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1 Model selection process and comparison to the previous work
In our implementation, we used the PyTorch framework and 4×NVidia GTX1080 cards. Because the MOST dataset
was very imbalanced because of the low presence of higher KL grades, we used oversampling to overcome this issue
in all our experiments: for each training epoch, we randomly sampled with repetitions roughly Ncat ×B images from
each of the categories (KL 0–4), where Ncat is the average number of training examples per category in our training
set and B is a bootstrap factor. From our training data we found Ncat ×B = 3,675. Parameter B = 15 was found
empirically by trial and error. We found this strategy useful to prevent overfitting, especially when it is combined
with data augmentation and selection of the number of batches per epoch (Table 1). For data augmentation, we used
brightness, contrast, rotation, gamma correction and jitter. In our experiments, we mostly used Adam’s method
with a learning rate of 1e−2; however, to reproduce the results presented by Antony et. al. in1, we used a stochastic
gradient descent with Nesterov momentum and learning rate of 1e −4. The batch size which was used in all our
experiments was empirically selected to be 64.

We systematically compared multiple models — multiple configurations of our proposed approach. First, we
re-implemented the best-performing network described in the article by Antony et al. This network produces two
outputs — one for classification and the other one for regression. The optimisation is done by minimising an average
of mean squared error (MSE) and cross-entropy. The idea behind this loss function is to give a network information
about the importance of higher (e.g., KL4) versus lower (KL0) misclassifications. In our implementation, we cropped
the 300×300 to 300×200 pixel images and used them as the network input, as described in the manuscript. The
300×300 images were obtained after the data augmentation. Due to the insufficient implementation details provided
in the original paper and the differences in our training settings, we could not exactly reproduce the results; however,
we found validation performance in the multi-class average accuracy and MSE that were similar to the values
reported by the authors. To achieve these results, we had to use the following strategy: starting from the learning
rate of 1e− 4 we were dropping 10 times it each 50,000 iterations. When the learning rate drop was less than 1e− 6,
we increased it back to 1e−4 and continued this procedure. In total we trained the network for 250,000 iterations.
This was performed because of the plateau in training, and it helped to escape the achieved local minima.

Secondly, we performed a fine-tuning of a ResNet-34 network2 that was pre-trained on the ImageNet dataset.
We found this model overfitting quickly so decided to evaluate it more frequently – 300 iterations per training epoch
compared to our model and the model from Antony et al.1 – 500 iterations per training epoch. In total, we trained
ResNet-34 for 14, 300 iterations and had to stop the process afterwards because the validation loss started to rapidly
increase. We summarise all our results in Table 1. Based on the validation Kappa, we selected the fine-tuned ResNet
and our model with N = 64 for a qualitative comparison, as described in the article and the next section.



Table 1. Model selection and comparison to the other models. Here, N in the own models indicates the number of
filters in the first layer, as in the main text of the article, and indicates whether the weights of the network branches
were shared or not. # Batches indicates the epoch size, Kappa corresponds to the quadratic Kappa coefficient, MSE
to the mean squared error and Accuracy the average multi-class accuracy. All the models were trained with a batch
size of 64 samples. Column Kappa shows in bold the two best models – our models with the starting number of
filters N = 64 and the fine-tuned ResNet-34.

Model Learning rate # Batches Optimizer Kappa MSE Accuracy

Own [N=32]

1e−2 500 Adam

0.803 0.526 67.04
Own [N=32, NS] 0.706 0.732 56.40
Own [N=64] 0.808 0.518 64.77
Own [N=64, NS] 0.718 0.736 57.81
Own [N=128] 0.801 0.515 66.35
Own [N=128, NS] 0.727 0.705 58.78
ResNet-34 1e−3 300 0.812 0.512 67.02
Model by Antony et al., 2017 1e−4 500 SGD 0.770 0.670 59.52

2 Attention maps and probability distribution examples
In this section, we present examples of the attention maps produced by the fine-tuned ResNet-34 and our model for
clinically relevant cases KL-2 (Figure 1) and also for already present, moderate OA (Figure 2). The attention maps
indicate the benefit of constraining the attention of the network by using prior anatomical knowledge.

2/5



References
1. Antony, J., McGuinness, K., Moran, K. & O’Connor, N. E. Automatic detection of knee joints and quantification

of knee osteoarthritis severity using convolutional neural networks. arXiv preprint arXiv:1703.09856 (2017).
2. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 770–778 (2016).

3/5



(a) KL-2 – ground truth

(b) KL-2 – ResNet-34 (c) KL-2 – Our model

(d) KL-2 – ground truth

(e) KL-2 – ResNet-34 (f) KL-2 – Our model

(g) KL-2 – ground truth

(h) KL-1 – ResNet-34 (i) KL-2 – Our model

Figure 1. Comparison of the attention maps and output probability distributions between the baseline and our
method for the clinically relevant case KL-2. The examples show that the pre-trained model is less certain than our
proposed approach.
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(a) KL-3 – ground truth

(b) KL-4 – ResNet-34 (c) KL-3 – Our model

(d) KL-3 – ground truth

(e) KL-2 – ResNet-34 (f) KL-2 – Our model

(g) KL-3 – ground truth

(h) KL-3 – ResNet-34 (i) KL-3 – Our model

Figure 2. Comparison of the attention maps and output probability distributions between the baseline and our
method for detection of moderate osteoarthritis (KL-3).
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