
 

Supplementary Figure 1. Map of the Virulence Regulatory Network (VRN), iRP1443REG. The map 

was drawn using the software Cytoscape. Details about nodes (VRN components) and edges 

(interactions between those components) can be found in the Supplementary Data 1. 

  



 

Supplementary Figure 2. Proportion of reactions harboring enzymes redundancy in reconstructed 

genome-scale networks. Enzymes classified as redundant correspond to enzyme with a GPR in the 

metabolic network harboring at least one of the logical function “or”. This means that at least one 

subunit of the enzyme can be substituted by a protein coming from another gene. 

  



 

 

Supplementary Figure 3. Robustness of the R. solanacearum, E. coli and P. aeruginosa metabolic 

networks with respect to the same set of genetic perturbations. Robustness was calculated from 

the same genetic perturbation using a set of 421 orthologs. Specific R. solanacearum demand 

corresponds to genes involved in the biomass function in R. solanacearum but not in the biomass 

function of the two others. 

  



 

Supplementary Figure 4. Impact of the VRN control on metabolism on the phenotypic robustness 

with respect to internal perturbation. The BECO analysis was conducted on the 14 selected 

phenotypes, under the 16 environmental conditions and using internal perturbations corresponding 

to genes and gene products loss of function. The reduction of robustness is given in robustness 

metric (R) and corresponds to the percentage of robustness reduction. 

 

  



 

Supplementary Figure 5. Variation in essential genes upon activation of the VRN. Activation of the 

VRN by signals encounter in planta by the pathogen, like plant cell wall components or high cell 

density, decreases the number of essential genes. 

 

  



 

Supplementary Figure 6. Orthology analysis of VRN-regulated and VRN-unregulated genes which 

provide robustness within the amino acids biosynthesis pathways. Presence of orthologs of the R. 

solanacearum genes in the various taxa is displayed by boxes. Number in the boxes corresponds to 

the number of paralogs present in the organism. Closest orthologs of a VRN-regulated gene are 

colored in red whereas the closest orthologs of a VRN-independent one are in grey. In the case of 

two genes belonging to the same orthology group, the closest ortholog to a R. solanacearum gene 

was defined as the gene showing the highest blast score to a R. solanacearum gene. 

 

  



 

Supplementary Figure 7. Phylogeny analysis of the trpC1 and trpC2 orthologs group. Tree scale 

corresponds to 0.1 mutation. 
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Supplementary Figure 8. Taxonomy distribution of the VRN-regulated metabolic genes. (A) % of 

metabolic genes by their number of taxa to which their orthologs belongs. 28 species were analyzed, 

see figure 6 for the list. In red, VRN-regulated genes (305 genes); in grey, genes not regulated by the 

VRN (1122 genes). (B) % of genes unique to the R. solanacearum species in the beta-proteobacteria 

class. (C) % of genes unique to the R. solanacearum species among beta-proteobacteria but present 

in the alpha and gamma taxons investigated. 



 

Supplementary Figure 9. GC% content in VRN-regulated genes and VRN-independent genes. 

Analysis made on 305 VRN-regulated genes (in black) and 1122 VRN-independent genes (in red). ***, 

significance of the statistical test p-value 3∙10-4. 

  



SUPPLEMENTARY NOTE 1 

Integration of the metabolic and the regulatory network 

 

In order to better understand the influence of the regulatory network on the metabolic 

network behaviour, it was indispensable to model the interactions between the networks. Like in 

other methods 1-3, the links between regulatory and metabolic networks are established by 

constraining the fluxes of the latter by solving the former. Reactions in the metabolic network are 

linked to the regulatory network by the gene-protein-reaction associations (GPR), by the metabolites 

they involve or can be themselves outputs of the regulatory network. 

Computing the optimal value of an objective function given a metabolic network (M) and a 

regulatory network (R) for which the initial values have been set is performed in four steps: 

1) Integration of environmental constraints in the regulatory network which correspond to 

the initial node states. The translation of continuous intervals to discrete values is made 

from notes added by the modeller in the SBML-qual 4 input file.  

2) Identification of the regulatory network steady state by finding an attractor (see above) 

3) Translation of the regulatory network steady state into constraints for the FBA 

4) Phenotype prediction by optimising an objective function 

 

We integrated this framework in FlexFlux 5 a java library that easily allows integrating flux 

balance analysis and regulatory network analysis. We used FlexFlux for all computational analyses of 

this study. More detail can be found on the online documentation of FlexFlux 5. 

 

 



 

Supplementary Figure 10. Links between regulatory and metabolic network analyses in FlexFlux. The 

dashed arrow corresponds to the change of environmental conditions by the output of the FBA that 

can be used in the dynamic regulated FBA  function of FlexFlux 5. 

  



SUPPLEMENTARY NOTE 2 

Prediction of in planta transcriptome 

 

Supplementary Figure 11 illustrates the validation process of the gene differential expression 

prediction detailed in the Material & Methods of the main paper. The pipe-line allows comparison 

between experimental data with simulated data. To do so, both data sets are converted into 3 classes: 

differentially up regulated, differentially down regulated, and not differentially expressed. 

 



 

 

Supplementary Figure 11. Gene differential expression prediction. 

 

 

  



SUPPLEMENTARY NOTE 3 

Validation of the gene expression predictability by the VRN 

Analysis of the discrepancy between the network model prediction and experimental data 

concerned almost exclusively the hrpB regulatory gene targets, since only half of them were found to 

be experimentally induced differentially in planta 6. However, this discrepancy was already observed 

in a previous experimental study performed under a different bacterial growth condition 7, see 

Supplementary Figure 12. 

 

 

  



Supplementary Figure 12. Comparison of HrpB targets expression profiles between the in planta 

transcriptome analysis and in vitro analysis. The in planta transcriptome dataset was extracted from 

Jacobs et al. (2012)6 and the in vitro (synthetic inducible medium) dataset was extracted from 

Occhialini et al. (2005)7. R² corresponds to the linear regression display as black line. 

  



SUPPLEMENTARY NOTE 4 

Comparison between in silico knock-out phenotype predictions and experimental Tn5 insertion 

mutant phenotypes 

 

Experimental TN5 insertion mutants were converted to a Boolean matrix with two columns 

corresponding to glucose and glutamate. Each row corresponds to a mutant and the Boolean value in 

a cell is 1 if growth has been identified for a mutant in the corresponding condition (Supplementary 

Figure 13, left part), 0 otherwise. Thanks to the genome annotation 

(https://iant.toulouse.inra.fr/bacteria/annotation/cgi/ralso.cgi), links between metabolic genes and 

mutants have been established and converted into a Boolean matrix indicating for each mutant which 

genes have been knocked out. Then, we used the FlexFlux 5 BECO function to translate this Boolean 

matrix in sets of flux constraints and to predict the presence or absence of growth of each mutant in 

glucose condition and in glutamate condition. The results were finally converted into a Boolean 

matrix (Supplementary Figure 13, right part) that has been compared to the matrix computed from 

experiments. The comparison has been used to make corrections into the model and to measure the 

accuracy of the model predictions. The number of true positive predictions (TP) corresponds here to 

the number of conditions for which both experimental and in silico methods found an essential gene 

(growth=0). The number of positive predictions (P) corresponds to the number of conditions for 

which the in silico method found an essential gene. The number of false negative predictions (FN) 

corresponds to the number of conditions for which the in silico method found a positive growth while 

the experimental method found a null growth. 

 

https://iant.toulouse.inra.fr/bacteria/annotation/cgi/ralso.cgi


 

Supplementary Figure 13. Metabolic network validations by comparing experimental and in silico 

knock out phenotypes 

 



SUPPLEMENTARY NOTE 5 

Classification of reactions and genes 

 

In order to identify sources of phenotypic robustness (Figure 1 of the article), it was 

important to classify the reactions and the genes considering their effect on the realisation of the 

objective value. For this, we modified an algorithm already described by 8. Instead of considering only 

genes, we first start by the classification of the reactions themselves and use this for classifying the 

genes. Moreover, we added one category to the classification described in 8 that were not taken into 

account: objective independent reactions correspond to reactions that have no effect on the 

objective value. 

The whole pipeline for classifying reactions is presented in Supplementary Figure 14. At last, 

the algorithm to classify genes from the classification of the reactions and the gene reaction links is 

described in Supplementary Figure 15. These algorithms are implemented in the function 

“Classification” of FlexFlux and used in the BECO function described in the Material and Methods 

section and detailed in the following. 

The reaction categories are: 

• Essential reactions whose the deletion makes the objective function’s value to be null 

• Zero flux reactions can’t carry flux, i.e. their flux value is always 0 

• MLE (Metabolically less Efficient Reactions) enables objective function but not in an 

optimal way 

• ELE (Enzymatically less Efficient Reactions) makes the objective function’s value to be 

optimal but by using more enzymes than other optimal solutions 

• Objective Independent Reactions can carry flux but have no effect on the objective 

function 

• pFBA optima reactions (OPT) makes the objective function’s value to be optimal but 

by using a minimal number of enzymes 

 



 

Supplementary Figure 14. Classification of the reactions. In bold the steps absent from the 

classification described in 8. 

 

Biological Entity Clustering by their contribution to the Objective function (BECO) 

The method called Biological Entity Clustering by their contribution to the Objective function 

(BECO) proceeds as following. 

For each objective function (OB), for each condition: i) a reaction deletion analysis is 

performed and reactions KO leading to OB=0 are classified as essential; ii) then, a FVA is performed 

without constraints on the objective function in order to identify the reactions never carrying fluxes. 

They are classified as Zero Flux Reactions (ZFR); iii) then, a FBA is performed to obtain optimum value 

for the objective function and a FVA is run at 100% of the OB as constraint. The reactions not carrying 



fluxes are classified as metabolically less efficient (MLE) reaction; iv) then, a FBA with 100% of the OB 

as constraint is run with minimization of the sum of fluxes. Then, a new FVA is run with 100% of OB 

and 100% of the minimal flux sum as constraints. The reactions which carry fluxes are classified as 

optimal reactions. The forward propagation algorithm 9 is used to compute the scope (sub-network 

highlighted by the forward propagation algorithm) of the substrates of the reactions not carrying 

fluxes. If the scope contains the reactions corresponding to the objective function, the reactions are 

classified as enzymatically less efficient (ELE) reactions. If not, they are classified as objective 

independent reactions (OIR). iv) Then, the genes are classified depending on the classification of the 

reaction for which they are involved in the catalysis via the GPR (Supplementary Figure 15).  

 



 

 

Supplementary Figure 15. Classification of the genes from the classification of the reactions 

 

 

  



SUPPLEMENTARY NOTE 6 

Level of genetic redundancy and functional redundancy within primary metabolism is similar in R. 

solanacearum compare to other bacteria. 

 

In a first analysis, we sought to evaluate the extent of the functional redundancy (pathway 

redundancy plus genetic redundancy) providing robustness within the metabolic network of R. 

solanacearum. Indeed, this prior analysis is required to further deconvoluate if there is some 

specificity of the metabolic network of Ralstonia solanacearum in term of robustness before analysis 

of the virulence regulatory network contribution. Hence, we quantified the genetic redundancy of 

enzymes, i.e. the proportion of the reactions that can be catalysed by alternative enzymes, including 

alternative protein complexes harbouring at least one different subunit. We found that 26% of the 

reactions are catalysed by redundant enzymes. This level of enzyme redundancy is similar to the level 

reported in other bacteria like E. coli 10 and Bacillus subtilis 11, 31% and 30% respectively, or P. 

aeruguinosa 12, 22 %. Additional comparisons with other species are shown in Supplementary Figure 

2.  

Next, we predicted the robustness R(proliferation,πi) of the biomass production, later referred as 

the proliferation phenotype, in front of an internal perturbation (πi). We thereafter refer as internal 

perturbation any failure of internal network components leading to loss of function, like gene facing 

deleterious mutations, stochastic expression, or even enzymes facing loss of activity due to miss 

folding or inhibitions by chemicals. The simulations were carried out using the genome-scale 

metabolic models of R. solanacearum, E. coli 10 and P. aeruginosa 12. To apply a similar genetic 

perturbation to each organism we determined groups of orthologs shared by the three species and 

present in each metabolic model using the INPARANOID algorithm 13. Hence, the robustness of the 

proliferation phenotype of the three bacteria growing with D-glucose and L-glutamate as sole source 

of carbon was calculated. To do so, we run a BECO analysis and collected predictions for the 421 

single gene knock-out perturbations corresponding to each of the 421 orthologous families 

identified. The R(proliferation,Iπi) of R. solanacearum in D-glucose was found to be 0.58 whereas a value of 

0.65 and 0.66 was found for E. coli and P. aeruginosa, respectively (Supplementary Figure 3). The 

higher robustness observed for E. coli and P. aeruginosa was tracked and founded to be mainly due 

to differences in the biomass equation, from 0.04 to 0.06 of robustness. For instance, the main 

differences between R. solanacearum and E. coli are due to the amino acid charged on their tRNA 

which is taken into account into the R. solanacearum biomass equation but not in the E. coli‘s one. 



Hence, the analysis showed that the contribution of the genetic redundancy to sustain the 

proliferation phenotype is almost similar in R. solanacearum and E. coli (0.10 and 0.12, respectively) 

whereas the contribution of pathway redundancy is only slightly lower (0.20 versus 0.25 in E. coli). A 

similar pattern was observed after simulation of growth in L-glutamate (Supplementary Figure 3). 

  



SUPPLEMENTARY NOTE 7 

Computing robustness in randomized environmental or genetic conditions 

 

In order to compare robustness of several phenotypes in a large set of conditions without a 

priori, we generated 1000 randomized environmental conditions and 25000 randomized genetic 

conditions. The randomization process is presented in Supplementary Figure 16. 

Each randomized condition contains a different number (called N) of activated inputs 

selected in a Gaussian distribution truncated by lower and upper bounds given by the modeller to 

assure a minimum and a maximum number of activated inputs. The selection of the N inputs is done 

considering a weight assigned to each input. Higher is the weight, higher is the probability to have 

the input in the randomized condition. Each input is duplicated according to its weight and the 

selection of the N distinct inputs is performed on the new set whose the elements have been mixed  

Then, the set of activated inputs is translated into metabolic constraints or into node states in the 

regulatory network depending on the nature of the input (nutrient, metabolic gene, regulator...).  At 

last, for each randomized condition and each objective function, the optimal value of each objective 

function was computed and a histogram representing the distribution of the number of conditions 

where an objective function was possible (optimal value >0) was plotted. 

This pipeline was launched four times: 

- Metabolic network without regulatory network + genetic randomised conditions 

- Metabolic network without regulatory network + environmental randomised conditions 

- Metabolic network with regulatory network + genetic randomised conditions 

- Metabolic network with regulatory network + environmental randomised conditions 

 

The four results were compared to measure the influence of the regulatory network on the 

phenotypic robustness when the metabolic network is confronted to environmental or to genetic 

perturbations (Supplementary Figure 16). 

Algorithms of randomisation and robustness computing have been respectively implemented 

in the Random and ROBA (ROBustness Analysis) functions in FlexFlux 5. 



 

Supplementary Figure 16. Simulation to compute the robustness of cellular objectives considering 

randomised environments. 

 

 



SUPPLEMENTARY NOTE 8 

BECO analysis, gene assignment to the type of phenotypic robustness 

 

We analyzed the 919 metabolic genes which were assigned to the different classes of phenotypic 

robustness by the BECO analysis. These classes correspond to pathway redundancy, genetic 

redundancy and versatility (Fig 5A and Supplementary Note 5). We determined how many genes in 

each class contributed to robustness and which of them were under control of the VRN. Results are 

shown for two representative phenotypic traits: one belongs to the housekeeping functions 

(proliferation) and the other to the virulence-associated functions (T3SS), see Fig 5B and C. These 

phenotypes were selected since they are dependent on a significant number of regulated genes (78) 

so the specific distribution of regulated genes into classes can be well discriminated from random. 

For the proliferation phenotype, the analysis revealed that a majority (up to 70%) of the VRN-

dependent genes belongs to redundant pathways that are dependent on environmental conditions 

(class OPT-C and ELE-C). Such ‘environment–dependent’ genes can be optimal for the expression of a 

given phenotype in one environmental condition but not in another. On the other hand, only 10% of 

the VRN-controlled genes were essential genes or back-up genes for essential reactions (panels ESS 

and RED, respectively). Similarly to the proliferation function, the robustness of the T3SS phenotype 

mainly relied on redundant pathways that are dependent on environmental conditions (53 / 78 

genes being controlled by the VRN). However, this analysis also showed that the VRN controlled a 

high number of essential genes for several virulence-associated functions and the distribution of the 

VRN-controlled genes in the different class for virulence-associated functions significantly differs 

from the distribution of gene of the proliferation function (chi-test p-value 5.2∙10-5). These essential 

genes belong to distinct virulence pathways, i.e they are different and not shared between the 

virulence-associated phenotypes (Supplementary Figure 17). 



 

 

Supplementary Figure 17. Distribution of essential genes and conditionally essential genes 

depending of their contribution to only one phenotype (not shared between phenotypes) or 

multiple phenotypes (shared between phenotypes). The essential genes regulated by the VRN were 

found to be not shared between phenotypes. 

 

 

 

 

 

 

 

 

 

 



SUPPLEMENTARY TABLE 1 

 

Supplementary Table 1. List of fonctional categories of genes in R. solanacearum genome 

annotated in MAGE (http://www.genoscope.cns.fr/agc/microscope/home/index.php). Number 

and proportion of genes included in the biochemical model or the VRN are reported. 

 

  

Gene Product Type Nb % Type Nb % Type Nb % genome Comment

o : ORF of unknown function 22 0,012 113 0,063 1784 0,313

e : enzyme 707 0,711 85 0,085 995 0,174

pe : putative enzyme 179 0,292 64 0,104 613 0,107

not assigned 119 0,195 61 0,100 609 0,107

pt : putative transporter 74 0,270 30 0,109 274 0,048

pr : putative regulator 4 0,015 22 0,085 259 0,045

t : transporter 156 0,653 68 0,285 239 0,042

r : regulator 3 0,021 48 0,343 140 0,025

f : factor 14 0,126 15 0,135 111 0,019

pm : putative membrane component 21 0,210 20 0,200 100 0,018

s : structure 26 0,268 32 0,330 97 0,017

h : extrachromosomal origin 0 0,000 5 0,054 93 0,016

ph : phenotype 71 0,866 74 0,902 82 0,014 This type includes mainly virulence associated phenotypes like TIII effectors

cp : cell process 11 0,183 13 0,217 60 0,011

pf : putative factor 12 0,226 10 0,189 53 0,009

lp : lipoprotein 5 0,109 11 0,239 46 0,008

c : carrier 22 0,667 6 0,182 33 0,006

pc : putative carrier 7 0,226 2 0,065 31 0,005

prc : putative receptor 3 0,120 7 0,280 25 0,004

m : membrane component 7 0,280 5 0,200 25 0,004

ps : putative structure 10 0,417 10 0,417 24 0,004

rc : receptor 0 0,000 9 0,750 12 0,002

pcp : putative cell process 1 0,333 2 0,667 3 0,001

> 30%

> 50%

Gene in biochemical network Gene in the VRN Gene in genome



SUPPLEMENTARY TABLE 2 

 

Supplementary Table 2. List and taxonomy of organisms used for phylogenetic analyses of the 

VRN-regulated genes in primary metabolism 

 

  

Species Strain Genus family Class NC

Ralstonia solanacearum GMI1000 Ralstonia Burkholderiaceae Betaproteobacteria NC_003295.1;NC_003296.1

Ralstonia solanacearum Po82 Ralstonia Burkholderiaceae Betaproteobacteria NC_017574;NC_017575

Ralstonia solanacearum PSI07 Ralstonia Burkholderiaceae Betaproteobacteria NC_014311

Ralstonia pickettii J12 Ralstonia Burkholderiaceae Betaproteobacteria NC_010682;NC_010678;NC_010683

Ralstonia eutropha H16 Cupriavidus Burkholderiaceae Betaproteobacteria NC_008313;NC_008314;NC_005241

Cupriavidus necator N-1 Cupriavidus Burkholderiaceae Betaproteobacteria NC_015723;NC_015726;NC_015724;NC_015727

Cupriavidus metallidurans CH34 Cupriavidus Burkholderiaceae Betaproteobacteria NC_007973;NC_007974;pMOL28;pMOL30

Burkholderia cenocepacia J2315 Burkholderia Burkholderiaceae Betaproteobacteria NC_011000;NC_011001;NC_011002

Burkholderia multivorans ATCC17616 Burkholderia Burkholderiaceae Betaproteobacteria NC_010084;NC_010086;NC_010087;NC_010070

Burkholderia mallei ATCC23344 Burkholderia Burkholderiaceae Betaproteobacteria NC_006348;NC_006349

Paraburkholderia phymatum STM815 Paraburkholderia Burkholderiaceae Betaproteobacteria NC_010622;NC_010623;NC_010625;NC_010627

Polynucleobacter necessarius QLW-P1DMWA-1 Polynucleobacter Burkholderiaceae Betaproteobacteria NC_009379

Herbaspirillum seropedicae SmR1 Herbaspirillum Oxalobacteraceae Betaproteobacteria NC_014323

Massilia sp NR 4-1 Massilia Oxalobacteraceae Betaproteobacteria NZ_CP012201

Collimonas fungivorans Ter331 Collimonas Oxalobacteraceae Betaproteobacteria NC_015856

Acidovorax avenae ATCC 19860 Acidovorax Comamonadaceae Betaproteobacteria NC_015138

Comamonas testosteroni CNB-2 Comamonas Comamonadaceae Betaproteobacteria NC_013446

Bordetella pertussis Tohama I Bordetella Alcaligenaceae Betaproteobacteria NC_002929

Achromobacter xylosoxidans A8 Achromobacter Alcaligenaceae Betaproteobacteria NC_014640

Taylorella equigenitalis MCE9 Taylorella Alcaligenaceae Betaproteobacteria NC_014914

Methylotenera versatilis 301 Methylotenera Methylophilaceae Betaproteobacteria NC_014207

Thauera sp MZ1T Thauera Rhodocyclaceae Betaproteobacteria NC_011662;NC_011667

Neisseria meningitidis alpha-14 Neisseria Neisseriaceae Betaproteobacteria NC_013016

Rhodobacter sphaeroides ATCC17025 Rhodobacter Rhodobacteraceae Alphaproteobacteria NC_009428;NC_009429;NC_009430;NC_009431;NC_009432;NC_009433

Sinorhizobium meliloti 1021 Sinorhizobium Rhizobiaceae Alphaproteobacteria NC_003047;NC_003037;NC_003078

Pseudomonas syringae DC3000 Pseudomonas Pseudomonadaceae Gammaproteobacteria NC_004578

Pseudomonas aeruginosa PAO1 Pseudomonas Pseudomonadaceae Gammaproteobacteria NC_002516_2

Escherichia coli K12 Escherichia Enterobacteriaceae Gammaproteobacteria ECK

Xanthomonas campestris ATCC33913 Xanthomonas Xanthomonadaceae Gammaproteobacteria NC_003902
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