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Appendix A. Theoretical Proofs

Proposition 1. Except for degenerate parameter combinations, the model given in Eq. (4) displays
biphasic behavior in E,(t) and in E(t) = E\(t) + E2(t). That is, for some parameter combinations a,

b, ¢, d, and h, E(t) and E1(t) have the form

cde™™ + (1 — ¢)de " + F(t) (5)

where

F(t) = / t ho(s)e™ =) 4 (1 — h)v(s)e (%) ds (6)
0
is a forcing function with v(t) = u(t) for E(t) and v(t) = nu(t) for Ey(t).

Proof. We solve the inhomogeneous, linear system of differential equations in Eq. (4) by the method
of variation of parameters, although other methods, such as Laplace transformation, may also be
used. We use dot notation to indicate derivative and drop the explicit dependence of E, F;, and

Es5 on t. The system may be written in matrix form as follows.

E, —(61+61) 2 Ey nu(t)
= + . (S1)

Ey o1 —(02+02) | | E2 (1 = n)u(t)

The eigenvalues of the corresponding homogeneous system are

—(01 + 02 + 61 4 62) — /(01 + 02 + 01 + 52)2 — 4 ((61 + 1) (02 + 2) — 0152)

A= 5 : (52)
Ny = —(01 02481+ 3) + V(01 + 05 + 61 + 62)2 — 4((61 + 61) (02 + 02) — 0102) 53)
5 :
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with eigenvectors

02
vy =
01461+ M
and
02 + d2 + Ao
vy =
01

Then, a fundamental solution for the homogeneous system is

Soett (02 + 02 + Ag)er?!
CI)(t) — . (54)

(61 +51 —|—)\1)6>\1t (516)\2t

Then

—5re Mt 02 + 02 + Ag)e At
1

05 + 63 + A2) (01 + 01 + A1) — 610 ’
(2 2 2)( 1 1 1) 102 (01—’-(51—’-)\1)67)\2)& _526*/\2t

(I)fl(t) — (SS)

(B2+62+X2)(1—n) =617 =it
nu(t) —55¢
(I)_l(t) _ (024+02+X2)(01+01+A1)—0102 ult), (S6)
(01461 +X1)n—082(1—n) -\
(1 —n)u(t) CIErEs I GETTEs Ty T

(O2+32+X2)(1-1)—d1n —A1s

t nu(s) t —5105 ¢
/ o-1(s) ds:/ (02+021X2)(01+01+A1)—0102 u(s) ds, (S7)
0 0

(01+61+A1)n—0d2(1—n) -A
(1 —n)u(t) ot 7O+ )05 ¢
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(1) /Ot d1(s) ite) ds

(1 —n)u(t)

02((O2+d2+A) A=) —b17) _ Ay (t—s) 4 (B2+02422) (01461 +M1)n—b2(1—n))  Ap(t—s)
_ (O2+24+X2)(01+01+A1)—0102 (B2+24+X2)(01+01+A1)—01d2) u(s) ds. (S8)
0 (91+51+>\1)((92+52+>\2)(1*77)*5177)e/\l(tfs)+ 91 ((01+81+A1m)—82(1=m)) Aa(t—s)
(O24+024+A2)(01401+A1)—0102 (B24024+A2)(01401+A1)—0102

Suppose that the initial condition is

pw
(1-pw
where w is the initial total pathogen population and p is the fraction of the initial pathogen popu-

lation of the first type. Then,

pw 09 O + 92 + Xo| |21
= ) (59)
(1 — p)w 01+ 01+ M\ 0 xro
so that we find
71 6(52;-92+)\20)(1—(5p)w—51p6w6
_ (O2+24+X2)(01+01+A1)—0102 ' (S10)

T (614+601+X 1) pw—bd2(1—p)w
2 (O2+24+X2)(01+01+A1)—0102

Hence, we have the solution
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ds

(52+92+/\2)(1—p)w—61pw

(O2+024+X2) (01 +81+X1)—0162

(51+91+)\1)pw—62(1—p)w

G N Y / | ™0
Es(t) x2 ’ (1- 77)“(75)_
B oMt (B + 69 + \p)et2t _
: (01 + 61+ Ap)eM? §ret2t
03 (02402 +A2) (1—1) —011) _ Ay (t—s) |-

| (O2+32+A2)(01+01+A1)—0102

(B2+024+X2)(014+01+A1)—0102

t
+/

92((62+02+A2)(1—p)w—51 pw)

(01+014+A1)((02492+X2) (1—n)—d17) eAi(t—s)
(B2+d24+X2)(01+01+A1)—0102

et + (02+24+X2)(

91 ((014+91+A1m)—d2(1—7))

F Gat 62 22) (01 +81F A1) 0102

(01401 4+A1)pw—02(1-p)w) Aot

(O2+02+X2) (01+61+X1)—d162

(01+61+M1) ((62+02+X2)(1—p)w—b1pw) Xt ;| O1(

(O2F024+X2) (01461 +X1)— 102

(014014 1) pw=02(1=p)w) Aot

+

92((02402+X2)(1—n)—d17n)

(O2+02+X2)(01+1+A1)—d102

e

(O2+02+X2)(01+1+A1)—d162 €
N /t (02402132 (01 +01F A1) —01062
0

(014014 2A1) (624024 A2) (1—n) —d11) Xy (¢—s)
(O2+d24+X2)(01+01+A1)—0102

which may be written as

91 ((1+01+A1m)—d2(1—1n))

T 2405 720) (01 +01771)—0163

) (LA ) puoehtt 4 (1 — RN ) procha
(—51/(1;ﬁ§31+/\1> (1 — p)wet + (1 — —61/(1;1@—&)\—21—&—)\1) (1 — p)wer?t

+/t (52/;)1+92+/\1> et (t=s) 4 ( 62/;71+02+/\1> et (t=s)
0 (51/(1;1772J;291+>\1) (1— n)eAl(t—s) + (1 _ 51/(1;17724;;9%)\1) (1- 77)e>\2(t—s)

Thus, we may reparameterize F(t) to the form

¢
cde™ + (1 — c)de ™ + / ho(s)e™ =) 4 (1 — h)u(s)e (%) ds

0
by setting

S5

(624024 A2) (614014 A1)n—02(1—n)) Az (t—s)
(O2+24+X2)(014+01+A1)—01d2)

u(s) ds,

e)\g(tfs)

Ait=s) 4 (O2+924+22) (01 401+ 1)n—d2(1-n)) er2(t—s)
(O2+02+X2)(01+01+A1)—0102)

e/\g(tfs)

(S812)
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a = _)\17

b:_)\27
_ (52/p+92+)\1

A= A2 (S14)

d = pw,

B do/m+ 02 + A1

h
A=A

v(t) = nu(t).
We note that ¢ = 1 when §5 = 0, so that no biphasic behavior is observed.

Now, we see

(52/,0+92+)\1 (51/(1—p)—|—01+)\1
1 —
_ 51+52—|—91(1—,0)+P92+)\1 (S15)
Al — Mg
_ PO+ (1= p)ba+ X
Ao — A1 '

Then, we may reparameterize E(t) = E;(t) + E»(t) to this biphasic form by setting

(S16)
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Here, ¢ = 0 when 6; = 65, so that biphasic behavior is not observed.

Proposition 2. The parameter combinations a, b, ¢, d, and h in Proposition 1 are identifiable.

Proof. First, consider the case where the data is £ = F; + F>. We find an input-output equation

for the model in terms of F, assuming 6, # 6.

Ey=FE—E

By =F - Py

nu + do By — (91+51)E1 =F - (1—n)u—51E1 +(92+52)E2

nu — Ql(E — Eg) =F— (1 — n)u(t) + 05 F5

—(91E + 01E2 =F—-—u+ (92E2

E+0,FE—u

Jo e

2 01 — 05

. _E+91E—ﬂ

Bz = 01 — 62
(1_77)u+51E1_(92+52)E2:w
01 — 0
(1—7])16%-51]57—(‘92%—514-52)]52:W
01 — 05

E E— E E 4

(= )it 61 — (B + 01 +6) | EXOEZw) _E+OE
91—92 91—92

(L=nu+01E) (01 — 02) — (02461 + 02)(E+ 0 E —u) = E+ 6, E — 4
(61 + 03 4+ (1 — )01 + nb2)u — (0102 + 6201 + 0102)E = E + (01 + 0 + 61 + 02)E
E+4 (014 05+ 01 + 62)E + (01 + 01) (02 + 02) — 0102) E = 61 + (61 + 62 4+ (1 — )61 + 1) u
(S17)
The coefficients of the input—output equation are the identifiable combinations. Additionally, we

have E(0) = E1(0) + E2(0) = w and E(0) = u(0) — 1 pw — 62(1 — p)w identifiable from the initial
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conditions.

Under the degenerate condition §; = 6, = 6, biphasic behavior is not observed, and the input-

output equation is

E + 20E = u. (S18)

Now, consider the case where the data is F;, assuming do # 0.

Es 512E1 91;;51191_;72

by (512E1+91;;51E1—(;72

(L= n)ut61Er — (B2 + 02) B> = 5 F 91;;5131_(;72
(177)u+51E1(02+52)(612E1+01;;51E1(;72“>:512E1+01;;51E(;72“

52(1 — n)u + 6100 F1 — (92 + 52) (El + ((91 + (51)E1 — nu) = E1 + (91 + 51)E1 —nu
El + (01 + 51)E1 — 01091 + (92 + 52) (E1 + (01 + 51)E1> =nu+ 52(1 — n)u + (92 + 52) nu

E1+ (61 + 034 61 + 62) By + (62 + 82) (61 + 1) — 6182) By = niv + (62 + 62/n) nu

(519)

Additionally, from the initial conditions, we have E;(0) = pw and E;(0) = nu(0) + 62(1 — p)w —

(91 + (51) pw.

Under the degenerate condition J, = 0, the input—output equation is

We now show that a, b, ¢, d, and h can be written in terms of the coefficients of the input—output
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equation under either data regime. From the proof of Proposition 1, one calculates

1
a= 3 ((91 + 6024 61+ 62) + \/(91 + 02 + 61+ 02)2 — 4 ((01 + 1) (02 + J2) — 5152)) )

(821)

1
b= B <(91 + 0y + 61 4 02) — /(01 + 02 + 61 + 62)2 — 4 ((01 + 61)(02 + 62) — 5152)> :

We see that ¢ and b are combinations of identifiable combinations (coefficients of the input—output
equation) and are thus identifiable. How the other three parameters are identified depends on
whether one assumes that the measured environmental compartment is all pathogens F(¢) or only
labile pathogens E(t). If the environmental compartment is assumed to be E(t), then one calcu-

lates

_ P+ (1 —p)fo—b
c= 9
a—>b

d=w. (522)

(nb1 + (1 —n)b2) — b.

h:
a—>

So, we see that ¢ and d are identifiable if v = 0 or if w is known. If u # 0 and is known, then

nb1 + (1 — n)6s is identifiable, and so h is identifiable.

If the environmental compartment is assumed to be E(¢), then one calculates

. do/p+ 6y —a

b—a
d= pw, (523)
L 52/774-92—@.

b—a

So, again, ¢ and d are identifiable if u = 0 or if u is known. If v # 0 and nu(t) is known, then

02 + 2/ is identifiable, and so h is identifiable.
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Appendix B. Additional details and figures of the hydrological fate and

transport model

Assuming, per Robles-Morua et al., an initial E. coli concentration of 24.63 times the EPA standard
for bathwater, which is 126 cfu/100 mL (EPA, 1986), we compare the estimated population of
E. coli at a distance x downstream of the waterwater treatment outfall by generating a posterior

distribution from 100,000 Markov chain Monte Carlo simulations in WinBUGS in three scenarios:

1. Biphasic decay

P(z) = 24.63 - 126 (Ce—aa:/16.75 r(1- C)e—bx/16.75) o —ks/16.75

2. Monophasic decay fit to the rapid-decaying regime

P(z) = 24.63 - 126¢ (@ 1hs)2/16.75

3. Monophasic decay fit to entire data

P(z) = 24.63 - 126¢~ (0" Hhs)2/16.75

where a, b, and ¢ are described as in the text, and a* was assumed to be normally distributed
with mean pu,+=0.79 and standard deviation o, =0.044. This distribution was estimated from the
biphasic data presented in Hellweger et al. by generating a posterior distribution from 100,000
Markov chain Monte Carlo simulations in WinBUGS using the following prior distributions, where
C;,; is the concentration at day 4 for the jth experiment, Cp ; is the initial condition of the jth

experiment, and C; j and C; ; are the 95% confidence bounds for the initial condition.

),
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In(C; ;) ~ N(pc, ;> 7c; ;)
pe,; = In(Co ) —a’t;
In(Cp, ;) ~ U(CO_,]" Cafj)
7o ~T(1075,1077)
a* ~ N(pgx, Tax)

ftax ~ N(0,1079)

T ~T(107°,107°)

Because the removal rate calculated by Robles-Morua et al. represents both pathogen decay and re-
moval by sedimentation, we first perform Monte Carlo simulations to estimate total E. coli removal
according to their normally distributed removal rate coefficient & (ux=2.15, 0 =0.53). We then es-
timate a distribution of values for the sedimentation rate coefficient ks by subtracting the vector of
biphasic decay coefficients at the last sampling time point (~1.24 days; Figure 6 of Robles-Morua
et al. from the vector of removal rate coefficients, each sorted in ascending order. This method
of estimation results in some negative values of k,, which can be interpreted as resuspension of

previously sedimented E. coli.

In Figure S1, we extend the simulations up to 120 km, assuming that river conditions remain
constant beyond 60 km. Here, we see that Scenario 3 becomes an underestimate of the bacterial

concentration at around 76 km.

In Figure S2, we plot E. coli concentrations simulated for Scenario 1 by distance and simulation
percentile. Simulations in percentiles above the 25th percentile exhibit regrowth of bacteria within

60 km, although this regrowth is not substantial until the 50th percentile.
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Figure S1: Comparative simulation results for (a) Scenarios 1 (biphasic, in grey) and 2 (monophasic
fit to the labile regime, in red) and (b) Scenarios 1 (biphasic, in grey) and 3 (monophasic fit to
entire data, in red). Each scenario shows the median and 95% CI simulated E. coli concentrations
over 60 km of hydrologic transport. The black line gives the EPA regulatory compliance threshold

of 126 cfu/100 mL.
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Figure S2: E. coli concentrations simulated for Scenario 1 by percentile and distance. The white

line is the compliance concentration (126 cfu/100 mL).
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