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Supporting Information 
 
Facial registration 
The 3dMD system uses two stereo camera units (each containing two stereo cameras, 
one above the other), mounted at approximately 45o to the left and right of the 
participant, roughly a metre away. Stereo triangulation algorithms match surface 
features recorded by each unit, yielding a single 3D surface. Additional cameras on 
each unit produce colour photographs that are merged and matched to the 3D surface 
by another algorithm, producing the 'texture' map, which, for example, portrays skin 
and eye colour. 
 
The 3D face images generated by the 3dMD 3D camera system are provided in the 
form of a triangulated mesh (Fig. S1A). Each vertex has associated with it a 3D 
location and an RGB appearance value. However, the identity of each mesh vertex at 
this stage is unknown, and the number of vertices varies from image to image. Here 
we describe the process of fitting the mesh of a generic face model to this mesh; the 
result is a standardised triangulated mesh in which the identity of each node in the 
mesh is known (Fig. S1B). This process is known as mesh registration. A complete 
description of the process can be found in Tena et. al. [1]; more detail can be found in 
Tena Rodriguez [2]. We summarise the process here. 
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Fig. S1 
Example of triangulated mesh prior to (A) and after (B) registration, and locations of 
14 manual landmarks (C) (with left corner of mouth and left corner of nose obscured 
by the orientation). 
A)                 B) 
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C) 

 
 
The generic face model consists of a triangulated mesh describing the surface of a 
human face. Each vertex of the model mesh has an initial 3D location and a 
predefined ID that identifies it as belonging to a specific part of the face. The model 
has an associated set of tools that can warp it to progressively align its surface with 
that of an input face mesh. 
 
There are four main steps to the registration process: 
 
1. Landmarking, in which 14 predefined salient landmarks are identified in the 3D 
input image. In order to match faces so that measurements at particular points 
correspond to one another in a meaningful way, each 3D photograph was manually 
'annotated' at 14 landmarks. This involved placing a visual marker with a mouse 
cursor, for each photograph, on the nose tip, chin tip, labiomental crease, nasion, both 
corners of the mouth, the top and bottom of the lip, both sides of the nostrils, and each 
corner of each eye (Fig. S1C). This process was done manually by 3 different people 
for each photograph, and the mean position and corresponding model vertex ID 
recorded.  
 
2. Global fitting, in which landmarks identified on the input mesh are used to warp the 
model so that corresponding landmarks in the model are brought into exact 
correspondence with them. The Thin Plate Spline algorithm [3] was used for the 
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warping; this minimises the local deformation of the model as the landmarks are 
being brought into correspondence. 
 
3. Local matching, in which, for each model vertex, the most similar vertex in the 
input mesh is identified. Similarity is defined here as the negative of the Euclidean 
distance between the vertices. 
 
4. Energy minimisation, in which the model mesh surface is warped to align more 
closely with that of the input mesh, guided by the correspondences found in the 
previous stage. The energy Etot that is minimised is the weighted sum of external and 
internal energy terms: 
 

	Etot = Eext + εEint  , 

 
where ε is a weighting parameter, 	Etot  denotes the distance between the n input and 

model mesh vertices, 			 x i ,i =1…n{ }  and 			 !x i ,i =1…n{ }  respectively: 

 

			 
Eext = !x i − x i( )2

i=1

n

∑  , 

 
and 	Eint  is a smoothness constraint that minimises the deformation of 

the model: 
 

			
Eint = x i − x j( )− x i − x j( )( )2

j=1

m

∑
i=1

n

∑  , 

 
where 		{xi , 	i = 	1.	.	.	n}denotes the original positions of the model mesh vertices, and 

		j =1...m  are the neighbours of vertex 	i . The weighting parameter ε  was set to 0.25, 
and the conjugate gradient method was used for the energy minimisation. 
 
Steps 3 and 4 of the above steps are combined in an iterative coarse-to-fine process. 
In the first two iterations, a reduced-resolution model (845 vertices) is used, while in 
the last two, the full-resolution model (3,300 vertices) is used. Hence the complete 
algorithm can be summarised as: 
 

• Landmarking 
• Global fitting 
• Iterate 2 times with reduced resolution model: 

o Local matching 
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o Energy minimization 
• Iterate 2 times with full resolution model: 

o Local matching 
o Energy minimisation 

 
Heritability of registered data 
Heritabilities of the registered face data were estimated using the 3dMD data 
collected from the TwinsUK sample described in the main text. For each facial 
variable in turn (total 3x29,658=88,974), the variables VMZ and VDZ were obtained by 
taking half the mean squared difference in phenotypic measurements between 
members of twin pairs, using the available 357 MZ and 394 DZ pairs. Heritabilities 
were then calculated as 		(VDZ −VMZ )/(VDZ −

1
2VMZ ) [4]. This estimator provides similar 

results to Falconer's Formula [5] when the extent of dominance is low, but has more 
desirable properties when there is substantial dominance, which is a possibility in this 
case. These were plotted as a heat map on the average face calculated from the PoBI 
data, assigning colours using the colorRampPalette function in R (Fig. S2). The x 
variables are notable for having a strip of very low heritability down the center of the 
face, which is likely to be due to the situation of 6 landmarks in this region.  
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Fig. S2 
Heritabilities of original vertex data, after registration but before transformation into additive genetic values, plotted on the average face.  

A) Heritabilities of X (left-right) coordinates 
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B) Heritabilities of Y (height or superior/inferior) coordinates 

 
 



	 8	

 
 
 

C) Heritabilities of Z (depth or dorsal/ventral) coordinates 
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Additive genetic value prediction (AGVP) 
We present a method (denoted AGVP for additive genetic value prediction) for 
increasing the genetic signal present in a multidimensional phenotypic dataset where 
there are genetic correlations between measurements (i.e., where individual genetic 
variants affect a group of facial measurements). This is done without any reference to 
molecular genetic data. Rather, we interrogate the covariances between relatives' 
(here, twins') facial measurements. The resulting data, enriched for genetic signal, 
should be more amenable to subsequent genetic analysis, and increase the statistical 
power of genotype to phenotype comparisons. 
 
The data consist of the original facial surface measurements 	

xij , which are continuous 

random variables describing a position in one-dimensional space, where i and j are 
indices for individuals (total n) and variables (total m) respectively. These have 
already been registered using the procedure described above. In the present 
application 	m≈ 90,000, as there are approximately 30,000 registered surface 'points' 
each with positions in 3 dimensions.  
 
To increase the heritability of facial surface measurements, we aim to estimate the 
unobserved values 		Ee[X j | g] , where the expectation is taken over the stochastic 

environmental effects (	Ee  ), for a given individual and for each measurement j, where 

	
X j  is the random variable of which 	

xij is a realisation for the ith individual of the jth 

measurement, and	g  represents a random vector of genotypes. Henceforth we denote 

		Yj = Ee[X j | g]  as a random variable with respect to genetic effects. In the quantitative 

genetics literature, the departure of 	
Yj  from its population mean would be termed the 

genetic value. Under purely additive genetic effects (no dominance or epistasis), the 
assumption we rely on below, it is known as the breeding value or additive genetic 
value (AGV).  
 
The objective is to predict 	

yij , the realised AGV for individual i at measurement j, 

which cannot be directly observed, using the set of facial surface measurements taken 
on the same individual: 		{xik :k∈1,2,3...m} . This is performed for each j in turn. Each 

	Xk  is modelled as  

 

	Xk =Yk + εk            (1) 

 
for all k in 1,2,3...m, where 	εk  represents the effects of the environment. We assume 

that 		Ee[εk | g]=0 , i.e. that there are no gene-environment interactions.  
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We minimise the expected least squares error,
 

 

		EgEe[(Yj − θ jk Xkk=1
m∑ )2 | g]  ,                              (2)                                                             

 
with respect to each coefficient 	

θ jk  , which represents the predictive influence of 

variable 	Xk  on variable 	
X j . This double expectation is taken with respect to the 

stochastic environmental and genetic effects (	Ee and 	
Eg  respectively).  

 
Unbiasedness Constraint 
We apply the constraint  
 

		x j = θ jk xkk=1
m∑ ,          (3) 

 

where 
		
x j =

1
n

xiji=1
n∑ . Put another way, the predictor, when run on the 'average 

individual', must return the values for the 'average individual'. Under the proposed 
model (Equation 1) 		EgEe[Xk | g]= EgEe[Yk | g] , so, the constraint implies that 

 

 
		
EgEe θ jk Xkk=1

m∑ | g⎡
⎣⎢

⎤
⎦⎥
= EgEe X j | g⎡⎣ ⎤⎦ = EgEe X j | g⎡⎣ ⎤⎦ = EgEe Yj | g⎡⎣ ⎤⎦           (4) 

 

where 
		
Xk =

1
n

Xiki=1
n∑ , meaning that the estimator 		 θ jk xkk=1

m∑  
is unbiased, as 

		
EgEe θ jk Xkk=1

m∑⎡⎣⎢
⎤
⎦⎥
= EgEe θ jk Xkk=1

m∑⎡⎣⎢
⎤
⎦⎥

. However, without applying this constraint, 

		
EgEe θ jk Xk | gk=1

m∑⎡⎣⎢
⎤
⎦⎥

 does not necessarily equal 		EgEe[Yj | g], and so the estimator is 

not necessarily unbiased.
 
 

 
 
 
With the constraint applied, the quantity to be minimised becomes  
 

		EgEe[(Yj − θ jk Xkk=1
m∑ )2 | g]+2λ j(x j − θ jk xkk=1

m∑ ) ,
      (5)

 

 
where	

λ j  is a Lagrangian parameter. 
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Solution using additive genetic covariance 
As it is assumed that the expectation of the environmental effects, conditioned on 
genotype, is zero (i.e. that there are no gene-environment interactions) then, using 
Equation 1, 
 

		EgEe[Yj θ jk Xk | gk=1
m∑ ]= θ jkk=1

m∑ EgEe[Yj(Yk + εk )| g]= θ jkk=1
m∑ Eg[YjYk | g]  ,            (6) 

 
so Expression 5 expands to 
 

		Eg[Yj2 | g]+ θ jkθ jlEgEe[XkXl | g]l=1
m∑k=1

m∑ −2 θ jkEg[YjYk | g]k=1
m∑ +2λ j(x j − θ jkk=1

m∑ xk ) .
  

           (7) 
 
After cancellation of terms that are equal due to the Lagrangian constraint, Expression 
7 becomes 
 

		varg(X j )+ θ jkθ jl covt(Xk ,Xl )l=1
m∑k=1

m∑ −2 θ jk cov g(X j ,Xk )k=1
m∑ +2λ j(x j − θ jkk=1

m∑ xk )  

           (8) 
 
where 		covt(Xk ,Xl )  represents the total covariance between variables k and l, 

		varg(X j )  represents the genetic variance component for variable j and 		cov g(X j ,Xk )  
represents the genetic covariance component between variables j and k. To proceed, 
we assume that the full effects of alleles can be well-approximated by their additive 
effects, and so substitute 		cov g(X j ,Xk )  with 		cova(X j ,Xk ) , the additive genetic 

covariance, which can be estimated by taking the covariance between twins with 
respect to the population mean, devalued by inverse relatedness: 
 

		 (xp1 j − x j )(xp2k − xk )p=1
npairs∑ /rp(npairs −1) ,      (9) 

 
where p is a twin pair index, 	

npairs  is the number of pairs, 		xp1 j is the measurement on 

the first of the pair for variable j, and 		xp2k the measurement on the second of the pair 

for variable k. We represent the coefficient of relationship between the twins in the 
pair as 	

rp , which is 1 for monozygotic (identical) twins and 0.5 for dizygous (non-

identical) twins. Expression 9 assumes that effects attributable to pairs' shared family 
environments are negligible, though it would be possible to accommodate for this 
using standard techniques [5]. Shared family environment components are typically 
found to be very small [6], and this is especially likely to be the case for facial 
phenotypes, so we take this assumption to be reasonable. It is possible, using 
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Expression 9, to estimate the additive genetic covariance using pairs of more distantly 
related individuals, e.g. those from a population sample, so long as sufficient 
molecular genetic data are available for calculating their coefficients of relationship.  
 
To minimise Expression 8 we differentiate with respect to each 	

θ jk . Setting the 

resulting partial derivatives zero, we obtain the solution 
 

		

θ j1

θ j2

θ j3

...
θ jm

λ j

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

vart(X1) covt(X1 ,X2) covt(X1 ,X3) ... covt(X1 ,Xm) x1
covt(X2 ,X1) vart(X2) covt(X2 ,X3) ... covt(X2 ,Xm) x2
covt(X3 ,X1) covt(X3 ,X2) vart(X3) ... covt(X3 ,Xm) x3

... ... ... ... ... ...
covt(Xm ,X1) covt(Xm ,X2) covt(Xm ,X3) ... vart(Xm) xm

x1 x2 x3 ... xm 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−1 cova(X1 ,X j )
cova(X2 ,X j )
cova(X3 ,X j )

...
cova(Xm ,X j )

x j

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
 . (10)

 

 

The predicted AGVs, for each i and j, are then 		 ŷij = θ jk xikk=1
m∑ . Equation 10 is 

analogous to the Universal Kriging estimator used to predict quantities for variables 
of interest, e.g. mineral levels, at particular geographic locations, based on 
measurements of the same variable taken at other locations nearby [7].  
 
As each variable j is treated independently, all of their coefficients can be represented 
in the single equation 		P=T−1A , where  
 

  

			

P=

θ11 θ21 ... θm1
θ12 θ22 ... θm2
θ13 θ23 ... θm3
... ... ... ...
θ1m θ2m ... θmm
λ1 λ2 ... λm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ ,

 

			

T =

vart(X1) covt(X1 ,X2) covt(X1 ,X3) ... covt(X1 ,Xm) x1
covt(X2 ,X1) vart(X2) covt(X2 ,X3) ... covt(X2 ,Xm) x2
covt(X3 ,X1) covt(X3 ,X2) vart(X3) ... covt(X3 ,Xm) x3

... ... ... ... ... ...
covt(Xm ,X1) covt(Xm ,X2) covt(Xm ,X3) ... vart(Xm) xm

x1 x2 x3 ... xm 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ , and  

 

			

A =

vara(X1) cova(X1 ,X2) ... cova(X1 ,Xm)
cova(X2 ,X1) vara(X2) ... cova(X2 ,Xm)
cova(X3 ,X1) cova(X3 ,X2) ... cova(X3 ,Xm)

... ... ... ...
cova(Xm ,X1) cova(Xm ,X2) ... vara(Xm)

x1 x2 ... xm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥ .
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Fitting process using facial subsets  
Ideally the linear predictor

 
uses all facial variables 		{xik :k∈1,2,3...m}  as described 

above, where m is the total number processed and registered from the camera system 
(approximately 3x30,000=90,000). However, computational limitations prevent this, 
so a workaround is proposed whereby analysis is restricted to rectangular subregions 
of the face. These are selected based on visual inspection of an image of the average 
face (Fig. 1). Vertices that fall within the subregion on the average face are taken 
forward for AGVP analysis in all individuals, so that the number of variables remains 
constant across individuals.  
 
Two subregions, henceforth referred to as 'profile' and 'eyes', were defined for AGVP 
analysis and subsequent genetic association mapping. The constituent vertices of 
these sub-regions are highlighted according to their positions on the average face in 
Fig. 1. These two particular regions were chosen, fairly informally, on the basis that 
they are among the most strongly identifying aspects of the face. The eyes subregion 
contains 2763 vertices, each in 3 dimensions, giving 3 x 2763 = 8289 variables for 
analysis, whereas the profile subregion contains 1646 vertices. Only the Y (height) 
and Z (depth) dimensions were used, giving 2 x 1646 = 3292 variables for analysis, as 
the X (width) dimension of the profile is both less characteristic of appearance and 
less heritable (Fig. S2A). 
 
5-fold cross validation for protection against overfitting 
The method above is susceptible to overfitting due to the involvement of a large 
number of variables. To guard against this, a ridge penalty is applied to the 
parameters 		{θk :k∈1,2,3...m}  so that 		T−1  is now 

 

		

vart(X1)+Λ covt(X1 ,X2) covt(X1 ,X3) ... covt(X1 ,Xm) x1
covt(X2 ,X1) vart(X2)+Λ covt(X2 ,X3) ... covt(X2 ,Xm) x2
covt(X3 ,X1) covt(X3 ,X2) vart(X3)+Λ ... covt(X3 ,Xm) x3

... ... ... ... ... ...
covt(Xm ,X1) covt(Xm ,X2) covt(Xm ,X3) ... vart(Xm)+Λ xm

x1 x2 x3 ... xm 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−1

. 

 
Predicted AGVs cannot be compared with any measured values in order to calculate 
an error rate for the fitted model, as it is not possible to observe AGVs directly. 
However, AGVs, representing purer genetic effects rather than the original variables, 
should have higher heritabilities. Therefore, 5-fold cross-validation was used to find a 
value of Λ  that gave high-quality AGV predictions as measured by the mean 
heritability taken across AGV variables. 1567 TwinsUK individuals were split into 5 
validation sets, each consisting of 50 MZ and 50 DZ pairs (200 individuals), and a test 
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set consisting of 107 MZ and 144 DZ pairs (502 individuals). Leaving out a single 
validation set, and for a fixed value of Λ , AGVP analysis was performed using the 
remaining 865 individuals (200 MZ and 200 DZ pairs, plus 65 unrelated individuals), 
and the fitted model applied to each validation set in turn. Using the excluded 
validation set alone, heritability was calculated for the predicted AGVs as previously 
described [4], and the mean heritability taken across all facial variables under 
analysis, giving a heritability score. This was repeated in turn for each validation set, 
and the mean and standard error of the heritability score taken over the 5 sets, giving 
an overall score with associated standard error for the starting value of Λ . This 
process was repeated for different values of Λ , using identical validation and test 
sets, thus obtaining a mean and standard error for the heritability score for each Λ . 
The range of values over which to increment Λ  was set to 1,2,3...10, for both 
subregions. The optimal value of Λ  was chosen by subtracting one standard error 
from each mean heritability score, and picking the Λ  giving the highest resulting 
value. For both the profile and eyes subregions, the optimal value was 	Λ =10 . 
Finally, this optimal value was used to fit an AGVP model using all the data apart 
from the test set, which was used to assess the heritabilities in the same way; taking 
heritabilities of predicted AGVs for each phenotypic variable, then taking the mean 
across variables. The mean heritability was 76.1% for the eyes sub-region and 81.5% 
for the profile sub-region, compared to 69.8% and 76.6% for the original variables 
respectively. Perhaps more importantly, the variance in heritabilities was also 
reduced, as original variables with very low heritabilities had much improved 
heritabilities in the predicted AGVs (Figs. 2 and S3). 
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Fig. S3 
Comparison of heritabilities in original variables versus additive genetic values 
(calculated using an independent test set) for the eyes subregion. Fig. 2 in the main 
text shows the equivalent data for the profile subregion. 

 
 
Selecting a subset of facial Principle Components  
Shape translation and PCA were performed as described in the main text (Materials 
and Methods). The largest 50 PC axes then were inspected for promising phenotypes 
using two criteria: 
 a) Heritability of each PC axis as determined using the PC scores of the 1567 
TwinsUK individuals and b) The squared difference between the mean PoBI 
(European) PC score and the mean East Asian score, taken as a ratio against the 
within-population variance. Plots of these statistics are shown in Fig. S4. PCs with 
heritability>0.75 or heritability>0.65 and a population variance ratio of >1 were taken 
forward for genetic association analysis. 
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Fig. S4 
European/East Asian differences (between/within population variance ratios) and 
heritabilities for largest 50 PCs performed on facial additive genetic values. Size of 
circles indicate the rank of the corresponding PC, and red circles denote PCs taken 
forward for genetic association analysis. Filled in circles denote phenotypes for which 
SNP associations were replicated. The x-axis has been limited to the interval [0,1]. 
Some small PCs had heritabilities below zero.  

A) Eyes subregion 

 
B) Profile subregion 
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Genotype quality control 
Discovery data 
The intersection between the two platforms (Illumina Human 1.2M-Duo and Illumina 
Infinium OmniExpress-24 BeadChip 750K) was 547,863 SNPs. Prior to QC there 
were 3,735 genotyped DNA samples, constituting 3,616 unique individuals. 
 
151 individuals were removed due to unusual genotyping on the sex chromosomes 
that did not correspond with their reported sex. Self-reported females were removed if 
Y chromosome missingness was less than 50% and excess homozygosity on the X 
chromosome, as determined using PLINK's F-statistic, was greater than 0.3. 
Similarly, self-reported males were removed if Y chromosome missingness was 
greater than 50% and excess homozygosity on the X chromosome was less than 0.8. 
14,987 SNPs and 63 individuals with genotyping rates less than 1% were discarded. 
52 individuals were removed for having a genomewide F statistic greater than 3 
standard deviations from the population mean; all 52 showing an excess rather than 
deficit in homozygosity, probably due to parental relatedness. One individual with an 
extreme F statistic of 0.13 was confirmed from our paperwork as having parents who 
were probably first cousins. Markers were removed due to showing evidence for a 
departure from Hardy-Weinberg Equilibrium (3276 SNPs), using a cutoff of P less 
than or equal to 10-4. 24 individuals showed some remaining evidence of a mismatch 
between self-reported and SNP-determined sex (based on PLINK's X-chromosome 
homozygosity scores with F<0.2 suggesting female and F>0.8 male) and were 
removed due to probable mislabelling or contamination. Of these, 21 were in the 
WTCCC2 exclusion list (Genetic Analysis of Psoriasis et al., 2010) and 3 were 
genotyped after the WTCCC2 study. 5 samples' sex discrepancies were best explained 
by ID mismatches, as they showed full relatedness with other individuals. Relatedness 
was assessed using a subset of 74,615 SNPs with pairwise r2<0.1. A number of 
samples otherwise passing QC were removed due to close relatedness or due to being 
duplicates of the same individual. 64 known duplicated samples and 187 individuals 
with an identity-by-descent statistic greater than 0.125 (equivalent to first cousins) 
with at least one other individual were removed. 30 of these samples were removed 
due to full relatedness with a different individual's sample. All apart from 2 could be 
attributed to either a) genotyping, contamination or misidentification issues meaning 
that they were present in the WTCCC2 exclusion list, b) multiple sample collection 
events visited by the same person, identified by examining paperwork, or c) in one 
instance, identical twins. 
 
Principal Components Analysis was performed using the same 74,615 SNPs with 
r2<0.1 and the largest 5 axes inspected visually for outlying samples. The largest 
Principal Component contained a cluster of 33 outlying individuals (> 3 standard 
deviations from the mean) that could not be attributed to population structure or batch 
effects. A large proportion of these individuals were found to be nearby to one 
another on the same genotyping plate, suggesting contamination of DNA. All 33 
samples were removed.  



	 18	

 
As genotyping was performed in 7 different batches, 2x3 chi-square tests were 
performed in turn between each batch and all other combined batches, for each SNP, 
to detect possible batch effects. Using a P-value threshold of 10-6, 5024 SNPs were 
found significantly associated with genotyping batch, and were consequently 
removed. After QC, genotypes for 3161 individuals (1532 male, 1629 female) and 
524,576 SNPs were retained for association analysis.  
 
Replication data 
TwinsUK genotype data were available on two platforms; 1278 samples represented 
by 2,287,998 array-typed SNPs and 612 whole-genome sequenced samples 
(19,725,734 autosomal variants). Separate QC procedures were performed for the two 
platforms before merging. For the array data, 81 samples with a genotype call rate 
less than 5% were removed. Examining the distribution of F-statistics for individuals 
with extreme levels of homozygosity, 3 individuals stood out as clear outliers with F-
statistics 4 standard deviations above the mean, and were removed. For sequenced 
samples, 326,065 variants with genotyping call rates of less than 1% were removed. 
Distributions of heterozygosity F-statistics were examined and 12 outlying individuals 
greater than 3.25 standard deviations from the mean removed (7 with excess and 5 
with deficient heterozygosity). After merging the array and sequencing data and 
retaining variants common to both sets, there were 1,887,250 variants and 1794 
samples, 1275 of whom were unique individuals. Duplicate samples due to 
individuals being both array-typed and sequenced were eliminated by discarding the 
array sample. The largest PC axes derived from the genotype data were inspected for 
any evidence of batch effects between array-typed and sequence data, with none 
found. 
 
Candidate SNP list 
Candidate genes were chosen by reviewing the literature on human facial 
dysmorphias and facial morphologies in other species, in order to produce a list of 
regions with prior evidence for involvement in facial features, which can be therefore 
be subjected to less-stringent multiple comparisons correction. Based on the literature 
findings, additional searches were performed in the Online Mendelian Inheritance in 
Man (OMIM) and Ensembl databases. There are 381 genes/regions in the candidate 
database, representing 168 different dysmorphic facial features. Large candidate 
regions (approximately 1Mb or larger) were broken down so that only the genic 
subregions were retained. SNPs were designated candidates if they were located 
within 75Kb of a candidate region, allowing for LD tagging of functional variants by 
non-functional SNPs physically close to the relevant gene. This yielded a list of 66,769 
candidate SNPs. 
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Genetic association analysis (discovery) 
In order to investigate the hypothesis that there are genetic variants conferring large 
effects on facial morphology, we focus on individuals with facial features that can, in 
some sense, be considered 'extreme' relative to the general population. We therefore 
dichotomised our PCA based facial phenotypes into subsets of upper and lower 
extremes, which constitute the top and bottom 10% of individuals when ranked 
according to their scores for each PC. Ranking was performed within 1423 
individuals (652 males and 771 females) for whom both genotype and phenotypic 
data were available. Ranking was performed separately within each sex. For 
visualisation purposes, average faces (Figs. 4, 5 and 6) within each extreme were 
produced from the original values using a Matlab script, by plotting the arithmetic 
mean for each coordinate measurement of each vertex, among all individuals falling 
into the designated extreme, and overlaid with a surface texture. Only females were 
used to produce average faces, so as to facilitate comparison with the TwinsUK data, 
which are almost entirely female. Average faces were produced using all East Asian 
females and all British (PoBI) females separately.  
 
For each PC selected for further analysis (5 in each subregion), upper extremes were 
tested against all remaining individuals (including both the lower extremes, 
individuals in neither extreme plus the 1738 non-phenotyped PoBI individuals 
remaining after genotype QC) by analysing the 3x2 tables of genotypes (aa/Aa/AA 
where a represents the minor allele) versus extreme/control status, for all 512,181 
autosomal SNPs. This procedure was repeated for the lower extremes, combining 
non-phenotyped PoBI individuals with individuals falling outside of the lower 
extreme as the control sample. All association analyses were performed twice; for 
female extremes (incorporating all males into the control set - approx. 77 extremes, 
3084 controls), and combined male and female extremes (approx. 142 extremes, 3019 
controls). Males were not analysed alone as the TwinsUK sample used for replication 
is almost entirely female, so there would be no appropriate means of re-testing 
associations. In total, there were 4 association analyses performed for each PC under 
consideration, due to separate testing of both upper and lower extremes.  
 
Selection of appropriate statistical test 
The relatively small number of extreme individuals motivated a careful selection of 
the appropriate statistical test for contingency table significance. This is especially 
pertinent when examining models of inheritance involving the effects of minor allele 
homozygotes, which can be quite rare even when an allele is common. In order to 
establish the most appropriate test, null hypothesis simulations of 3x2 tables were 
performed, and the type-I error rates quantified. Previous work [8] has demonstrated 
that, when the numbers of observations are small and very low P-values are required, 
e.g. less than 5x10-8 for genomewide significance, a variety of traditional frequentist 
tests are conservative, either due to asymptotic assumptions breaking down, or due to 
inherent conservativeness in the case of Fisher's Exact test. Simulations performed 
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under our study design, which in contrast with Bigdeli et. al. [8], had unequal 
proportions of extremes versus controls, found that most of these tests are anti-
conservative. Fisher's exact test controlled the type-I error well in simulations, but 
was not chosen as it is often conservative and may reduce power. The best performing 
approximate test, showing only mild deflation of P-values within the borderline 
genomewide significance range (10-5 to 10-6) (Fig. S5A), was an implementation of a 
Wald test, in which standardised log odds ratios under recessive and dominant models 
were tested against an N(0,1) distribution for significant departures from 0. In order to 
ensure null simulated P-values were close to their expected distribution at high levels 
of significance (approx. P<10-4), it was necessary to apply a standard correction to the 
estimated OR, adding 0.5 to each cell in the contingency table [9], and to account for 
this transformation in the expected value of the test statistic when evaluating against 
the Null distribution (Details in caption of Fig. S5). As in the discovery analysis, the 
best fitting inheritance model of the two (lowest P-value out of recessive and 
dominant) was taken as the P-value for the table in question, after multiplying by 2 
(setting to 1 if it exceeds 1) to account for two tests being performed. Variants with an 
observed minor allele frequency equal to or less than 10% were excluded to further 
ensure accurate control of type-I error, and to improve the appearance of volcano 
plots (effect sizes versus significance).  
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Fig. S5 
A) Distribution of Wald test P-values from 108 simulations of genotypes for 77 cases 
and 3084 controls, assuming no true effect of genotypes on case/control status. P-
values are plotted for both recessive and dominant inheritance models together (2x108 
P-values total). For each replicate, an allele frequency was drawn from a beta 
distribution with both shape parameters set to 0.8, roughly equivalent to the 
distribution seen on a SNP chip. Individual genotypes were then drawn from a 
binomial distribution based on this allele frequency, assuming Hardy-Weinberg 

equilibrium (HWE). Wald statistics were calculated as 		 lnθ̂obs − lnθ̂exp( )2 /σ̂ 2  and 

evaluated against a chi-square distribution with 1 degree of freedom (equivalent to 
comparing the square root of this value to both tails of an N(0,1) distribution), where 

	θobs  is the observed OR from the appropriate 2x2 table (dominant or recessive 

inheritance model) after adding 0.5 to each cell, and 

		θexp = (e11 +0.5)(e22 +0.5)/(e12 +0.5)(e21 +0.5) , where 		 e11 ,e12 ,e21 ,e22{ } is the set of 

expected genotype counts. Expected counts are produced using the number of cases 
and controls together with the minor allele frequency, 		p̂  , which is estimated from the 

full set of genotypes (e.g. for a recessive 2x2 table 		e11 = p̂
2 ×ncases ). The denominator 

of the Wald test statistic is 		σ̂
2 = 1

o11+0.5
+ 1

o12+0.5
+ 1

o21+0.5
+ 1

o22+0.5
 where 		 o11 ,o12 ,o21 ,o22{ }  is 

the observed set of genotype counts. The 95% confidence regions are shown in grey.  
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B) Distribution of 107 P-values from Pearson's chi-square test, under the same Null 
hypothesis simulations, showing serious deflation. Similar results are obtained when 
using Yates' correction. 

 
 
The Wald test was applied to the PoBI extreme/control PC-based phenotypes for all 
SNPs passing QC. Figs. 3, S6 and S7 display results from the discovery analysis 
relating to SNPs that subsequently replicated in our follow up analysis. Fig. S5B 
shows the serious departure from the expected linear relationship between the 
observed and expected P-value quantiles that is obtained for the Pearson's Chi square 
test as compared to the Wald test. 
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Fig. S6 
A) PC7, profile, females, upper extreme volcano plot (see main text for details). 

The rs11642644 association is highlighted in green along with 3 other 
discovery associations, and the green lines denote the P-value (10-4) and OR 
(9) thresholds for following up associations with large effects. The blue line is 
the follow-up threshold for candidate SNPs of any OR.  
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B) PC7, profile. Belonging to the upper 10% is associated with polymorphism at 
rs11642644 in females. The size of the East Asian histogram has been 
magnified by 10 times for visualisation purposes. Dotted lines show the upper 
and lower 10% quantiles 
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Fig. S7 
A) PC1, eyes, combined sexes, upper extreme volcano plot. The rs7560738 

association is highlighted in green. The red line indicates the genomewide 
significance threshold and the green lines denote the P-value (10-4) and OR (9) 
thresholds for following up associations with large effects. 
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B) PC1, eyes. Belonging to the upper 10% is associated with polymorphism at 
rs7560738. The size of the East Asian histogram has been magnified by 10 
times for visualisation purposes. Dotted lines show the upper and lower 10% 
quantiles 

 
 
Replication analysis 
Variants passing any of the three criteria for follow-up (see main text) were analysed 
in the TwinsUK cohort (see the 'genotype quality control' section for QC procedures). 
Although this dataset was used previously to produce estimates of the AGVs, which 
were the foundation of the discovery analysis above, it nevertheless constitutes a valid 
and unbiased replication set, as the AGVP method makes no reference to DNA data.  
 
1271 of the 1275 TwinsUK individuals with genotype data after QC had available 
facial phenotypic data, 599 of which were sequenced and 1190 array-typed (with 518 
being both sequenced and array-typed). One complication of replication analysis was 
the presence of many related individuals in the TwinUKs data. Among the 1275, there 
were 246 MZ twins, 327 DZ twins, and 129 unrelated individuals. The median age 
was 61 (mean=59.50, sd=9.70) on the date of photographic phenotyping (between 
2009-2012 with most photographed in 2010/2011). Just 4 of these individuals were 
male. 
 
As in the discovery analysis, individuals were ranked according to their PC scores and 
categorised into upper and lower extremes (top and bottom 10%). Average faces were 
calculated, within each extreme, as in in the discovery analysis. All profile- and eyes-
associated discovery SNPs were tested for association in the replication dataset using 
Wald tests as in the discovery analysis. A notable difference between the two analyses 
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is that a high proportion (1271/1275) of the TwinsUK genotyped and QC samples 
have phenotypic data available, whereas 1738 of 3161 PoBI individuals were not 
phenotyped and treated as 'unscreened' control samples. The correction for discrete 
distributions (adding 0.5 to each contingency table cell) was not applied to the 
replication Wald tests, as permutation was used to ensure accurate control of Type-I 
error, and was computationally feasible due to the relatively small number of required 
tests. 
 
In total, 17 profile-associated and 12 eyes-associated SNPs were taken forward for 
replication analysis. Of the 12 eye-associated discovery SNPs, 1 (rs2039473, eyes 
PC3 associated in females) was not present on the TwinsUK genotyping platform and 
not pursued further. After removing a single SNP having r2 > 0.1 with another 
discovery hit (retaining the SNP with the highest OR in the discovery analysis), 16 
remained associated with profile phenotypes, with all 11 remaining eyes-associated 
SNPs retained as independent associations. For each of the 27 SNPs, association was 
only tested for the extreme, either upper or lower, PC with which it was associated in 
the discovery analysis. To increase power, control samples from the appropriate 
discovery analyses were incorporated into the replication contingency tables before 
testing. For each SNP, a Wald test was performed under whichever inheritance model 
was found most significant in the discovery analysis (recessive in all cases), and the 
total number of tests performed was 27, equal to the number of SNPs tested for 
replication.  
 
Procedure for dealing with the relatedness between MZ and DZ twins 
A complication in using the TwinsUK cohort as a replication dataset is the high 
degree of relatedness between MZ and DZ twins. Removing all related individuals 
satisfies the requirements for independent samples required by standard statistical 
analyses, but also loses information and results in an arbitrarily chosen set of 
unrelated samples. To address these issues, we first treated MZ twins as a single 
composite individual by averaging over their phenotypic measurements; for each PC 
phenotype (before assignment of extreme/control status) we took the mean of each 
MZ pair and assigned this phenotypic value to their shared genotype. Averaging over 
each member of the MZ pair reduces the influence of environmental variation in the 
facial phenotype associated. After removing one member of each MZ pair, leaving a 
sequenced over an array-typed member where possible, 1029 individuals remained, 
1025 of which had image data. Of the 1029, 654 were DZ individuals (327 pairs), 129 
were unrelateds and 246 MZ twins remained without any of their related pair 
members.  
 
We dealt with the presence of DZ twins by performing 10,000 random selections of a 
list of unrelated DZ twins plus, for a random half of those individuals, their twin 
relative. The most significant FDR-adjusted P-value over the 10,000 selections was 
taken as the overall observed P-value. Each random selection was again permuted to 
obtain 10,000 P-values distributed under the Null Hypothesis of no association. 
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Related DZ twins had their genotypes drawn randomly according to Mendelian 
inheritance laws from 2 simulated parents (each with randomly drawn genotypes 
under Hardy-Weinberg Equilibrium using the observed allele frequency). Each 
related pair's PC phenotypes were simulated as two N(0,1) distributed variables with 
50% correlation. This is equivalent to the quite conservative assumption that the 
phenotype is 100% heritable. Then, individuals in the top theoretical decile of this 
distribution were designated as extremes before testing. Unrelated individuals were 
permuted by randomly shuffling their case/control statuses. Empirical P-values were 
obtained by comparing the overall observed P-value with the permuted P-values. For 
each SNP separately, the observed P-values were adjusted for 10,000 tests being 
performed using the Benjamini-Hochberg method [10], and the most significant P-
value after adjustment taken as the overall single P-value for that SNP. This was then 
compared with the 10,000 permutated P-values to obtain an empirical P-value (

		P = (M +1)/(N +1)  where 	M  is the number of permuted P-values lower than the 
observed P-value and 	N  the total number). These were converted to 1-tail tests by 
dividing by 2 if the effect size was in the correct direction (based on the expectation 
from the discovery analysis) or dividing by 2 and subtracting from 1 otherwise. The 
distribution of these empirical, 1-tailed P-values, as compared to the expected values 
based on their ranks, is shown in Fig. S8, with those passing an FDR of 5% 
highlighted, and the deviation from the expected line under no associations is clear. 
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Fig. S8 
Quantile-quantile plot of the 27 replication P-values from permutation analysis of the 
TwinsUK data. The 95% confidence region is shown in grey, and SNPs passing an 
FDR of 5% are highlighted in red. Circles and crosses denote eyes and profile 
associations respectively. 

 
 
Analysis of combined discovery and replication data 
Contingency tables for replication analyses were produced using the rounded mean 
cell counts over random selections, and these were used to estimate the ORs. The 
combination of these tables together with the PoBI discovery data was used to 
perform a Wald test (applying the 0.5 correction factor) for significance and for the 
estimation of the overall OR. 
 
Assessment of evolutionary conservation 
Species comparisons were made between humans and primates using ensembl's 
online tools (www.ensembl.org), as shown in Figure S9. 
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Fig. S9 
Conserved gene sequences around the discovery SNPs. In each case the base 
underlined in bold denotes the discovery SNP (showing the minor allele in the British 
Population), and those on a red background differ from the major allele in the human 
sequence.  
 
      A) rs2045145 in PCDH15  
           The European Human minor allele (facial extreme associated) is A, and the 
major allele is G. 
 

Human        TATATGAATTATATAGGCAGA  
Chimpanzee   TATATGAATTGTATAGGCAGA  
Gorilla      TATATGAATTGTAAAGGCAGA  
Orangutan    TATATGAATTGTATAGGCGGA  
Vervet-AGM   TATATGAATTGTATAGGCAAA  
Macaque      TATATGAATTGTATAGGCAAA  
Olive baboon TATATGAATTGTATAGGCAAA  
Marmoset     TATATGAATTGTATAGGCAAA 
 

 
B) rs11642644 in MBTPS1 

           The European Human minor allele (facial extreme associated) is C, and the 
major allele is T. 
 

Human        AGAAACGCCACGTGGCCGACC  
Chimpanzee   AGAAACGCCATGTGGCCGACC  
Gorilla      AGAAACACCATGTGGCCGACC  
Orangutan    AGAAACGCCATGTGGCCGACC  
Vervet-AGM   AGAAACACCACGTGGCCAACC  
Macaque      AGAAACACCACGTGGCCGACC  
Olive baboon AGAAACACCACGTGGCCGACC  
Marmoset     GTCAACACCATGTGGCCACCC  

 
 

C) rs7560738 in TMEM163 
           The European Human minor allele (facial extreme associated) is A, and the 
major allele is G. 

 
Human        TTTTTCAGGTAG-ACACCTGCT  
Chimpanzee   TTTTTCAGGTGG-ACACCTGCT  
Gorilla      TTTTTCAGGTGG-ACACCTGCT  
Orangutan    TTTTTCAGGTGGAACATCTGCT  
Vervet-AGM   TTTTTCAGGTGGAACATCTGCT  
Macaque      TTTTTCAGGTGAAACATCTGCT  
Olive baboon TTTTTCAGGTGAAACATCTGCT  
Marmoset     TTTTTCAGGTGGAACA-CAGCA 
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Genetic analysis of extremes in TwinsUK sequence data 
Variants that were identified as putatively causal were further analysed in sequenced 
members of the TwinsUK cohort (n=600). Dominant or recessive ORs for putatively 
functional SNPs that had similarly high OR as the discovery SNP were taken to be 
further evidence for the causal involvement of the putatively functional variant in the 
phenotype. Dominant or recessive ORs were calculated using extreme and control 
statuses assigned in the same way as before, using the reduced set of 600 individuals. 
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