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Figure S1. Senescence signatures for fibroblasts.  
A. Principal Component Analysis (PCA) of all samples in the selected datasets.  The upper panels displays the principal 
component 2 vs 3 for all the protein-coding genes. The panel on the left upper corner shows each sample colored 
according to their proliferating or senescence status. The panel on the right upper corner shows each sample colored 
according to the dataset that they derive from. Samples for each cell type in the same dataset clustered together, with a 
separation between senescent and proliferating cells from the same dataset. The black arrow shows the only sample 
(Replicative Senescence in IMR90 cells) that clustered incorrectly. The lower panels display only the genes that were 
within the Signature of Senescence in Fibroblasts (1311 genes) where it is also evidenced that the same sample 
clustered differently than its counterparts from the same and other datasets. Based on this evidence, it was decided to 
remove that sample from further analysis.   
B. Heatmap of known senescence markers in all the datasets included in the meta-analysis.  The figure shows the 
logarithm base 2 of the fold change for senescent cells versus proliferating cells of senescence markers: CDKN1A 
(p21), CDKN2A (p16), GLB1 (beta-gal) and known members of the SASP.  Samples are named according to the name 
of the first author of the dataset, followed by an underscore and the strain of fibroblast depicted in each column. The 
stimulus used in each dataset is in parentheses: Replicative Senescence (RS), Ionizing Radiation-Induced Senescence 
(IRIS) and Oncogene-Induced Senescence (OIS).   
C. Heatmap of genes that were differentially expressed exclusively by one of the stimuli tested and the corresponding 
GO terms.  The figure shows the logarithm base 2 of the fold change for RS, IRIS and OIS versus proliferating cells.  
The right side of the panel shows the top 3 enriched GO terms for each stimulus and either up- (red) or down-(blue) 
regulated genes.   
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Figure S2. Cell types used to build the core senescence and cell type-specific signatures.  
A. Senescence-induction in the three cell types used by our laboratory was confirmed by senescence-associated b-
galactosidase (SA-bgal) activity and incorporation of EdU into DNA of proliferating cells.  The percentage of positive cells 
for senescent fibroblasts (yellow), melanocytes (magenta) and keratinocytes (red) and their proliferating counterparts 
(white) are shown, demonstrating increased SA-Bgal activity and decreased EdU incorporation (proliferation) in senescent 
cells (10 days post-irradiation).   
B. Heatmap of genes that were differentially expressed exclusively in one cell type and the corresponding GO terms.  The 
figure shows the logarithm base 2 of the fold change for senescent fibroblasts, melanocytes, keratinocytes and astrocytes 
versus their proliferating counterparts.  The right side of the panel shows the top 3 enriched GO terms for each stimulus 
and either up- (red) or down-(blue) regulated genes.   
C. Heatmap of known senescence markers in the different Senescent cell types tested and in the Quiescence dataset. The 
figure shows the logarithm base 2 of the fold change for senescent cells versus proliferating cells of senescence markers: 
CDKN1A (p21), CDKN2A (p16), GLB1 (SA-bgal) and known members of the SASP.  The Fibroblasts refers to the 
Differentially Expressed Genes in Senescent Fibroblasts product of the meta-analysis (before extracting genes similarly 
regulated in Quiescence). Melanocytes and Keratinocytes were induced to Senescence with IRIS and Astrocytes with 
OSIS. Quiescence refers to the sample of HCA2 fibroblasts that was induced to quiescence by serum starvation. 
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Figure S3. Validation of the core senescence signature.   
A-C. Different senescence-inducing stimuli were applied to BJ cells: doxorubicin (red), IRIS (blue), OSIS (green) 
and RS (violet).  Signatures were compared to proliferating (white) and quiescent (black) cells.  
A. Percentage of SA-βgal+ cells in proliferating and senescent populations.   
B. Percentage of EdUl+ cells in proliferating and senescent populations.  
C. Eight genes in the core signature of senescence were validated by Real Time-PCR: BCL2L2, PLXNA3, EFNB3, 
PDLIM4, TSPAN13, GDNF, DYNLT3 and PLK3.  The expression of tubulin was used to normalize the fold changes. 
D-E. The above eight genes in the core signature of senescence that were validated in BJ cells (human) were 
measured in mouse cells.  All the genes tested (BCL2L2, PLXNA3, PDLIM4, TSPAN13, GDNF, DYNLT3 and PLK3) 
followed the same trend, with the exception of EFNB3, which showed an opposite trend.  The expression of tubulin 
was used to normalize the fold changes.  
D. Validation of the eight core senescence signature genes in mouse endothelial cells.  
E. Validation of the eight core senescence signature genes in mouse embryonic fibroblasts (MEFs). 
All samples included two or three biological and two technical replicates.  Statistical significance was determined by 
an unpaired two-tailed Student’s t-test on delta-CT values (* = p<=0.05, ** = p<=0.01 and n.s.=not significant). 
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Figure S4. Heatmap of genes shared among different time points and cell types after senescence-induction by 
ionizing radiation and validation of the temporal dynamics of the core senescence signature.  
A. Heatmap of the genes comprising the shared IRIS signature among all time-points and cell types.  The heatmap 
shows the logarithm base 2 of the fold change for each time point (days 4, 10 and 20 post-irradiation) and for each cell 
type (Fib=fibroblasts, Mel=melanocytes and Ker=keratinocytes) with respect to their proliferating counterparts.   
B. Percentage of SA-βgal+ BJ cells at day 0 (proliferation) and days 4, 10 and 20 post-irradiation demonstrating an 
increase in SA-βgal activity upon irradiation.   
C. The eight genes in the core signature of senescence that were validated by Real Time-PCR in BJ cells were 
confirmed in HCA-2 cells.  The temporal dynamics of the genes are demonstrated by the expression trends and lack 
of statistical significance at some of the time points.  The expression of tubulin was used to normalize the fold 
changes.  All samples included three biological and two technical replicates.  Statistical significance was determined 
by an unpaired two-tailed Student’s t-test on delta-CT values (* = p<=0.05, ** = p<=0.01 and n.s.=not significant). 
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Gene Species Direction Sequence UPL probe 

TUBA Human 
FW cttcgtctccgccatcag 

40 
RV cgtgttccaggcagtagagc 

CDKN2A Human 
FW gagcagcatggagccttc 

67 
RV cgtaactattcggtgcgttg 

CDKN1A Human 
FW tcactgtcttgtacccttgtgc 

32 
RV ggcgtttggagtggtagaaa 

IL6 Human 
FW caggagcccagctatgaact 

45 
RV gaaggcagcaggcaacac 

PDLIM4 Human 
FW ggatccacatcgatcctgag 

40 
RV gcttggtctgccatcttctg 

GDNF_v1 Human 
FW atgtccaacctagggtctgc 

70 
RV catcccataacttcatcttaaagtcc 

TSPAN13 Human 
FW tcaacctgctttacaccttgg 

84 
RV aatcagcccgaagccaat 

DYNLT3 Human 
FW gtgctctaccggcgtgtc 

25 
RV cagcattgaagccaacctc 

EFNB3 Human 
FW tggaactcggcgaataagag 

13 
RV cgatctgagggtacagcaca 

PLK3 Human 
FW gaaggtgggggattttgg 

6 
RV gggtgccacagatggtct 

PLXNA3 Human 
FW gagggcactctggctctg 

17 
RV cagaagttgccgttgatctg 

BCL2L2 Human 
FW tggatggtggcctacctg 

28 
RV cgtccccgtatagagctgtg 

TUBA Mouse 
FW ctggaacccacggtcatc 

89 
RV gtggccacgagcatagttatt 

CDKN2a Mouse 
FW aatctccgcgaggaaagc 

91 
RV gtctgcagcggactccat 

CDKN1A Mouse 
FW aacatctcagggccgaaa 

16 
RV tgcgcttggagtgatagaaa 

IL6 Mouse 
FW gctaccaaactggatataatcagga 

6 
RV ccaggtagctatggtactccagaa 

PDLIM4 Mouse 
FW tccacattgaccctgagtcc 

40 
RV cctccagactaatcccagagac 

GDNF Mouse 
FW tccaactgggggtctacg 

70 
RV gacatcccataacttcatcttagagtc 

TSPAN13 Mouse 
FW gcccccataatcggagag 

67 
RV agccaaacacccaggatct 

DYNLT3 Mouse 
FW actggggaaagcttacaagtaca 

82 
RV ggctgtgtgaaatccatacg 

EFNB3 Mouse 
FW tggaactcggcgaataagag 

13 
RV ccccgatctgaggataaagc 

PLK3_v1_v2 Mouse 
FW ggctggcagctcgattag 

6 
RV gttgggagtgccacagatg 

PLXNA3 Mouse 
FW gagtcagtcgcggtggag 

7 
RV aggcaccctcctatggtga 

BCL2L2 Mouse 
FW agtgcaggattggatggtg 

80 
RV cccgtatagagctgtgaactcc 

Table S1. List of primers for qPCR. Related to STAR methods  
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