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Simulation Details
Structural Constraints. To simulate a proxy for phenotype in pro-
tein sequence data that reflects the structural constraints that can
be identified using covariance analysis, we adopted a generalized
Potts model with pairwise interactions between sequence posi-
tions drawn, for example, from a protein contact map. To param-
eterize a Potts model for sequences of length p amino acids, we
need to specify an interaction matrix J of size p × p, in addition
to a mutation matrix Θ of size q × q that describes transitions
between the residues. For protein sequences Θ can in princi-
ple capture the interactions between amino acids, for example
that two amino acids with similar charges will repel each other.
This is similar to mutation matrices such as PAM or BLOSUM
that are used by other evolutionary models (1), except that here
we have the freedom to choose different mutation matrices for
different pairs of sequence positions. In the work described in
this paper, we do not specialize to a particular choice of muta-
tion matrix to avoid introducing additional potential sources of
covariance, but instead make the simplifying assumption that all
amino acid mutations are equally likely. The associated amino-
sequence probability space is given by

E(x ) = −
q∑

a,b=1

∑
i<j

JijΘab δ(xi = a)δ(xj = b)

P(X = x ) =
1

Z e−E(x), [S1]

where E(x ) is the energy of x and Z is the partition function.
For the matrix Θa,b , we generalize the Ising model as a system
of interacting spins (parallel and antiparallel) by considering a
set of spins equally spaced in a circle. This gives the planar Potts
model which extends the binary spin states to q spin states as

Θa,b = cos(2π(a − b)/q),

where a, b ∈ {1, · · · q}. We first evolve a randomly generated
starting sequence through a number (500) of proposed muta-
tions to ensure that each starting sequence will “see” and be
constrained by all of the interactions. Mutations are proposed at
random, and the energy change that would result from the pro-
posed mutation is calculated according to Eq. S1. A mutation is
accepted with probability

P(mutation accepted) = min
(

1, e−∆E
)
,

where ∆E is the change in energy caused by the mutation. If
there are no structural constraints, i.e., Jij = 0 ∀i , j , then all
mutations will be accepted.

Expected Covariance. To estimate the expected covariance for
our model, we directly calculate the value by considering the
sequence probability distribution shown in Eq. S1. To analyze a
single pairwise interaction, we first map the q states (represent-
ing the different amino acids) onto the unit circle of the complex
plane, so that each of these state has the same magnitude. The
mapping is explicitly

F : {1, · · · , q} 7→ {1, e ikθ, · · · , e i(q−1)kθ}, [S2]

where k = 2π/q . Using this mapping we find that

E(xixj )− E(xi)E(xj ) =

q∑
a,b=1

e i2π(a−b)/q eJij Θab∑
a,b e

Jij Θab

=
1

Zab

∂Zab

∂Jij
, [S3]

where Zab =
∑q

a,b=1 e
Ji jΘab . An important property of Eq. S3

is that as Jij → ±∞, E(xixj )→ ±1. In other words, the magni-
tude of the covariance saturates as the strength of the interaction
increases and cannot exceed one. If we consider the binary-state
case, then Eq. S3 becomes

E(xixj ) =
1

eJij + e−Jij

∂

∂Jij

(
eJij + e−Jij

)
= tanh(Jij ) [S4]

which saturates at large values of Jij . Using this model, the ques-
tion of what covariance we can expect from interactions drawn
from a protein contact map is briefly addressed in the main text.

The saturation of the magnitude of the covariance implies that
the largest eigenvalue caused by structural interactions also sat-
urates even as the number and strength of these interactions are
allowed to increase. Fig. 4A of the main text shows this satura-
tion as a function of the number of interactions that are included,
where the maximum interaction strength is held constant. In Fig.
S1 we further explore this phenomenon by varying both the num-
ber of interactions included and the magnitude of the maximum
interaction strength included. In these simulations the interac-
tion strengths are uniformly distributed on the interval [−s, s],
where s is the interaction strength indicated on the y axis. Fig. S1
shows that the maximum eigenvalue also saturates as the inter-
action strength increases.

For protein structure prediction, we use a one-hot representa-
tion of the sequences, which is the mapping

X : {1, · · · , q} 7→ {e1, · · · , eq}, [S5]

where ei is the i th basis vector. Then the expected covariance
between the i th and j th position is E(xix

T
j )− E(xi)E(xj )

T ,

E
(
xix

T
j

)
=

q∑
a,b=1

eaeTb
eJij Θab∑
a,b e

Jij Θab

⇒ E
(
xix

T
j

)
ab

= P(xi = a, xj = b) [S6]

E(xi) =

q∑
a=1

ea
eJij Θab∑
a,b e

Jij Θab
⇒ E(xi)a = P(xi = a). [S7]

Putting this all together gives

P(xi = a, xj = b)− P(xi = a)P(xj = b) = cov(xi , xj )ab . [S8]

This covariance measure is widely used for residue–residue inter-
action detection.

Phylogenetic Relatedness. The central goal of this work is to study
the effects of phylogenetic relatedness on the covariance matrix
of the resulting sequences. This requires a simulation that allows
us to isolate the effects of phylogeny from other potential sources
of covariance. To simulate phylogenetic relationships between
protein sequences, we consider a simple model of evolution
where there are no interactions between sequence positions as
used by the structural constraints detailed above, and further-
more there are no amino acid preferences or mutation rate
differences between different sites. As above, the only allowed
mutation events are amino acid substitutions. In this setup, all
proposed mutations will be accepted, as there is no energy dif-
ference between different proposed mutations. Initially we work
with what we term homogeneous phylogenetic trees, in which
all branches have the same length. In this case the number of
proposed mutations per branch is the same between duplication
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events for all branches so that all members of a generation of
sequences will branch or duplicate simultaneously.

We start the simulation with a randomly drawn sequence with
the required fixed length p, which we then simulate through
m mutations representing the initial branch of the tree. The
first branching event then occurs—the current sequence is dupli-
cated, and the two copies of the sequence are then independently
evolved along two parallel branches of the tree, each for m muta-
tions. At this point the next branching event occurs—in general a
branching event is where all of the sequences present are dupli-
cated, to double the number of sequences creating the next “gen-
eration” of sequences. Our simulations also explore heteroge-
neous trees, where the number of proposed mutations for each
branch is drawn from a probability distribution, and the exten-
sion of the simulation to this case is straightforward.

Expected Covariance. To examine the expected covariance gen-
erated by a phylogenetic tree, we first consider two nodes sep-
arated by 2m mutation events. We use a substitution model
with the assumption that each amino acid can mutate to any
other with equal probability; i.e., there are no phenotypic effects.
This is a stationary Markov process reminiscent of the Jukes–
Cantor model, with the property that if α(t) = E(x (0)x (t)), then
α(m + n) = α(m)α(n) (1). This yields an autocorrelation func-
tion α(t) that is proportional to an exponential, with the expo-
nent given by a relaxation rate r , where E(x (t + 1)|x (t)) =
(1− r)x (t).

To show this, we note that when there are no preferences
for mutation sites, the stationary state of the Markov chain is
the uniform distribution. Since the sequences are randomly cho-
sen and so uniformly distributed at the start of the simulation,
this Markov chain setup is stationary. The Markov condition is
given by

P(x (t + 1)|x (t), · · · , x (0)) = P(x (t + 1)|x (t)). [S9]

To see that the phylogenetic process is Markovian, we first note
that the state at t+1 can be written as x (t+1) = x (t)+v(t+1),
where v(t) is the change induced by the mutation and can be
viewed as the discrete velocity. Crucially, v(t) is dependent only
on the state x (t). This implies that x (t + 1) is solely dependent
on x (t), satisfying Eq. S9.

The Markov condition can be rewritten in expectation as

E(xj (t + 1)|xj (t)) = E(dj (t + 1)xj (t)|xj (t))
= E(dj (t + 1)|xj (t))︸ ︷︷ ︸

(A)

xj (t), [S10]

where we define dj (t) = xj (t + 1)/xj (t). Here dj (t) and xj (t)
are the j th elements of d(t) and x (t), respectively. To derive the
relaxation rate for the phylogenetic process we consider the map
of q states onto the unit circle of a complex plane given by Eq.
S2. With this mapping (A) becomes

E(dj (t + 1)|xj (t)) =
p − 1

p
+

1

p(q − 1)

q−1∑
j=1

e ijkθ

= 1− 1

p

q

q − 1
.

Substituting this back into Eq. S10 yields

E(x(t + 1)|x(t)) =

(
1− 1

p

q

q − 1

)
x(t).

Using the definition of relaxation rate, r , given above, we obtain

α(t) = α(0) exp

(
− q

q − 1

t

p

)
. [S11]

The mapping to a complex circle implies that α(0) = var(x ) = 1.
This can be seen if we consider the E(x ) and E(x †x ) sepa-

rately. We note that for a uniform distribution E(x ) is propor-
tional to the sum of the states on a complex circle which is 0.
Similarly, we note that since the magnitude of the nodes on a
unit circle is one, E(x †x ) = var(x ) = 1. Consequently, for two
nodes separated by t = 2m mutations, the covariance is given by
α= exp(−2mq/p(q − 1)).

Phylogeny and Interactions. We also use simulations to investigate
how the combination of phylogeny and structural interactions
affects the covariance. We use the Potts model described above
to model structural constraints and evolve sequences simulated
according to this model along the chosen phylogenetic tree. The
Potts model is given by

P(x) =
1

Z exp

(
β
∑
i

hixi + β
∑
i<j

Jij xixj

)
, [S12]

where hi and Jij are the field parameters, β = 1/T , and Z is
the partition function. The temperature, T , acts as a dial for
the simulated annealing process. If the samples are drawn inde-
pendently, the log-likelihood function can be computed as the
following:

l(X ; J , h) = β
∑
i

hi
∑
k

x k
i + β

∑
i<j

Jij
∑
k

x k
i x

k
j − n logZ

∝ β
∑
i

hiPi + β
∑
i<j

JijPij − logZ. [S13]

Here, Pi and Pij are sufficient statistics for this problem. The
maximum-likelihood solution Jij (a, b) is given by

Cij (a, b) = Pij (a, b)− Pi(a)Pj (b), [S14]

where Pij (a, b) is the empirical probability of character pairs
(a, b) appearing in the (i, j)th columns. Pi(a) is the empirical
probability of character a appearing in the ith column. Eq. S14
can be written in Wishart format if we consider the design matrix
X to be in one-hot format. The one-hot format is defined as

{1, · · · , q} 7→ {e1, · · · , eq}, [S15]

e1 = (1, , 0, · · · , 0). Eq. S14 is now given by

C(i−1)q+a,(j−1)q+b =
1

n
XTX −X

T
X , [S16]

where X i = X.,i/n . Regularization is not applied here. The
Frobenius norm is used to summarize the matrix Cij into a score.
The covariance between two phylogenetically related sequences
in one-hot format can be easily found using Eq. S11 by finding
the corresponding α(0), which is the variance. The variance for
one-hot–formatted sequences is ((q − 1)/q)2, and thus we can
find the analytical form of the spectrum by scaling C by a factor
((q − 1)/q)−2.

Covariance Structure Caused by Phylogeny
The hierarchical structure of the phylogenetic tree yields a true
sequence covariance matrix ΣS made of nested squares that
correspond to the different branching events. To elucidate the
nested structure induced by a phylogenetic tree, we consider a
homogeneous tree with b branching events and m mutations per
branch. Each pair of sequences is separated by 2b̃m mutations,
where b̃ is the number branching events (generations) since their
most recent common ancestor. Hence, using the covariance rela-
tion found in Eq. S11 the true covariance matrix ΣS between a
set of sequences generated by a homogeneous tree is given by

ΣS = exp

(
− q

p(q − 1)
D

)
, [S17]
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where

D =



0 2m · · · 2bm · · · 2bm

2m 0
...

. . .
...

...
. . . 2bm · · · 2bm

2bm · · · 2bm
. . .

...
...

. . .
... 0 2m

2bm · · · 2bm · · · 2m 0


[S18]

is the distance matrix. The monotonicity of the exponential func-
tion means that the nested structure of D is reflected in ΣS , the
true covariance matrix.

Eigenvalues of ΣS. The eigenvalues of ΣS in Eq. S17 can be found
analytically. This set of eigenvalues has a few distinct features.
First, there are b+1 distinct eigenvalues for sequences generated
with b branching events; second, the degeneracy of the eigenval-
ues increases as their magnitude decreases. The explicit mathe-
matical formula is given by

λi =

{
1 +

∑b
j=1 2j−1αj i = 0

(1− α)
(∑b−i

j=0 (2α)j
)

i > 0
, [S19]

where λ0 ≥ · · · ≥ λb (α 6= 0). We can view the degeneracy of
the eigenvalues as proportional to the probability of drawing a
particular eigenvalue; this probability distribution is given by

pi =

{
1/n i = 0
2i−1/n i > 0

, [S20]

where pi = P(λ = λi) and n = 2b .

Eigenvectors of ΣS. Due to the degeneracy of λi , there are 2i−1

eigenvectors with the same corresponding eigenvalue. Further-
more, these eigenvectors reflect the events in the phylogenetic
tree. The principal eigenvector captures the uniform background
noise while all of the other eigenvectors capture duplication
events that occur in the phylogenetic tree. The set of eigenvectors
associated with λj , which we denote Vj , captures the duplication
events in the j − 1st generation. This is shown if we consider
the outer product of eigenvectors (Fig. S2). In Fig. S2, the j th
and k th elements of eigenvectors in Vi will have opposite sign
if the j th and k th sequences are leaves produced from differ-
ent branches immediately after the duplication event; in Fig. S2
red is positive and blue is negative. On the other hand, if the j th
sequence is not a leaf of a certain duplication event, then the j th
element is 0, shown in green.

For example, the expected covariance for a tree with two
branching events is given by

ΣS =


1 α α2 α2

α 1 α2 α2

α2 α2 1 α
α2 α2 α 1

,
where α = exp(−2mq/(q − 1)p). The eigenvectors for this sys-
tem are given by

V = {(1, 1, 1, 1), (1,−1, 0, 0), (0, 0, 1,−1), (1, 1,−1,−1)}.

Extension of MP. To analyze the spectrum of the empirical covari-
ance matrix, CS = XXT/(n − 1), where X is the MSA, we use
techniques from RMT. RMT has been applied to a wide range
of areas such as quantum mechanics, population genetics, and
finance to name a few.

The expected covariance matrix, ΣS , of sequences simulated
along a homogeneous tree is given by Eq. S17. Correspondingly,
its expected eigenvalue distribution is given by Eqs. S19 and S20.
Marčenko and Pastur (45) formulated a connection between the
expected eigenvalue distribution and the empirical eigenvalues
of CS . Here, we describe a way to extend upon Marčenko and
Pastur’s derivation for independent samples to samples which
are dependent via a tree structure. Surprisingly, the parameters
of the phylogenetic tree, i.e., number of mutations per branch
and number of branching events, control the empirical eigen-
value distribution which we can find analytically.

Algebraic Random Matrices. Rao and Edelman (46) coined the
term “algebraic random matrices” which refers to random matri-
ces whose spectra are encoded in a polynomial. Here, we show
that CS is an algebraic random matrix. Marčenko and Pastur
derived a connection between the eigenvalue distribution of ΣS ,
which we denote as T (λ), and the spectrum of CS , f (λ), via its
Stieltjes transform, G(z ). The Stieltjes transform of f (λ) is

G(z ) =

∫ ∞
−∞

dF (λ)

λ− z
, [S21]

where dF (λ) = f (λ)dλ. The inversion formula is given by

f (λ) = lim
y→0
={G(λ+ iy)}. [S22]

Marčenko and Pastur (45) found that G(z ) satisfies the differen-
tial equation

−1

G(z )
= z − c

∫ ∞
−∞

λdT (λ)

1 + λG(z )
, [S23]

where c = n/p and X is a matrix of size n × p. This establishes
a connection between T (λ) and f (λ) via G(z ). To apply Eq. S23
we simply use the expressions for the eigenvalues λi and their
corresponding probabilities pi from Eqs. S19 and S20, yielding
dT (λ) =

∑b+1
i=1 piδ(λ− λi)dλ. Thus, Eq. S23 becomes

−1

G(z )
= z − c

b+1∑
i=1

piλi

1 + λiG(z )
. [S24]

Multiply by G(z )
∏b+1

i=1 (1 + λiG(z )) to obtain

(zG + 1)

b+1∏
i=1

(1 + λiG)− c

b+1∑
i=1

piλiG
∏
j 6=i

(1 + λjG) = 0. [S25]

Using the inversion formula Eq. S22, f (λ) is found as the positive
imaginary part of the roots of Eq. S25. One limit to this method
is the accuracy of root-finding algorithms for polynomials of high
degree. However, we note that the spectrum becomes station-
ary as b increases, and as a consequence the spectrum is well
approximated by finding the spectrum of a tree with a sufficiently
large number of branching events. For example, Fig. S3 shows
the change in spectrum as we increase the number of branching
events; the change between 6 and 7 branching events is notice-
able, while the spectrum is almost exactly the same between 10
and 11 branching events, as suggested above.

Simple Phylogeny. The simplest phylogeny has equal branch
lengths and just a single branching event—we call this the simple
phylogenetic tree. In this case, the expected eigenvalue distribu-
tion is

i) p1 = P(λ = 1 + α) = 1/2
ii) p2 = P(λ = 1− α) = 1/2,

where α = exp(−2mq/p(q−1)). As a result, Eq. S25 becomes

z
(
1− α2)G3 +

(
2z + (1− c)(1− α2)

)
G2

+(z + 2− c)G + 1 = 0. [S26]
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This is a polynomial of degree three, and hence there are three
roots, G1(z ), G2(z ), and G3(z ). These roots can all be real, or
we can have one real root and two complex conjugate roots. The
limiting eigenvalue distribution is given by f (z ) = =(G(z )).

Spectra of Inhomogeneous Simple Phylogeny
Here we extend to the case where the branch lengths are no
longer equal; instead the number of mutations per branch is
drawn from a probability distribution with mean E(m)≡µ. To
model this, we use the Poisson distribution, which realistically
models frequency of events in a time interval. We first recall
that if we consider n0 copies of an initial sequence which all
go through a homogeneous simple phylogenetic tree with µ
mutations per branch, then the expected covariance matrix is
given by

,

[S27]

where α2µ = e−2µq/p(q−1). Using Eq. S25, the Stieltjes trans-
form for this homogeneous simple phylogenetic system satisfies

G

(
z − c

2

1 + α2µ

1 + (1 + α2µ)G
− c

2

1− α2µ

1 + (1− α2µ)G

)
= −1,[S28]

where c = n/p and n = 2n0. For the equivalent inhomoge-
neous case, we denote the branch lengths drawn from a Poisson
distribution with mean µ as m1,m2, · · · ,m2n0−1,m2n0 (diagram
below), which implies that ΣS is given by

,

[S29]

where the notation i1 = m1 + m2, · · · , in0 = m2n0−1 + m2n0

and in all cases αi = e−qi/p(q−1). This notation satisfies three
properties:

i) αi+j = αiαj

ii) αij = αj
i

iii) αj
i = αi

j .

The additive property of the Poisson distribution implies that
i1, · · · , in0 are independent and identically distributed variables
drawn from a Poisson distribution with mean 2µ, so that if we let
ρi = P(i1 = i), then

ρi =
(2µ)ie−2µ

i !
. [S30]

Using Eq. S24, we find that G satisfies

G

z − c

2

∞∑
i=0

ρi(1 + αi)

1 + (1 + αi)G︸ ︷︷ ︸
(A)

−c

2

∞∑
i=0

ρi(1− αi)

1 + (1− αi)G︸ ︷︷ ︸
(B)

 = −1,

where ρi is given by Eq. S30. We note that the term (A) can be
rearranged into the following:

∞∑
i=0

ρi(1 + αi)

1 + (1 + αi)G
=

1

G
− 1

G(1 + G)

∞∑
i=0

ρi

1 + αi
G

G+1

=
1

G
− 1

G(1 + G)

∞∑
i=0

ρi

∞∑
j=0

(
−G

1 + G
αi

)j

=
1

G
− 1

G(1 + G)

∞∑
j=0

(
−G

1 + G

)j ∞∑
i=0

ρiα
i
j . [S31]

Furthermore, term (B) can be rearranged in a similar fashion.
We can make the approximation

∞∑
i=0

ρiα
i
j = Ei(α

i
j ) [S32]

= exp
(

2µ(e−qj/p(q−1) − 1)
)

= exp
(
2µ(qj/p(q − 1) + o(p−2))

)
∼ αj

2µ, [S33]

for large p. Substituting this back into Eq. S31 gives
∞∑
i=0

ρi(1 + αi)

1 + (1 + αi)G
∼ 1

G
− 1

G(1 + G)

∞∑
i=0

(
−G

1 + G

)i

αi
2µ

=
1 + α2µ

1 + (1 + α2µ)G
. [S34]

Eq. S34 shows that when p is sufficiently large, the summation
simplifies as a function of the mean of the Poisson distribution,
which yields

G

(
z − c

2

1 + α2µ

1 + (1 + α2µ)G
− c

2

1− α2µ

1 + (1− α2µ)G

)
∼ −1.

This is the same as Eq. S28. Intuitively, this result tells us that G
can be approximated by the mean of the probability distribution,
µ, when p is sufficiently large.

For the spectral plots we noted that the solutions given by the
polynomial in Eq. S25 give a delta peak around zero. This set of
algebraic polynomials has one convenient property: The behav-
ior in the neighborhood around z = 0 can be analytically iden-
tified. In this vicinity, G(z ) is O(1/z ). Equating the coefficients
forO(1/z d) in the polynomial given in Eq. S25, we can obtain by
self-consistency that G(z ) satisfies

zG(z ) + (1− c) = 0

⇒ G(z ) = −1− c

z
, [S35]

where c = n/p. We know that when f (λ) = δ(0), then G(z ) =
−1/z , and therefore we can invert Eq. S35 to find that the area
for the peak at zero is 1−c. Consequently, the limiting eigenvalue
distribution of CS can be divided into two parts,

f (λ) = f1(λ) + f2(λ), [S36]

where

f1(λ) =

{
(1− c)δ(x ) if 0 ≤ c ≤ 1
0 if c > 1

. [S37]

The “area” underneath this peak is therefore 1 − c for c ≤ 1;
as a result, the area of the rest of the data, e.g., the histogram
bars shown in Fig S3, will scale to be c for c ≤ 1 or 1 if c > 1.
Note that f2(λ) = f (λ) when λ 6= 0, and hence we find this
nontrivial part of the solution in the exact same way as we find
f (λ) given in Eq. S22. This peak tells us about the rank of the
empirical covariance matrix but does not offer any information
about phylogeny.
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Spectra of Inhomogeneous Trees
For the simple phylogenetic tree we have proved that the spec-
trum for branches drawn from a Poisson distribution with mean
µ can be approximated by the spectrum of a homogeneous tree
with branch length µ. To extend this to other inhomogeneous
trees, we proceed via two steps. We first show that Eq. S33,
Ei(α

i
j ) ∼ αj

E(i) where E(i) = 2µ, holds for any probability distri-
bution with a convergent moment-generating function (MGF).
The second step is to show that the approximation works for a
tree with an arbitrary number of branching events.

MGF Approximation. The MGF is given by Ei(α
i
j ) =

Ei(e
−qij/p(q−1)). We want to show that as p becomes sufficiently

large,

Ei(α
i
j ) ∼ α

E(i)
j = αj

E(i). [S38]

Equivalently, we want to show that E
(
e−δi

)
∼ e−δE(i), where

δ = O(1/p). First, we note that the MGF satisfies

E
(
e−δx

)
=

∞∑
i=0

(−1)i
1

i !
δiE

(
x i
)
, [S39]

in particular, E
(
x2
)

= var(x ) + E(x )2. The functional form
f (x ) = e−δx is convex for positive δ and x . Therefore, we can
apply Jensen’s inequality, which yields

e−δE(x) ≤ E(e−δx ), [S40]

and this gives a lower bound to Eq. S39. An upper bound can
also be found by considering the following inequality:

e−δx ≤ 1− δx +
1

2!
(δx )2. [S41]

We can apply the expectation operator on both sides to give

E(e−δx ) ≤ 1− δE(x ) +
1

2!
δ2E(x )2 +

1

2!
δ2var(x )

= e−δE(x) +
1

2!
δ2var(x ) + O(δ3). [S42]

Consequently, Eq. S39 is bounded by the following:

e−δE(x) ≤ E
(
e−δx

)
≤ e−δE(x) + O

(
δ2) . [S43]

As δ becomes sufficiently small, the upper and lower bounds both
converge to e−δµ. Subsequently, we can approximate E(e−δx )
by e−δµ with an error term which is second order with respect
to δ. Hence, as p becomes sufficiently large we can use the
approximation

E
(
e−δx

)
∼ e−δE(x), [S44]

where the error of the approximation is O(p−2).

Extension to Arbitrary Phylogeny. Recall that the Stieltjes trans-
form, G , for a homogeneous tree with b branching events and µ
mutation events per branch is given by

G

(
z − c

b+1∑
i=1

pi
λi

1 + λiG(z ; c)

)
= −1, [S45]

where λi and pi are given in Eqs. S19 and S20. The equivalent
inhomogeneous tree with E branches, where the length of each
branch is drawn from a distribution with mean µ, is given by

G

(
z − c

b+1∑
i=1

pi
∑

M

ρm1 · · · ρmEλi(αm1 , · · · , αmE )

1 + λi(αm1 , · · · , αmE )G

)
= −1,

[S46]

where M = (m1, · · · ,mE ) is the set of branch lengths. As for
the simple inhomogeneous case, we let ρi =P(m = i). Here we
want to show that λi(αm1 , · · · , αmE ) satisfies λi(αµ, · · · , αµ) =
λi . We consider an inductive process, where we show that the
following is satisfied:∑

M∈NE

ρm1 · · · ρmEλ(αm1 , · · · , αmE )

1 + λ(αm1 , · · · , αmE )G

∼
∑

M∈Ne−1

ρm1 · · · ρmE−1λ(am1 , · · · , αmE−1 , αµ)

1 + ρmE−1λ(am1 , · · · , αmE−1 , αµ)G
. [S47]

Toward this end, we consider the Taylor expansion of the function

h(x ) =
λ(αm1 , · · · , αmE−1 , x )

1 + λ(αm1 , · · · , αmE−1 , x )G
=

∞∑
j=0

hj x
j , [S48]

where the coefficients hj depend on αmi . This Taylor expansion
can be used in the following way:

∞∑
i=0

ρiλ(αm1 , · · · , αmE−1 , αi)

1 + λ(αm1 , · · · , αmE−1 , αi)G

=

∞∑
i=0

ρi

∞∑
j=0

hjα
j
i =

∞∑
j=0

hj

∞∑
i=0

ρiα
j
i =

∞∑
j=0

hj

∞∑
i=0

ρiα
i
j

=
∞∑
j=0

hj Ei

(
αi
j

)
.

Using the approximation in Eq. S38, we find
∞∑
j=0

hj Ei(α
i
j ) ≈

∞∑
j=0

hjα
j
µ = h(αµ), [S49]

and thus Eq. S47 is satisfied. We can repeat this process E times
(once for each branch of the tree), yielding∑

M∈NE

ρm1,··· ,mEλ(αm1 , · · · , αmE )

1 + λ(αm1 , · · · , αmE )G
∼ λ(αµ, · · · , αµ)

1 + λ(αµ, · · · , αµ)G

=
λ

1 + λG
.

Substituting this back into Eq. S46, we find that this equation is
approximated by Eq. S45 as required.

Power Law Induced by Phylogeny
For protein covariance matrices, we find that a power law tail
occurs in the eigenvalue distribution because of the phylogenetic
structure. This structure causes all but the largest two eigenval-
ues to be degenerate. As detailed in Eq. S20, the degeneracy
increases as the size of the eigenvalue decreases. To deduce the
power law in the tail of the empirical eigenvalue distribution, we
note that the expected eigenvalue distribution in Eq. S19 can be
rewritten as

λ(r) = (1− α)
(

1 + 2α+ · · ·+ (2α)k
)

λ(2r) = (1− α)
(

1 + 2α+ · · ·+ (2α)k−1
)
, [S50]

where r > 1 is an index that runs over all copies of each eigen-
value given by Eq. S20, and λ(r)>λ(2r). If we consider the bth
generation of sequences where b is sufficiently large, we can eval-
uate the gradient of log(λ) as a function of log(r) by taking the
approximation that λ(r)∼O((2α)k+1) if 2α> 1. This gives the
following approximation:

∇ log(λ) ∼
log
(

(2α)k+1
)
− log

(
(2α)k

)
log(r)− log(2r)

[S51]
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= − log(2α)

log(2)
. [S52]

For the case where 2α ≤ 1 we note that ∇ log(λ) ≤ 1, since the
gradient increases as the mutation rate decreases. We can further
simplify this by considering α as a function of the mutation rate
m/p, α = e−2qm/(p(q−1)), which gives

∇ log(λ) =

{
2q

log(2)(q−1)
m
p
− 1 2α < 1

0 otherwise
. [S53]

This shows that the power law induced by phylogeny in the tail
of the eigenvalue distribution is controlled by the average branch
length, λ(r) ∝ rF(m/p). The slope is between 0 and 1 with lower
mutation rates generating a steeper gradient, reflecting the fact
that phylogenetic effects are stronger for lower mutation rates.

We note that many previous works use a phylogeny correc-
tion that involves down-weighting aligned sequences that are
more similar to each other than some user-defined threshold—
such as a Hamming distance of 0.7. If this type of threshold
is used, then this correction modifies the contribution to the
covariance made by those highly similar sequences found at the
leaves of the tree. This contribution does not significantly affect
the spectrum of the sample covariance matrix. To demonstrate
this, we compare raw and filtered sequences alignments, where
the filtered alignments are pruned so that no two sequences are
more similar than the relevant threshold. Fig. S4 shows that the
eigenvalue spectra of the raw and filtered alignments cannot be
distinguished.

In contrast, the phylogeny power law presented here accounts
for the contribution to the covariance made by the deep branch-
ing events that occur early in the tree. This is demonstrated most
clearly by Fig. 4 C and D of the main text, which shows the eigen-
values of the sample covariance matrix plotted on a log scale for
the cases (Fig. 4C) with phenotypic interactions only, where the
slope is zero, and (Fig. 4D) with both phenotypic interactions

Fig. S1. Here we use simulations to examine the largest eigenvalue produced with different phenotypic parameter values. The plot shows a heat map of
the largest eigenvalue of the covariance matrix produced for simulations where we vary the number of structural interactions between 0 and 500, where
the maximum strength of these interactions varies on the y axis between 0 and 10. These simulations extend those shown in Fig. 4 A and B of the main text.
We note that the saturation behavior observed in Fig. 4A is replicated here, both as the number of interactions increases and as the maximum interaction
strength increases.

and phylogeny, where the slope is nonzero. This is further illus-
trated by Fig. S5, which shows that eigenvalues of the covariance
matrix for sequences simulated with phenotypic interactions in
the absence of phylogeny follow the MP law, unlike those ins
Fig. S4.

Truncating Principal Eigenvectors
To examine the effects of removing modes from the covariance,
we consider the eigendecomposition of the covariance measure
C in Eq. S16, given by

C = λ1v1vT1 + · · ·+ λrvrvTr , [S54]

where r = p(q − 1) is the rank of the matrix and λ1 ≥ · · · ≥ λr

are the empirical eigenvalues. To distinguish the effects of phy-
logeny on the eigenvectors, we note that the bulk of the eigen-
value distribution for independent sequences with only pheno-
typic signals is roughly MP, shown in Fig. S5. This implies that
the majority of the true eigenvalues are around one. Thus, we
use the following truncation scheme:

C (t) = vtvTt + · · ·+ vrvTr . [S55]

The maximum-likelihood estimator in Eq. S14 makes the criti-
cal assumption that the sequences are independent. Fig. 1 shows
that this assumption significantly curbs the accuracy of contact
prediction. Over recent years, methods such as DCA (13, 15)
have improved the accuracy of contact prediction by using the
inverse of Cij (a, b), otherwise known as the mean-field approx-
imation (MFA). To see how MFA relates to removing the
principal eigenvectors, we note that the MFA approximation is
given by

C−1 =
1

λ1
v1vT1 + · · ·+ 1

λr
vrvTr . [S56]

Crucially, this approximation effectively removes the largest
eigenvalues since 1/λ is negligible in these cases.
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Fig. S2. Eigenvectors caused by phylogeny. The configuration used to produce these plots is m = 30, p = 1,000, and b = 6. A–C show the outer products of
eigenvectors corresponding to (A) λ6, (B) λ5, and (C) λ4 in Eq. S19.
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Fig. S3. The eigenvalue distributions produced by phylogeny differ substantially from the MP distribution (shown in green). As the number of branching
events increases, the resulting eigenvalue distributions become more similar to one another. Here 8,096 sequences of length 100 are generated using (A)
6, (B) 7, (C) 10, and (D) 11 branching events. Analytical solutions using the analysis presented here are shown in red. There are 300 interactions of strength
uniformly distributed between −5 and 5.
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Fig. S4. Comparison of the eigenvalue spectra of large protein sequence alignments with and without the canonical phylogeny correction used in the
literature. Here we compare no treatment to pruning the alignments, whereby sequences are removed so that no two remaining sequences are more similar
than a user-chosen threshold—often a Hamming distance of around 0.3 is chosen. These plots show analysis of the spectra resulting from alignments for (A)
Trypsin, (B) DHFR, and (C) TRML HAEIN both before (A–C, Left and Center) and after (A–C, Left and Right) we prune the alignment.
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Fig. S5. (A and B) Here we use simulations to examine the eigenvalue distribution produced by phenotypic interactions alone, in the absence of phylogeny.
(A) The interaction matrix J used in these simulations, which contains 500 interactions with strengths uniformly distributed between −5 and 5. This matrix
is used to generate 4,096 independent sequences of length 100, with an alphabet of q = 21 characters. (B) The green line is the MP distribution, and Inset
shows those eigenvalues that escape the upper edge.
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