adopting this convention, we
may miss examples of coexistence that did not spend sufficient time at intermediate frequencies, in
addition to those that never reached sufficient frequency to be detected at our present sequencing
depth.

We note that while the clade trajectory estimators in Eq. (52) appear to give reasonable results
for our data, they are still suboptimal because they ignore information from polymorphic mutations
in the PB, PM or Pm states. Thus, when estimating fMt and fmt , the algorithm does not properly
penalize the clade frequencies if there are polymorphic mutations in those clades with frequencies
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that exceed fMt and fmt (or conversely, mutations in the PB state that fall below 1 − fMt − fmt ).
This makes it easier for the algorithm to get trapped in a suboptimal region of parameter space
if the initial estimates for fMt and fmt are not chosen carefully. To minimize such stability issues,
we excluded indels and structural variants from this iterative procedure, estimating their clade
membership only after the estimates for fMt and fmt were obtained. We also developed an additional
heuristic algorithm to obtain the initial estimates of fMt and fmt that are used to initialize the HMM
algorithm.

Heuristic algorithm for initial clade frequency estimates. To obtain an initial estimates
of fMt and fmt , we first calculate a measure of the heterozygosity in the population,

Ht ≡
∑
m

(
f̂mt − 0.5

)(
0.8− f̂mt

)
θ
(
f̂mt − 0.5

)
θ
(

0.8− f̂mt
)
, (53)

where θ(z) is the Heaviside step function, and look for the time t∗ where Ht attains its maximum.
This point is likely to have the largest number of mutations segregating at frequencies between 0.5
and 0.8, many (but not all) of which are likely to be fixed in the major clade, if it exists. We use
this subset of putative major mutations,

IM ≡
{
m : 0.5 < f̂m,t∗ < 0.8

}
, (54)

to estimate the frequency of the major clade for t ≥ t∗:

fMt ≡ median
m∈IM

{
f̂mt

}
, (t ≥ t∗) . (55)

We naively set fmt = 1 − fMt for the minor clade. If the major clade at t∗ is no longer in the
majority at the final timepoint tf (i.e., if fmtf > fMtf ), we permute the labels M↔m.

We then use these partial trajectories fMt and fmt for t ≥ t∗ to obtain a better set of putative
major and minor mutations by forcing the mutations to match fMt and fmt at multiple timepoints,
rather than just at t∗. In particular, for each mutation with 0.2 ≤ f̂mt ≤ 0.8, we calculate the set
of distances

DM
m =

√∑
t≥t∗

(f̂mt − fMt )2 , (56a)

Dm
m =

√∑
t≥t∗

(f̂mt − fmt )2 , (56b)

DE
m =

√∑
t≥t∗

(f̂mt − 0)2 , (56c)

DF
m =

√∑
t≥t∗

(f̂mt − 1)2 , (56d)

and we redefine our sets of putative major and minor mutations according to

IM ≡
{
m : DM

m = max
{
DM
m , D

m
m , D

E
m, D

F
m

}}
, (57a)

Im ≡
{
m : DM

m = max
{
Dm
m , D

m
m , D

E
m, D

F
m

}}
. (57b)

22



For times before t∗, we can no longer use the simple formula in Eq. (55) to estimate fMt , since the
mutations in IM and Im arise and fix within their respective clades at different times, and have
frequency f̂mt = 0 before that point. To estimate fMt and fmt , we would like to focus on the subset
of IM and Im that are fixed within the clade at a given timepoint t. We estimate these subsets
according to

I∗M,t ≡

{
m : m ∈ IM, f̂mt > max

m∈IM

f̂mt
2

}
, (58a)

I∗m,t ≡

{
m : m ∈ Im, f̂mt > max

m∈Im

f̂mt
2

}
, (58b)

and use these subsets to reestimate fMt and fmt using the formulae

fMt ≡ =
1

|I∗M,t|
∑

m∈I∗M,t

f̂mt , (59a)

fmt ≡ =
1

|I∗m,t|
∑

m∈I∗m,t

f̂mt . (59b)

If the sum of the inferred clade frequencies never exceeds 0.2, we set fMt = fmt = 0. These final
estimates are then used to seed the HMM algorithm above.

5.3.1 Appearance, fixation, and transit times

After estimating the most-likely sequence of states, L̂mt, we again define an appearance time T0,m

and a transit time ∆Tm for each mutation using analogous versions of Eqs. (44) and (45):

T0,m = max
t<t∗

{
t+ 250 : L̂mt = A

}
, (60)

∆Tm = min
t>T0,m

{
t− T0 − 250 : L̂mt ∈ {FB, FM, Fm, E}

}
. (61)

For mutations that fix in the basal and major clades, we can obtain an analogous fixation trajectory
for each population using an extension of Eq. (42):

MM
fixed(t) =

∑
m

δL̂mt,FB
+ δL̂mt,PB∗

+ δL̂mt,FM
. (62)

These measures are depicted for the six nonmutator populations in Fig. 4a,b. In principle, we can
obtain an analogous fixation trajectory for the minor clade as well:

Mm
fixed(t) =

∑
m

δL̂mt,FB
+ δL̂mt,PB∗

+ δL̂mt,Fm
. (63)

In practice, however, it is more difficult to detect mutations in the minor clade, especially when its
frequency becomes very small. In Fig. S9, we compare the major and minor fixation trajectories for
the two nonmutator populations (Ara+5 and Ara−6) where the clades persisted at intermediate
frequencies through the end of the experiment. In both cases, the minor clade fixes ∼ 10 fewer
mutations over the course of the experiment, though future work will be required to assess the
significance of this observation in light of the ascertainment bias described above.
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Figure S9: The number of fixed mutations in the major and minor clades in the Ara+5 and Ara−6
populations estimated from Eqs. (62) and (63). The two populations are colored according to the
same color scheme as Fig. 2.

5.3.2 Quantifying clonal interference within clades

We investigated the extent of clonal interference in the LTEE by estimating the survival probability
of a mutation, psurvive, as a function of its current allele frequency f . In the absence of clonal
interference, a lineage can fluctuate to extinction if it remains below the drift barrier, fdrift ∼ 1/Nes,
where s is the net fitness benefit of the lineage in question. In the LTEE, this drift barrier is far
less than the ∼ 10% detection threshold, so this classical hitchhiking model would predict that

psurvive(f) ≈ 1 (64)

for all frequencies greater than 10% (and even for much lower frequencies as well).
On the other hand, when clonal interference is pervasive, a mutation will survive only if it is

lucky enough to be linked to a future common ancestor of the population. This can only occur
if the lineage contains individuals in the high-fitness “nose” of the population fitness distribution,
which share a roughly equal probability of producing a future common ancestor [21]. For mutations
in our observable frequency range, the population-wide frequency f is a good approximation for
the frequency of that mutation within the nose [22]. This yields an alternative prediction,

psurvive(f) ≈ f , (65)

in which mutations that reach majority frequency still have a substantial probability of going
extinct. In practice, a real population will likely lie somewhere between these two extreme limits,
with lower values of psurvive(f) indicating a higher degree of clonal interference.

To estimate psurvive(f) from our metagenomic data, we first use L̂mt to split each mutation
trajectory into consecutive runs of polymorphic timepoints, each of which is terminated by a single
fixation or extinction event (or the end of the timecourse). Each run then represents an independent
survival event that we wish to sum over. We let r index the independent runs for each mutation
m, and consider the sub-trajectories f̂m,r,t and L̂m,r,t belonging to each run.

In the absence of frequency-dependent selection, it is straightforward to estimate psurvive(f)
from these sub-trajectories. For a given frequency range f , we calculate the fraction of polymorphic
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timepoints sufficiently close to f that finish their run above some critical frequency f∗. One can
compute this average using a Gaussian kernel,

psurvive(f) ≈

∑
m,r,t exp

[
−
(
fm,r,t−f

∆f

)2
]
θ(fm,r,tf − f∗)∑

m,r,t exp

[
−
(
fm,r,t−f

∆f

)2
] , (66)

for a given kernel width ∆f .
In practice, however, long-lived coexistence of the kind observed in Fig. 3 can cause problems

for the estimator in Eq. (66). Most of the intermediate-frequency mutations in populations like
Ara−6 are fixed within their parent clade, and will therefore survive as long as the clade persists
to the final timepoint. These mutations will tend to bias Eq. (66) towards psurvive(f) ≈ 1, even if
there is substantial clonal interference.

Strictly speaking, the predictions in Eqs. (64) and (65) are no longer valid in the presence of
frequency-dependent selection. However, if we assume that the fixation process is roughly inde-
pendent of the competition between the clades, then the predictions should approximately hold
as long as we replace the population-wide frequencies, f̂mt, with the corresponding within-clade
frequencies, f̃mt. We estimate these using the output of our clade inference algorithm above.

If the run of polymorphic states ends in state FM (or if the experiment ends while it is in state
PM), we set

f̃mt = min

{
fmt

fMt
, 1

}
, (67)

and similarly for the minor and basal clades (where fBt ≡ 1 by definition). Runs that terminate in
extinction are more problematic, since it is harder to assign them to the correct clade background
while they are at low frequency. In order to be conservative with respect to the amount of clonal
interference, we renormalize fmt by the size of the largest possible background the mutation could
have arisen on, so that f̃mt is as small as possible:

f̃mt = min

{
fmt

fMt
,
fmt
fmt

,
fmt

1− fMt − fmt
, 1

}
. (68)

Based on these definitions, we estimated the survival probability for each of the twelve LTEE
populations using Eq. (66) with ∆f = 0.05 and f∗ = 0.5 (Fig. 4c,d). We excluded indels and
structural variants from this calculation in the mutator populations, so that the excess of difficult-
to-resolve homopolymer indels did not downwardly bias our results.

5.3.3 Validation with clonal samples

In constrast to the single-clade HMM in Section 5.2, there is no established model that reproduces
the long-lived coexistence observed in many of the LTEE populations. To validate the clade-aware
HMM, we therefore turn to an empirical test using data from clonal isolates sequenced by Tenaillon
et al. [3].

For each isolate, we calculated the number of mutations supported by ≥ 50% of the reads that
were also classified as fixed within the FB, FM, or Fm states at that timepoint. (Mutations that
were still segregating within a clade were not included due to the difficulty in assigning clades to
low-frequency mutations.) The resulting mutation profiles of the clones are shown in Fig. S10. As
expected, each clone is primarily composed of either FB + FM mutations, or FB + Fm mutations,
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with only a few misclassified mutations scattered throughout. However, given the sparse coverage
of the clades, a more densely sampled panel of clones would be required to judge the inferences
from the HMM.

5.4 Beyond pairwise coexistence

So far, we have only considered cases where a single pair of clades persists for substantial periods
of time. In many of the LTEE populations, this appears to be a much better model for the lineage
dynamics than the single-clade model in Section 5.2. However, our clade-aware HMM does not
detect all instances of frequency-dependent selection in the LTEE: a notable example includes
the Cit+/Cit− cross-feeding interaction in the Ara−3 population [23]. Nor can we rule out more
complicated scenarios such as multi-way coexistence, or additional pairs of sub-clades that arise
after one of the initial clades fixes. Given our limited sequencing coverage, it can be difficult to
resolve examples of multi-way coexistence, since more lineages must be squeezed into a smaller
frequency range. Occasionally, however, the different lineages may be subject to sufficiently large
shifts in frequency that they may be resolved by their temporal behavior, even if they overlap in
frequency for many timepoints. One striking example is provided by the Ara+1 population, where
three major lineages persist for ∼ 20, 000 generations before one eventually comes to dominate
the population. While they coexist, these three lineages undergo a series of dramatic reversals
illustrated in Fig. S11, which allow us to resolve the clades by eye. A more rigorous analysis of this
example, as well as extensions of our HMM algorithm to enable more general haplotype estimates,
remain interesting avenues for future work.
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Figure S10: The number of mutations assigned to the FB, FM, and Fm states that are present
in ∼ 250 clones isolated from the LTEE. Each bar denotes a separate clonal isolate sequenced
by Tenaillon et al. [3], and the clones are ordered according to the generation at which they were
sampled (starting with two clones from generation 500 and ending with two from generation 50,000).
Nonmutator populations are shown at left; populations that evolved hypermutability are on the
right.
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Figure S11: An example of lineage dynamics that are not captured by the pairwise clade model in
Section 5.3. Three distinct lineages persist in the Ara+1 population for ∼ 20, 000 generations. The
latter two cluster within the minor clade identified by the HMM.
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6 Parallelism and contingency analysis

In this section, we investigate the targets of selection in the LTEE by incorporating information
about the identities of the detected mutations, focusing on their distribution through time and
across replicate populations. This serves as a companion to Figs. 5 and 6 in the main text.

6.1 Parallelism at the variant type level

At the most coarse-grained functional level, we classified mutations based on the variant types
assigned in Section 4.4. The cumulative number of detected mutations of each type is plotted in
Fig. 5a,b as a function of their appearance time. In the absence of natural selection, the total num-
ber of mutations of each type should be proportional to the target size and the rate at which they
occur. These quantities are difficult to estimate for indels and structural variants, but they can be
estimated for the synonymous and nonsynonymous (including both missense and nonsense) sites
by counting the fraction of base-pair mutations that result in each variant type. After excluding
repetitive regions, the REL606 reference has Ls ≈ 8.9 × 105 synonymous sites and Lns ≈ 3 × 106

nonsynonymous sites. Thus, in the nonmutator populations, we see an enrichment of nonsynony-
mous over synonymous mutations (Extended Data Fig. 2), suggesting that a significant fraction
of the observed point mutations in these classes are driven to detectable frequencies by positive
selection.

In the mutator populations, this ratio is much lower (Extended Data Fig. 2), suggesting a role
for purifying selection. However, the spread among the six mutator populations is quite large, with
two populations (Ara−1 and Ara+6) having dN/dS values much larger than one. We note that
Ara−1 and Ara+6 are the only two populations with the mutT mutator phenotype, which suggests
that their anomalously high dN/dS values may reflect a biased mutational spectrum rather than
a much larger fraction of beneficial mutations. To check this hypothesis, we recalculated Ls and
Lns based on the observed single-nucleotide substitution frequencies in each population, thereby
obtaining substitution-specific estimates of dN/dS (Extended Data Fig. 2). As expected, this
correction makes the six mutator populations much more tightly distributed, with dN/dS . 1 in
all cases.

We next sought to investigate temporal patterns in the accumulation of different variant types,
after controlling for the observed number of mutations in each class. We focused on the six nonmu-
tator populations, since the temporal patterns in the mutator lines are already known to depend
very strongly on the fixation times of mutator and antimutator alleles [24]. To examine the tempo-
ral patterns in the nonmutator lines, we compared the cumulative distribution of appearance times
in each variant class with the pooled distribution of appearance times across all classes (Fig. 5c).
We quantified the differences between these distributions using the scaled Kolmogorov-Smirnov
distance,

Di =

√
nintot

ni + ntot
·max

t
‖Fi(t)− Ftot(t)‖ (69)

where ni and ntot are the numbers of mutations in class i and the entire pool, and Fi(t) and
Ftot(t) are the corresponding empirical CDFs. We assessed significance of this statistic relative to a
null model in which the observed appearance times and variant types are randomly permuted. We
observe a small but significant enrichment of missense mutations early in the experiment (P < 0.01);
the other variant types are indistinguishable from the pooled distribution.
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6.2 Parallelism at the nucleotide level

At the most fine-grained functional level, we also searched for signatures of parallelism by looking
for independent mutations that occurred at the same site in the genome. Because it is difficult to
resolve independent appearances of an allele in the same population, we focused on sites that were
mutated in multiple replicate populations. We also excluded indels and structural variants, due
to the difficulty in assigning a consistent nucleotide site to these complex mutation events. Our
analysis therefore represents a lower bound on the amount of nucleotide-level parallelism in the
LTEE.

Nucleotide multiplicity. For each site, we defined the multiplicity, mi, as the number of pop-
ulations with a point mutation detected at that site. We calculated the multiplicity separately for
both the mutator and nonmutator populations, so that the multiplicity could range from 1 to 6.
Each mutation was then assigned a multiplicity score according to the site in which it occurred,
and the distribution of these multiplicity scores is shown in Extended Data Fig. 3.

To put these observations in context, we can compare them to a null model in which mutations
are uniformly distributed across the sites in the genome. In this model, the expected fraction of
mutations with multiplicity ≥ m in a sample of size ntot is given by

S(m) ≈
∑
n≥m

n

ntot
· Ltot ·

(
ntot
Ltot

)n
n!

e−ntot/Ltot , (70)

where Ltot ≈ 4.4 × 106 is the total number of annotatable sites in the reference genome. These
predictions are illustrated in Extended Data Fig. 3 as well. Although the data show an excess
of nucleotide multiplicity compared with this simple null model, multi-hit sites still constitute a
relatively small fraction of all observed point mutations (∼ 5% and 10% in the nonmutator and
mutator populations, respectively). Maddamsetti et al. [25] have recently presented evidence that
many of these multi-hit sites in the nonmutator populations are beneficial mutations that modify
protein function, rather than knocking them out. This finding may partially explain why these
sites are enriched relative to other locations in the same gene.

6.3 Parallelism at the gene level

Given the limited extent of nucleotide-level parallelism, we focused on patterns of genetic parallelism
at the gene level, clustering mutations based on the gene assigned in Section 4.4.

6.3.1 Gene multiplicity, assessing individual and global significance

If selection pressures and mutation rates did not vary between genes, the number of mutations in
each gene should be proportional to the target size. While it is difficult to estimate the local target
size for beneficial, deleterious, and neutral mutations in any particular gene, we assume that gene
length is a primary driver of the target size. Similar to our nucleotide-level analysis above, we then
define a multiplicity for each gene according to

mi = ni ·
L

Li
, (71)
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Figure S12: An analogous version of Fig. 5 excluding structural variants. Left and center: The
fraction of all non-synonymous mutations in the nonmutator (left) and mutator (center) populations
that are found in genes with multiplicity (mi = niL/Li) greater than or equal to m. The grey line
is the null distribution from Eq. (72). Right: Average conditional fixation probability of a mutation
as a function of its gene multiplicity (in sliding windows of 0.2 log10 units) in nonmutator (blue)
and mutator (red) populations. Shaded confidence intervals denote the 14th and 84th percentiles
of the beta posterior distribution of each window. Fixation probabilities of the 20 most-frequently
mutated genes are shown as dots.

where ni is the number of mutations in gene i across all replicate populations (including indels
and structural variants,1 but excluding synonymous mutations), Li is the total number of nonsyn-
onymous and noncoding sites in gene i, and L is the average value of Li across all genes in the
genome. This definition ensures that under the null hypothesis, all genes have the same expected
multiplicity m = ntot/ngenes. As above, we calculated the multiplicity separately for the muta-
tor and nonmutator populations. In this case however, we have the power to resolve independent
mutations in a gene within the same population, so ni can be much larger than 6.

To quantify the amount of gene-level parallelism in the LTEE, we assigned each mutation a
multiplicity score according to the multiplicity of the gene in which it arose. The distribution of
these scores is shown in Fig. 5d,e in the main text, while Fig. S12 shows analogous distributions after
excluding structural variants. In both cases, the null distribution is now given by a generalization
of Eq. (70),

S(m) ≈
Ngenes∑
i=1

∞∑
n=0

n

ntot
· θ
(
ni ·

L

Li
−m

)
·

(
ntotLi

LNgenes

)n
n!

e
− ntotLi

LNgenes , (72)

which accounts for variation in gene length. As described in the main text, we observe an excess of
high-multiplicity mutations in both the mutator and nonmutator populations. In the nonmutator
populations, approximately half of all mutations occurred in genes with mi ≥ 2, though only half
as many would be expected under the null model.

This suggests that we should replace the null model with an alternative where mutations are
assigned to genes with probability

pi ∝ Liri , (73)

1We chose to include structural variants in the multiplicity (despite the fact that their target size may be more
strongly influenced by factors other than gene length) because they account for a significant fraction (≈ 40%) of all
genic mutations in the nonmutator populations. For completeness, we also repeat our analysis excluding structural
variants below.
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for some set of enrichment factors ri that are not all equal to 1. This enrichment can be factored
into a local change in mutation rate µi/µ and a function that depends on the effective selection
coefficient of the gene. For our purposes here, we will focus on the set of compound parameters {pi},
which we will refer to as the realized gene mutation spectrum (or the realized mutation spectrum
for short).

In the alternative model, the maximum likelihood estimators for the enrichment factors are
simply the ratios of observed and expected multiplicities, ri = mi/m, and the net increase in
log-likelihood compared to the null model (ri = 1) is given by

∆` =
∑
i

ni log
(mi

m

)
. (74)

This likelihood ratio coincides with the total “G-score” used by Tenaillon et al. [3]. Consistent with
their results from clonal isolates, our metagenomic data shows a statistically significant G-score in
both the mutator and nonmutator populations (P < 10−4), indicating that we must reject the
simple null model in favor of the alternative.

However, if we wish to go beyond rejection and infer the underlying pi we must remember that
the maximum likelihood estimate ri = mi/m for an arbitrary gene may still substantially overfit
the data, particularly in the nonmutator populations. For example, since the expected multiplicity
in the nonmutators is m ≈ 0.3, a single neutral hitchhiker in an otherwise unmutated gene would
lead to an apparent enrichment factor ri > 1, even if there might be many such events genome-wide.
A more appropriate alternative model would therefore be one in which only a subset I of the genes
have ri 6= 1, while the remaining genes have ri = 1.

To estimate the subset I, we searched for genes that are significantly different from the null
hypothesis at an individual level. For any particular gene, the P -value for a likelihood ratio test is
given by

Pi =
∑
n≥ni

(
ntotLi

LNgenes

)n
n!

e
− ntotLi

LNgenes , (75)

and we wish to estimate I using the subset of genes with sufficiently low P -values. To be conser-
vative, we also restricted our attention to genes with ni ≥ 3, in order to limit low P -values that
are driven primarily by gene length. Under the null hypothesis, the expected number of genes with
ni ≥ 3 and Pi ≤ p is given by

N(P ) ≈
Ngenes∑
i=1

∞∑
n=3

θ (P − Pi(n,Li)) ·

(
ntotLi

LNgenes

)n
n!

e
− ntotLi

LNgenes , (76)

and we can compare this to the observed number of genes, N(P ), with the same properties
(Fig. S13). In particular, for a given FDR α, we define a critical P -value, P ∗, such that

N(P ∗)

N(P ∗)
≤ α . (77)

For this value of P ∗(α), we then define the set of significantly enriched genes as

I = {i : Pi ≤ P ∗(α)} . (78)
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Figure S13: The observed (N) and expected number of genes (N) with ni ≥ 3 and Pi ≤ P , as a
function of P . The symbol denotes the genome-wide significance threshold P ∗ defined in Eq. (77)
for α = 0.05.

The corresponding enrichment factors are given by

ri =


mi
m

(
1−

∑
i∈I Li

LNgenes

1−
∑

i∈I ni
ntot

)
if i ∈ I,

1 else.

(79)

The significantly enriched genes with α = 0.05 are listed in Supplementary Table 3. These account
for ≈ 35% of the total mutations but only ≈ 2% of the total target size. After removing these
individually significant examples, the resulting G score is still significantly higher than expected
by chance (P < 10−4), which implies that other genes were also targeted more often than expected
under the null model, even though they are not in that list.

6.3.2 Changing signatures of parallelism over time

After confirming an overall signature of parallelism in the LTEE, we next sought to quantify how
these patterns changed over evolutionary time as the experiment progressed. To do so, we compared
the observed appearance times of the genic mutations against a null model in which the appearance
times are randomly assigned to genes, while still preserving the overall amount of parallelism in
each gene and the non-uniform distribution of appearance times (Fig. S14).

There are several ways to perform this comparison. First, at a global level, we can compare
the multiplicity distributions for mutations that arose in the first half of the experiment versus the
second half (Fig. 5d,e), or more generally, before or after some partition time t∗. In both cases, we
continue to use the same multiplicity scores calculated for the entire set of mutations, so that they
can be compared to the pooled multiplicity distribution as well. To quantify how the overall levels
of parallelism differ between these two distributions, we defined a scaled G-score change,

∆g< =

∑Ngenes

i=1

(
n<i −

nin
<
tot

ntot

)
log
(
mi
m

)
∑Ngenes

i=1 ni log
(
mi
m

) , ∆g> =

∑Ngenes

i=1

(
n>i −

nin
>
tot

ntot

)
log
(
mi
m

)
∑Ngenes

i=1 ni log
(
mi
m

) , (80)

where n<i and n>i are the numbers of mutations in gene i that appeared before and after t∗.
We plot these changes in Fig. S15 as a function of t∗. We find that, regardless of the choice of

33



0 10k 20k 30k 40k 50k 60k

Appearance time, t

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 m

u
ta

ti
o
n
s 
≥
t

All genes
1-hit genes
2-hit genes
Multi-hit genes
Significant genes

Figure S14: The pooled distribution of appearance times for mutations in different sets of genes.

t∗, the early epochs have an excess of parallelism compared to the total timecourse (∆g< > 0)
while the later epochs have a parallelism deficit (∆g> < 0). The largest difference between ∆g<
and ∆g> occurs near t∗ ≈ 30, 000, and the corresponding multiplicity distributions are shown in
Fig. S15. To assess the significance of ∆g<−∆g> at this timepoint, we calculated the distribution
of maxt∗ {∆g<(t∗)−∆g>(t∗)} across all bootstrap samples, which shows that the observed value
is highly significant (one-sided P < 10−4). In terms of the effect size, however, this difference
accounts for only ∼ 10% of the total G-score observed in the nonmutator populations.

Though the overall levels of parallelism decline only modestly through time, this global signal
could mask significant temporal non-uniformity in individual genes. To investigate this hypothesis
further, we first compared the realized mutation spectrum, {pi}, for the set of enriched genes in
Supplementary Table 3, estimated before or after some threshold time t∗ (Extended Data Fig. 7c).
Some of the differences in {pi} are expected to occur by chance given the finite number of mutations.
We assessed the significance of the pre- and post-t∗ mutation spectra through the ratio of their
multinomial likelihoods,

∆` =
∑
i∈I

[
n<i log

(
n<i ntot

n<totni

)
+ n>i log

(
n>i ntot

n>totni

)]
, (81)

and we calculated a corresponding null distribution by randomly permuting the appearance times
among all the mutations in Supplementary Table 3. As shown in Extended Data Fig. 7, there
is a wide range of t∗ where the difference between the pre- and post-t∗ mutation spectra exceeds
the predictions of the null model. The maximum value of ∆` occurs at t∗ ≈ 12, 000 and is highly
significant (P < 10−4).

Though the shape of the fitness trajectories may suggest a model of two evolutionary epochs
[19], this division is somewhat arbitrary [5]. We can gain a more complete picture of the temporal
patterns of individual genes by comparing the distribution of appearance times within each gene
(Fig. 6a) against the pooled distribution (Fig. S14), similar to our analysis of the different vari-
ant types in Section 6.1. As above, we quantified the differences between the distributions using
the scaled Kolmogorov-Smirnov distance in Eq. (69), and we calculated P -values numerically by
randomly permuting the appearance times among the genes in Supplementary Table 3. We also
calculated a corresponding Q-value using an analogous version of Eq. (27) to correct for multiple
hypothesis testing, rejecting the null hypothesis if Qi < 0.05. This yielded a handful of candidate
genes in which mutations arose non-randomly during the experiment. The mutation trajectories for
the early- and late-arising examples in the text (hslU and atoS, respectively) are shown in Extended
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Figure S15: Overall levels of parallelism in the nonmutator populations as a function of time. Left
panel: scaled G-score changes in Eq. (80) as a function of the partition time, t∗. Lines denote
observed values, while the shaded regions represent 95% confidence intervals obtained by randomly
permuting appearance times across genes. Right panel: fraction of non-synonymous mutations that
are found in genes with multiplicity greater than or equal to m and which occurred either before
(red) or after (blue) the value of t∗ (see legend) which maximizes the difference between ∆g< and
∆g> in the left panel. For comparison, the distribution of all mutations is shown in black, while
the null distribution from Eq. (72) is shown in grey.

Data Figs. 4 and 5. After removing the individually significant genes from the pool, we assessed
the global signal of temporal nonuniformity by summing the KS distances for each remaining gene,
and comparing this observed value to the null distribution obtained by permutation. As described
in the text, the summed KS distance for the remaining genes was significantly larger than expected
by chance (P < 10−3), which implies that some of the other genes in Supplementary Table 3 also
arose non-randomly in time, even though they were not individually significant.

Finally, to determine whether this signal of gene-specific appearance times extended beyond the
set of enriched genes in Supplementary Table 3, we calculated the average difference in appearance
times of mutations in 2-hit genes, and compared this to the difference in appearance times for a
random pair of mutations in this set by permutation (P < 10−3, Extended Data Fig. 6).

Each of these tests produced significant statistical evidence that the repertoire of mutated genes
has shifted during the LTEE.

6.3.3 Evidence for historical contingency

There are several potential explanations for a changing spectrum of adaptive mutations. The
simplest is a “coupon-collecting” model of evolution, in which natural selection favors a mutation
in one of several functional units (or modules), each of which could comprise one or many genes.
Benefits associated with mutations in different modules are assumed to combine additively, but
once a given module has been mutated, subsequent mutations in that module are assumed to
be neutral or deleterious. Beneficial loss-of-function mutations are the canonical example of this
behavior. Under the coupon-collecting model, replicate populations will first tend to fix mutations
in the modules with the largest selective advantage / target size combination, and the spectrum of
adaptive mutations will then begin to change as these strongly beneficial mutations are exhausted.
This model provides a simple and biologically plausible explanation for the preferentially early
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genes (like hslU ) in Fig. 6a, and it is consistent with the results of previous studies [26–28]. In
principle, it also predicts that mutations in preferentially early genes should arise (and fix) in many
of the populations (as observed for hslU ), but this prediction is not required to hold in the likely
event that modules comprise multiple genes whose identities are not known beforehand.

Though somewhat counterintuitive, this coupon-collecting model could also account for prefer-
entially late genes like atoS when there is clonal interference. In the absence of clonal interference,
the substitution rate of a particular mutation is proportional to its own fitness advantage s, and it is
independent of the fitness effects at other sites. However, in the presence of clonal interference, pop-
ulation genetic theory predicts that the substitution rate for moderately beneficial mutations scales
like ∼ eTcs, where the coalescent timescale Tc depends on the distribution of fitness effects across
the genome [29]. In a model where these fitness effects are distributed exponentially with a cutoff
at some smax, one can show that Tc ∝ 1/smax. Thus, if the cutoff decreases over time (e.g., due to
the depletion of strongly beneficial mutations), the substitution rate of moderate-effect mutations
can suddenly increase.2 In addition to this dynamical explanation, the preferentially late-evolving
genes could reflect global changes in selection pressures as the fitness of the population increases,
as well as subtle shifts in the evolution environment over time.

Alternatively, the late-evolving genes could represent new evolutionary paths that are opened
up by previous substitutions in one or more populations. We refer to this as the “historical con-
tingency” model. Although such synergistic interactions play a central role in evolutionary theory,
relatively few examples have been observed in experimental evolution. Among these, one example
is the evolution of citrate-utilization that evolved in the Ara−3 population [23]. This strongly
beneficial phenotype, which has yet to evolve in any of the other 11 LTEE populations even after
65,000 generations, is only evolutionarily accessible in the presence of one or more specific poten-
tiating mutations [23, 30–32]. Another study in which E. coli adapted to high temperature found
a statistical association between mutations in iclR and cls, and between mutations in rpoB and a
handful of other genes [26].

With only six nonmutator populations and vastly more potential gene combinations, we lack the
power to scan for such interactions directly. But if these interactions are sufficiently common, we
expect their patterns of historical contingency to be reflected in the distribution of mutations across
these six populations. In contrast to the explanations described above, which affect all populations
equally, we expect mutations in contingent genes to be clustered in a smaller number of replicate
populations that already fixed the unknown potentiating mutation. We also expect such genes to
be mutated later in the experiment, since it will take some time for the initial potentiating mutation
to arise and fix. We note, however, that if the new pathways are not mutually exclusive, there may
only be a limited time window in which the signature of contingency is strongest. Given sufficient
time, all six replicates may acquire the relevant potentiating mutation, and the new evolutionary
path would then resemble one of the global explanations above.

In addition, if we could observe only the successful mutations, it would be difficult to differ-
entiate between a strongly beneficial mutation that appears in a subset of the replicates due to
contingency, or a more weakly selected mutation that occurred less often in the finite length of
the experiment. However, in a large population, a new strongly beneficial pathway will often be
mutated in multiple genetic backgrounds in the same population before one of them manages to
fix; this effect is also enhanced by the presence of long-lived clades. These unfixed variants provide
an additional signature of historical contingency, which occurs when the mutations in a multi-hit
gene are clustered in a smaller number of populations than expected by chance. By contrast, genes

2This behavior depends on the assumption that the strong-effect mutations are depleted, and is less likely to
arise in global diminishing returns models where the fitness effects of all mutations are reduced by a common factor
[5, 19, 20, 28].
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in the coupon-collecting model will tend to be over-dispersed across the populations, given the
total number of times they have been mutated. Scanning through the genes in Supplementary
Table 3, we can find anecdotal examples of late-hit genes that suggest historical contingency, e.g.,
the argR gene discussed in the main text (see Extended Data Fig. 8). However, the small sample
sizes prevent any of these examples from attaining statistical significance on their own.

Missed opportunitites. To quantify the global signature of contingency in our data, we calcu-
lated the between-population dispersion for all genes that were mutated in the nonmutator pop-
ulations. For each gene i, we recorded the number of populations ki that had a mutation in that
gene. This number ranges from 1 to 6, but cannot exceed the total number of mutations ni. The
distribution of observed (ki, ni) pairs is shown in Fig. 6b in the main text.

In the absence of epistasis, we expect the mutations to be distributed across the replicate
populations in a multinomial fashion, with weights proportional to the total number of mutations
in each population. In other words, if ni,p denotes the number of mutations in gene i in population
p, then under the null model, we expect that

ni,p ∼ Multinomial(ni, pp) , (82)

where pp =
∑

i ni,p/
∑

i,p ni,p is the relative fraction of mutations that fall in population p. By
drawing random samples from this model, we obtain a null distribution, P (k|n), for the various
(ki, ni) pairs in Fig. 6b, which we compare to the observed distribution

P̂ (k|n) =

∑
i δni,nδki,k∑
i δni,n

. (83)

While the difference between P̂ (k|n) and P (k|n) provides a direct readout of the between-population
dispersion, the uncertainty in any individual element of P̂ (k|n) is substantial. For this reason, we
also used an aggregate measure of dispersion that allows us to combine the various entries in Fig. 6b.

To define this measure, we note that the quantity ni−ki represents the number of “redundant”
mutations in gene i, i.e., the number of times a mutation appears in a population that already
produced a mutation in that same gene. Under the null model, these redundant mutations could
have equally well occurred in one of the populations where the gene was not mutated. With this
in mind, we define a gene-specific probability,

p0,i =
∑
p

ppδni,p,0 , (84)

which represents the total probability that a random mutation would appear in a population that
did not already have a mutation in gene i. The number of missed opportunities, mi, is then defined
as the number of redundant mutations that would be expected to appear in one of the unmutated
populations:

mi = p0,i (ni − ki) . (85)

According to this definition, a 2-hit gene that occurred in the same population has ≈ 5/6 missed
opportunities, a 3-hit gene in the same population has ≈ 10/6 missed opportunities, and a 10-hit
gene spread across all six populations has no missed opportunities (despite having a few “redundant”
mutations).

Of course, we cannot attribute all such missed opportunities to historical contingency: many
will arise simply by chance under the null model in Eq. (82). By drawing many samples from this
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model, we obtain a null distribution Pi(m|ni) for the number of missed opportunities in each gene.
We can then calculate the net missed opportunities by comparing the observed and expected totals
across all genes:

∆m =
∑
i

[
mi −

∫
mPi(m|ni) dm

]
. (86)

As described in the main text, the distribution in Fig. 6b suggests an excess of both under- and
over-dispersed mutations, such that while there is a net excess of missed opportunities (∆m ≈ 8),
this value is not statistically significant (P ≈ 0.1). This is not surprising, since we know that any
signal of historical contingency must compete with the coupon-collecting genes that are known to
exist in the LTEE [33].

To disentangle these effects, we sought to exploit their opposing temporal trends. As described
above, coupon-collecting genes are expected to be mutated early, while historically-contingent genes
are expected to be mutated later. Thus, if we divide the genes according to whether their median
appearance time is before or after some critical time t∗, we expect to see a stronger signature
of coupon-collecting in the pre-t∗ genes, and a stronger signature of historical contingency in the
post-t∗ genes. This hypothesis is confirmed in Extended Data Fig. 9, where we plot the net missed
opportunities for the pre- and post-t∗ genes as a function of t∗.

Since ∆m depends on the sample size, we expect that the number of missed opportunities will
eventually decline for larger t∗ when the sample size becomes small. To balance these competing
demands, we focused on a single value of t∗ where the differences in the pre- and post-t∗ values was
as large as possible:

t∗ = argmax
{

∆m> −∆m<
}
. (87)

The net missed opportunities and the corresponding dispersion distributions for this value of t∗

are shown in Fig. 6c,d. To assess the statistical significance of these values, we calculated the
distribution of the maximal difference, maxt∗ {∆m> −∆m<}, across each of our bootstrapped
datasets, and compared it to the observed value above. The corresponding P -value is P ≈ 3×10−3.

6.4 Parallelism at higher levels of organization

In principle, genetic parallelism is likely to be present at higher levels of organization, which might
increase our power to resolve temporal and population-specific changes [26]. At the same time, it is
increasingly challenging to define a proper collection of modules given the complex set of interactions
that take place in the cell. Here, we focus only on the next-highest level of organization, repeating
our parallelism and contingency analyses at the operon level.

We obtained a list of operons for the REL606 reference genome from the Database of prOkaryotic
OpeRons (DOOR) [34] and clustered the genes accordingly.3 To ensure uniqueness, genes that were
annotated in multiple operons were assigned to the operon with the largest number of genes. Genes
without an operon assignment were ignored. Each operon was labelled by its list of constituent
genes.

Based on these annotations, several of the most frequently mutated genes (e.g., malT and pykF )
were assigned to operons that contained only a single gene, so that the clustering had little effect
on these entries. Other multi-hit genes, like atoS and atoC, were merged into much larger multi-hit
operons. To examine how often such merging occurred, we calculated the fraction of mutations in

3The list of operons was originally downloaded from http://csbl.bmb.uga.edu/DOOR/downloadNCoperon.php?

NC_id=NC_012967, and is included in the Github repository described in Section 7.
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Figure S16: The fraction of mutations in the most-frequently mutated gene in an operon as a
function of the total number of mutations in that operon, based on data from the six nonmutator
populations. Each point represents an operon with at least two genes. The points are colored for
contrast, and a small amount of noise has been added to enhance readability.

the most-frequently mutated gene for all multi-hit operons in the nonmutator lines (Fig. S16). The
clustering step produced ∼ 10 potentially interesting operons that were mutated 6 or more times
in total while each of their constituent genes had 5 or fewer mutations.

We next repeated our analyses in Fig. 6, Fig. S15, and Extended Data Figs. 7 and 9 to ex-
amine the overall levels of parallelism among the operons and how these patterns change over
time (Figs. S17, S18, S19). The results were largely similar to the gene-level analysis above. This
suggests that, compared to genes, operons are not necessarily a better predictor of the targets of
selection in the LTEE, at least not without further biological refinement. Exploration of parallelism
at higher levels of organization remains an interesting avenue for future work.

7 Data and code availability

Raw sequencing reads have been deposited in the NCBI BioProject database under accession
number PRJNA380528. All associated metadata, as well as the source code for the sequencing
pipeline, downstream analyses, and figure generation, are available at GitHub (https://github.
com/benjaminhgood/LTEE-metagenomic). The repository also contains the final list of mutations
obtained after the variant calling steps in Section 4, so that the downstream analyses can be re-
produced without the computationally intensive steps in the sequencing pipeline.
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Figure S17: An analogous version of Fig. S15 calculated at the operon level. Left panel: scaled G-
score changes in Eq. (80) as a function of the partition time, t∗. Lines denote observed values, while
the shaded regions represent 95% confidence intervals obtained by randomly permuting appearance
times across operons. Right panel: fraction of non-synonymous mutations that are found in operons
with multiplicity greater than or equal to m and which occurred either before (red) or after (blue)
the value of t∗ (see legend) that maximizes the difference between ∆g< and ∆g> in the left panel.
For comparison, the distribution of all mutations is shown in black, while the null distribution from
Eq. (72) is shown in grey.
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Figure S18: An analogous version of Fig. 6 calculated at the operon level. (a) Operons with
three or more independent mutations in the nonmutator populations and whose multiplicity is
significant at an FDR of 5%. Circles denote the estimated appearance time of each mutation,
and they are connected by a vertical line for visualization. Each operon is colored according to its
median appearance time, which is indicated by a dash. Operons with significantly non-random (i.e.,
non-uniform) appearance times are indicated by an asterisk. b, c, d, The distribution of possible
dispersion configurations for (b) all mutations and (c, d) those in operons with median appearance
time before or after t∗, as defined by Eq. (87).
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Figure S19: Net missed opportunities at the operon level in the nonmutator populations as a
function of the partition time t∗. Lines denote the net missed opportunities for pre- and post-
t∗ operons calculated from Eq. (86). Shaded regions denote one-sided 95% confidence intervals
obtained by sampling from the null model in Eq. (82).
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Supplementary tables

Supplementary Table 1: List of metagenomic samples used in this study. 1512 mixed-
population samples are summarized according to their REL freezer identifier, population, and
timepoint of origin, and associated sequencing batch metadata. Twenty-eight samples were removed
from further analysis due to insufficient coverage or demultiplexing errors. These excluded samples
are indicated in the “Flagged?” column.

Supplementary Table 2: List of clonal isolates used in this study. For completeness, the
264 clonal isolates sequenced by Tenaillon et al. [3] are listed in the same format as Supplementary
Table 1. Ten samples were removed from further analysis because they consumed too much memory
at the variant calling step. These excluded samples are indicated in the “Flagged?” column.

Supplementary Table 3: List of genes showing significant parallelism in the nonmutator
populations. Genes are summarized by their name, estimated target size, the observed and ex-
pected number of mutations across the six nonmutator populations, the corresponding multiplicity
score, and the P -value describing the probability of observing an equal or larger of mutations under
the null model.

Supplementary Table 4: List of operons showing significant parallelism in the nonmu-
tator populations. Operons are summarized by their constituent genes, estimated target size,
the observed and expected number of mutations across the six nonmutator populations, the cor-
responding multiplicity score, and the P -value describing the probability of observing an equal or
larger of mutations under the null model.
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