Electronic Supplementary Information

A Fluorescent Activatable Probe for Imaging Intracellular Mg²⁺

Ryan Treadwell, Fabio de Moliner, Ramon Subiros-Funosas, Toby Hurd, Kirsten Knox and Marc Vendrell

Table of Contents:

- 1. Synthetic procedures.
- 2. NMR spectra.
- 3. Additional spectroscopy and imaging data.

1. Synthetic procedures.

Scheme S1. Synthetic scheme for the preparation of the aldehyde 1.

2-[1-ethoxy-2-(2-pyridinyl)ethyl]-1,3-diethyl ester

Picoline (5 g, 54 mmol, 1 eq.) was dissolved in dry THF (30 mL) and the resulting solution was slowly added under N₂ at -78° C to a 2.0 M solution of LDA in THF/heptane/ethylbenzene (33 mL, 66 mmol, 1.25 eq.). After stirring for 30 min, ethoxymethylmalonate (12.74 g, 5.9 mmol, 1.1 eq.) in dry THF (30 mL) was added over a 10-min period and the reaction was left to stir for further 20 min while allowing the temperature to increase to -20° C. After 3 h, the reaction was judged complete by TLC and HPLC-MS, poured into deionised H₂O (500 mL) and extracted using CH₂Cl₂ (3 × 300 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Flash column chromatography (EtOAc/hexane, 1:1) yielded the product (8.64 g) as a dark orange oil in 52% yield.

¹H NMR (500 MHz, CDCl₃) δ 8.55 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1H), 7.62 (td, *J* = 7.7, 1.9 Hz, 1H), 7.24 (m, 1H), 7.15 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 4.49 (m, 1H), 4.20 (dq, *J* = 8.4, 7.1 Hz, 4H), 3.63 (d, *J* = 8.0 Hz, 1H), 3.47 (dq, *J* = 9.1, 7.0 Hz, 2H), 3.31 (dq, *J* = 9.1, 7.0 Hz, 1H), 3.22 (m, 1H), 1.27 (td, *J* = 7.1, 3.8 Hz, 3H), 0.98 (t, *J* = 7.0 Hz, 6H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 167.5, 167.3, 158.2, 148.9, 136.4, 124.6, 121.6, 66.4,
61.4, 61.4, 56.9, 41.4, 15.2, 14.1, 14.0 ppm.

Ethyl 4-oxo-4H-quinolizine-3-carboxylate

2-[1-ethoxy-2-(2-pyridinyl)ethyl]-1,3-diethyl ester (6 g, 27.62 mmol) was dissolved in xylene (60 mL) and heated under reflux for 48 h. Afterwards, the solvent was removed *in vacuo* and flash column chromatography (EtOAc/hexane, 1:1) yielded the product (1.06 g) as an orange crystalline solid in 25% yield.

¹H NMR (500 MHz, CDCl₃) δ 8.55 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1H), 7.62 (td, *J* = 7.7, 1.9 Hz, 1H), 7.26 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.15 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 4.48 – 4.42 (m, 1H), 4.20 (dq, *J* = 8.4, 7.1 Hz, 4H), 3.63 (d, *J* = 8.0 Hz, 1H), 3.47 (dq, *J* = 9.1, 7.0 Hz, 1H), 3.31 (dq, *J* = 9.1, 7.0 Hz, 1H), 3.22 – 3.07 (m, 2H), 1.27 (td, *J* = 7.1, 3.8 Hz, 6H), 0.98 (t, *J* = 7.0 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 166.2, 155.9, 146.1, 141.0, 133.5, 129.3, 125.4, 116.4, 106.9, 102.2, 60.9, 14.5 ppm.

Ethyl 1-formyl-4-oxo-4H-quinolizine-3-carboxylate

POCl₃ (1.35 mL, 14.5 mmol, 3 eq.) was added dropwise over 5 min to a solution of 2-[1-ethoxy-2-(2-pyridinyl)ethyl]-1,3-diethyl ester (1.05 g, 4.93 mmol, 1 eq.) in 2.5 mL of DMF and left to stir at r.t.. After 1 h, the reaction was judged complete by TLC, and the crude was diluted with H₂O (100 mL) and extracted using CH₂Cl₂ (3 x 100 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. Flash column chromatography (EtOAc/hexane, 4:1) yielded the product (1.04 g) as a yellow solid in 87% yield.

¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 9.61 (d, *J* = 1.3 Hz, 1H), 9.58 (m, 1H), 8.82 (s, 1H), 8.05 (m, 1H), 7.54 (td, *J* = 7.0, 1.4 Hz, 1H), 4.48 (q, *J* = 7.1 Hz, 2H), 1.47 (t, *J* = 7.1 Hz, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 188.2, 164.8, 149.0, 145.7, 139.2, 130.7, 123.9, 119.2, 108.8, 105.7, 61.4, 14.5 ppm.

2. NMR spectra

¹H-NMR

¹³C-NMR

¹H-NMR (compound 1)

¹³C-NMR (compound 1)

¹H-NMR (compound 2)

HSQC (compound 2)

HMBC (compound 2)

¹H-NMR (compound 3)

HSQC (compound 3)

HSQC (expanded aromatic region) (compound 3)

HMBC (compound 3)

HMBC (expanded aromatic region) (compound 3)

¹H-NMR (compound 4)

HSQC (compound 4)

HSQC (expanded aromatic region) (compound 4)

HMBC (compound 4)

HMBC (expanded aromatic region) (compound 4)

3. Additional spectroscopy and imaging data.

Figure S1. Fluorescence spectra ($\lambda_{exc.}$: 450 nm) of compound **2** upon incubation without and with increasing concentrations of glycerol.

Figure S2. Spectral characterisation of the BODIPY compounds **2-4**. For compound **4**, absorbance (clear green line) and emission ($\lambda_{exc.}$: 450 nm, dark green line) spectra (10 μ M) in EtOH.

Figure S3. Photostability analysis of compounds 2-4 (100 μ M) in PBS upon continuous light irradiation for 10 h.

Figure S4. Fluorescence spectra ($\lambda_{exc.}$: 450 nm) of compounds **2-4** (20 μ M) upon incubation with the same Mg²⁺-containing solution (2 mM) and under the same experimental conditions.

Figure S5. Fluorescence spectra ($\lambda_{exc.}$: 450 nm) and fluorescence intensity readouts of compound **4** upon incubation with low (100 μ M) and high (1 mM) concentrations of Ca²⁺ within its physiological range. Values represented as means ± s.e.m (n = 3). n.s. for p > 0.05.

Figure S6. Determination of limit of detection of compound **4** for the detection of Mg²⁺. Compound **4** (10 μ M) was incubated with increasing concentrations of Mg²⁺ and the fluorescence emission was detected at r.t. Values represented as means ± s.e.m (n = 3), and the limit of detection was determined as 2 μ M.

Figure S7. Normalised fluorescence intensity of compound **4** (10 μ M) upon binding to Mg²⁺ (1 mM) in different buffers covering different pH values measured with ± 0.2 deviation. Values represented as means ± s.d (n = 3).

Figure S8. Fluorescence intensity quantification of FCCP-treated and untreated A549 cells after incubation with compound **4** (3 μ M, 15 min). Image analysis was performed using Image J, including 10 regions of interest per condition covering a similar overall area. Values represented as means ± s.d. *** for p < 0.001.

Figure S9. Confocal fluorescence microscopy images of A549 cells upon incubation with compound **4** and organelle-specific fluorescent markers. Cells were preincubated in culture media containing 5 mM MgCl₂ and then treated with compound **4** (3 μ M) and the corresponding trackers for 15 min. Scale bar: 10 μ m.

Figure S10. Cytotoxicity assays in A549 cells upon incubation with different concentrations of compound **4** and DMSO as a positive control. Cell viability was normalised to cells incubated under the same experimental conditions with only cell culture medium. Values represented as means \pm s.d (n = 3).