SI METHODS

Animals

Animal manipulation protocols were approved by the institutional ethics committee of the University of Quebec at Montreal (*Comité institutionnel de protection des animaux* (CIPA); Reference number: 650). For epistasis studies, *Toupee*^{Tg/Tg} females (FVB/N background) and *Chd7*^{Gt/+} males (C57BL/6-Sv129 mixed background) were intercrossed to generate *Toupee*^{Tg/+}; *Chd7*^{Gt/+} double heterozygotes and corresponding *Toupee*^{Tg/+} single heterozygotes. *Chd7*^{Gt/+} males with wild-type FVB/N females. For olfactory tests, after proper familiarization to the test conditions, mice were individually placed in a clean cage and exposed to a small piece of Whatman paper containing 100µl of water or 100µl of C57BL/6 urine (10⁻² dilution in water) during 2 min for each, with a 2 min interval between each exposition. The total number and cumulative duration of sniff bouts were recorded in order to express results as mean elapsed time per sniff bout.

Image acquisition

Image acquisition was performed with a Leica DFC 495 camera (for color images) or a Lumenera Infinity 2.0 camera (for black and white images) mounted on a Leica M205 FA stereomicroscope, with the exception of immunofluorescence analyses which were imaged with a Nikon A1 laser scanning confocal microscope. Image processing and analysis was all done with the ImageJ software, including for cell counting, measurement of choroidal fissure width as well as analysis of migration speed and persistence (see below). For Pearson correlation analysis, relevant images were deconvoluted and analyzed with the AutoQuant 3X program.

Ex vivo time-lapse imaging of NCCs

The posterior end of an e10.5 embryo (obtained from G4-RFP or *Toupee*^{Tg/Tg};G4-RFP intercrosses) containing pre-migratory NCCs was cut transversely behind the hindlimb bud and deposited on a small nitrocellulose filter (Millipore GSWP01300) so that a lateral side is attached to the filter and the other side is free to be imaged. The filter paper was then flipped (with tissue side down) onto paraffin rods streaked in parallel on a 60-mm cell culture dish (Corning). The samples were cultured in DMEM/F12 containing 10% FBS and penicillin/streptomycin, and incubated in a microscope incubation chamber (Okolab) under standard conditions (37°C, 5% CO₂) during 15h while 600 µm-thick stacks were acquired every 10 min (Nikon A1R confocal unit; 10X objective). Only NCCs migrating ventrally through the anterior half of somites were taken into account. Average speed (total tracked distance divided by total time) and persistence (straight line from start to finish divided by total tracked distance) were calculated from 40-min periods.

FACS

Embryonic tissues (whole e10.5 embryos for RNAseq; heads and trunks of e10.5, e13.5 and e16.5 embryos for RT-qPCR) obtained from G4-RFP or *Toupee*^{Tg/Tg}; G4-RFP intercrosses were dissociated at 37°C with 1.3 mg/ml dispase II, 0.4 mg/ml collagenase and 0.1 mg/ml DNAse I in EMEM medium. For each biological replicate, between 240,000-300,000 RFP+ and RFP- cells (from a total of 6-8 embryos at e10.5 or 1-2 embryos at e13.5 and e16.5) were collected using the BD FACSJazz cell sorter (BD Biosciences) and stored at -80°C until RNA extraction.

High throughput genome and transcriptome sequencing

Whole genome and transcriptome sequencing was performed at McGill University and Génome Québec Innovation Centre. This included library generation, sequencing using the HiSeq 2500 platform (Illumina) and bioinformatics analysis. For RNAseq, ribosomal RNA-depleted libraries (using 120 ng of total RNA as starting material) were generated and sequenced for three biological replicates per genotype (G4-RFP *vs Toupee*^{Tg/Tg}; G4-RFP) but only two per genotype met quality criteria for subsequent bioinformatics analysis. Paired-end sequences of 100-bp in length (215 million reads for the genomic DNA and between 51-84 million reads per transcriptome sample) were mapped onto the mm10 *Mus musculus* reference genome.

Cell culture and transfection

For primary culture of e10.5 embryonic cells, whole embryos were dissociated as described above for FACS and the resulting cell suspension (10^{-1} dilution in EMEM medium) was plated on gelatin-coated coverslips in 6-well plates. Dissociated cells were cultured in EMEM medium containing 10% FBS and penicillin/streptomycin under standard conditions (37° C and 5% CO₂).

Co-IP, RIP, ChIP and RNA-ChIP

Co-IPs were performed in defined buffer (20 mM Tris pH 8.0, 1 mM EGTA, 1.5 mM MgCl2, 1 mM DTT, 1% Triton TX-100, 10% Glycerol, 1X Roche Complete protease inhibitors), containing either 25 or 200 mM NaCl. For untargeted ChIP and RIP experiments, cross-linked Neuro2a cells (using 1% PFA) were sonicated either in nuclear lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS, 1X Roche Complete protease inhibitors) for ChIP or in RIPA buffer (50 mM Tris-HCl pH 7.4, 2 mM EDTA, 150 mM NaCl, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 1X Roche Complete protease inhibitors) for RIP. The nucleic acid content of purified ChIP and RIP samples was then assessed via Qubit fluorometric quantitation (ThermoFisher Scientific). For targeted ChiP and RNA-ChIP experiments, Neuro2a cells were treated with either vehicle (DMSO) or 25ng/ml Phorbol 12-myristate 13-acetate (PMA) for 4 hours. For RNA-ChIP, immunoprecipitated samples were also treated with 100 μ g/ml DNAse I during 2 hours at 4°C, followed by RNA extraction and reverse transcription.

MBP fusion proteins and serine hydrolase assay

MBP, $_{MBP}Fam172a$ and $_{MBP}Fam172a^{S294A}$ proteins were produced in BL21 bacteria via IPTG (0.3 mM) induction of relevant pMAL-c5X constructs. Bacterially-produced proteins were then purified via amylose affinity chromatography and eluted with column buffer (20 mM Tris-HCl pH7.4, 200 mM NaCl, 1 mM EDTA, 1X Roche Complete protease inhibitors) supplemented with 100 mM maltose. For serine hydrolase assay, each protein sample (7.5 µg) was mixed with the probe, incubated at room temperature in the dark for 30 minutes and migrated on a 10% SDS-polyacrylamide gel.

Affinity purification coupled to tandem mass spectrometry analysis

Neuro2a cell extracts were fractionated using buffer conditions specific to each fraction: cytoplasm (10 mM Tris-HCl pH 8.0, 0.34 M sucrose, 3 mM CaCl₂, 2 mM MgOAc, 0.1 mM EDTA, 0.5% NP-40, 1 mM DTT and 1X Roche Complete protease inhibitors), nucleoplasm (20 mM Hepes pH 7.9, 1.5 mM MgCl₂, 150 mM KOAc, 3 mM EDTA, 10% glycerol, 0.1% NP-40, 1 mM DTT and 1X Roche Complete protease inhibitors) and chromatin (150 mM Hepes pH 7.9, 1.5 mM MgCl₂, 150 mM KOAc, 10% glycerol, 15 U/ml Benzonase, 0.44 U/ml RNAse A, 6.25 U/ml DNAse I, 1X Roche Complete protease inhibitors). Each

Neuro2a cell fraction (1.25mg) was passed on an amylose resin column containing immobilized _{MBP}Fam172a or MBP alone. Following extensive washing, interacting proteins were co-eluted with _{MBP}Fam172a or MBP as described above for the purification of MBP fusion proteins. Eluates were then individually precipitated using 72% TCA, 0.075% Na-deoxycholate and 2.5X Tris-EDTA. Preparation of trypsic fragments, LC-MS/MS analysis on a LTQ Orbitrap Fusion Tribrid mass spectrometer (ThermoFisher Scientific) and peptide identification were performed at the Proteomics Discovery Platform of the *Institut de recherches cliniques de Montreal* (IRCM). Proteins identified via at least one peptide (with probability greater than 90%) were accepted as _{MBP}Fam172a interactors if they were enriched at least 1.5-fold in comparison to the MBP negative control and detected in at least two out of the three biological replicates per fraction.

Figure S1. Early death and growth retardation in *Toupee*^{Tg/Tg} **mice. (A)** Genotype distribution of offspring from *Toupee*^{Tg/Tg} intercrosses (n=48 couples) at weaning. **(B)** Kaplan-Meier survival curve for WT and *Toupee*^{Tg/Tg} mice. **(C)** Body weight comparison of WT and *Toupee*^{Tg/Tg} mice at P3 and P25.

Figure S2. Less frequently observed minor features of CHARGE syndrome in *Toupee*^{Tg/Tg} mice. (A) A subset of *Toupee*^{Tg/Tg} mice exhibits a lower thymus/body weight ratio at P25. (B) H&E-stained sagittal sections of e18.5 heads (n=10 per genotype) revealing olfactory bulb hypoplasia in a subset of *Toupee*^{Tg/Tg} embryos. (C) Results of olfaction tests (n=20 mice per genotype) showing that adult *Toupee*^{Tg/Tg} mice are less efficient than WT mice at distinguishing urine from water. (D) A subset of *Toupee*^{Tg/Tg} mice displays facial asymmetry including unilateral eyelid ptosis (arrow) and twisted facial bones (see μ CT scan in the inset). (E) Frontal view of the oropharynx at P25 showing partial atresia (arrowhead) in a *Toupee*^{Tg/Tg} animal. (F) Alizarin red and alcian blue double-stained e18.5 skulls (n=10 per genotype) showing that closure of the fontanelles (delineated by dashed lines) is delayed in a subset of *Toupee*^{Tg/Tg} animal. (H) The outer ear of *Toupee*^{Tg/Tg} animals is occasionally malformed. (I) Lateral view of e12.5 heads demonstrating exencephaly in a *Toupee*^{Tg/Tg} embryo. (J) Gastrointestinal track of a P24 *Toupee*^{Tg/Tg} animal filled with air bubbles. * *P*≤0.05 (Student's *t*-test). Scale bar: 1mm (B), 500µm (G).

Figure S3. Genetic interaction between *Toupee*^{Tg} and *Chd7^{Gt}* alleles. (A) *Toupee*^{Tg/+};*Chd7^{Gt/+}* double mutants are markedly smaller than corresponding single mutants at P25. (B) Representative bright field images of e12.5 eyes showing that the choroidal fissure (red arrows) is wider in double mutant embryos. Scale bar: 50μ m.

Figure S4. Defective NCC proliferation, survival and migration in *Toupee*^{Tg/Tg} embryos. (A-B) Representative immunofluorescence images used for quantification of NCC proliferation and survival in Fig.2A-B (n=9 per genotype). Cross-sections (30 μ m) of e10.5 embryos at the level of the hindlimb bud were double-labeled with anti-Sox10 (red) and anti-Ki67 or anti-activated Caspase3 (green), and counterstained with DAPI (blue). (C-D) Representative images used for quantification of hindgut colonization by fluorescently labeled (owing to G4-RFP transgene) enteric NCCs in Fig.2E. The white dashed lines delineate the colonized hindgut segment, whereas the red dotted lines delineate the uncolonized hindgut segment (for each developmental stage, n=5 per genotype). Scale bars: 100 μ m (A-B), 500 μ m (C) and 1mm (D).

cellular metabolio	protein proces	S I	iffication-depend macromolecule catabolic process negative gulation	ent lent phospi metab proce positi	tion re nate ph olic m ss p ve re tion of	gulation of osphorus etabolic process gulation cellular	metallo-sulfur cluster assembly positive regulation of	hosphory	/latior	intrace sign transdu	e Ilular al Iction	nzyme linke receptor protein signaling pathway	move of c subc comp	ement ell or ^e ellular oonent	stablish of localiza	imert ition M	cell igration		
		t	piologica process	l of cell proce	ular m ss p	etabolic rocess	biological process regulation of		re	regulation		mall GTPase mediated	endoc	ytosism	ion nsmembrane transport	ansmembra transport	nhydroger transpor		
prot	tein m	retab	egulatior olic p process	roces	branched- amino a metabo proces	nydrog ed peroxi s catabo proce	gen de ^{glutathlone} metabolic process SS	small GTPase mediated signal transduction	e cell comi	signa nunicati	ling ^{on} t	signal ransduction	cel nainten	ance 9	ity an as	d tran	polyol		
meta proc	bolic cess	mc ac	onocarboxy cid metaboli process	lic phospha metabol	de carbo te aci ic biosyn	xylic d thetic d thetic	endent ral metabolic plic processes re	cellular	resp hyc	onse to Irogen [.] oxide	to copp ion	per to growth hormone	of loca	tion tran neg ependent regul	sport gative ation of fi	actin ament	transport mino acid transport		
porphyrin-containing	cellular macromole	ce n cule	ellular lip netabolic process	id sterc catabo	bhosph bhosph lic metat	atidic positi d egulatic olic riglyce catabo proce	^{ve} ^{pn o} proteir _{ride} ss	protein modificatio process	n	phorylation	integrin-mediated signaling pathway	Notch signaling pathway nitric oxide mediated signal transduction	prote transp	ein micro	nization nization otubule a noring tra	anizatior Imine Insport	oxygen ransport monosaccharide trinsport		
compound metabolic process	biosynthe process	tic ty m r	yrosine ietaboli process	coenzym C biosynthe process	tic s	olipic biosynti v proce	e netic metabolic process SS	cell cycle			all cycla phas		lular	nucleoso	omear tion	tRNA ninoacy for prot	lation ^{reg}	ositive gulation of	ranslationa intiation
erythrocyte	striated muscle tissue development	brown f differen	fat cell m ntiation c	egulation of nulticellular organismal process	orphogene: f a polarize epithelium	sis d kidney developme	heart ont contraction		pride	home	ostasis	cellular	der	translat			RNA		
	negative regulation	choro embry develo	date yonic pment -	blood vessel	developme of seconda sexual	nt nuscle cell Y cellular himeostasis	oocyte differentiatio	cellular	nega egulat	tive ion of _{of s}	julation S phase	complex assembly organization ranslat		of Islation	process				
cell cell maturation	of cell differer	ntiati	ion ar	apical pd mo	phog		s natural killer cell	recontrol	of ce proce	ess ce	Il cycle	amino a activati	icid on	metabo	posttran regul pene es	scription regula ation of pression of D bind	ation NA ing RNA process		
muscle organ development	pigment cell differentiation establishment	posi regula of cell adhe	tive ation I-cell sion	calization stablishment of tissue polarity	appendag torphogene	regulation hemoglob sisbiosynthe	of oin outer ear tic ^{morphogenesis}	regulation of cell proliferation	DNA replicati	on pro	optotic ocess ocess	generat	tion	regulation of membrane potential	synaptic growth at euromuscu junction	neuron-neu synaptic transmissic	n mmunological synapse n formation		
cellular response to hormone stimulus	or maintenance of cell	odontog	genesis s	ompartment pattern pecification	antigen process and presentation of endogenou peptide antige via MHC class	ng mesenchy cell developm	ma establishment or maintenance of apical/basal ent cell polarity	DNA repair	attachmer spindle microtubu to kinetoch	chment of nomeostas spndle rotubules response to instochore gamma radiation		of neuro	ons	or	morphogenesi of a branching structure	neurotransmi receptor metabolic process	sympatheti nervous system		

Figure S5. Enriched GO terms associated with the differentially expressed genes in *Toupee*^{Tg/Tg} NCCs. REVIGO TreeMap representation of the GO analysis of the 3488 modulated genes displayed in Fig.2F. The 132 enriched terms (ontology level ≥ 5 and P < 0.05) are distributed into 7 main categories: Metabolic processes; Cell differentiation and morphogenesis; Cell signaling; Cell motility and transport; Control of cell number; Gene expression; and Nervous system development. Size of boxes is proportional to statistical significance.

Figure S6. Specific downregulation of *Fam172a* expression in *Toupee*^{Tg/Tg} embryos. RT-qPCR analyses of gene expression in *G4-RFP* (WT) and *Toupee*^{Tg/Tg}; *G4-RFP* (*Toupee*^{Tg/Tg}) embryos at e13.5 (A) and e15.5 (B). Transcript levels of *Fam172a*, *Pou5f2*, *Nr2f1* and *A830082k12Rik* were monitored in FACS-recovered NCCs (+) and non-NCCs (-) from the head and the trunk (n=3 per condition). Expression levels were normalized relative to *Gapdh*. * $P \leq 0.05$.

Figure S7. Analysis of Fam172a protein distribution in mouse embryos and COS7 cells. (A-B) Immunofluorescence analysis of the Fam172a protein in e8.5-9.5 WT embryos (A) and in cross-sections of e10.5-12.5 WT and *Toupee*^{Tg/Tg} embryos (B) at hindlimb level (n=6 per genotype). (C) Immunofluorescence labeling of endogenous Fam172a in COS7 cells transfected with the pEYFP-ER plasmid (Clontech) and counterstained with DAPI (n=6). White arrowheads indicate ER localization. Scale bar, 200 μ m (A-B), 25 μ m (C).

Figure S8. Fam172a physically interacts with Ago2 but not with Ago1. (A-B) Co-IP assays using whole cell extracts of COS7 cells (A; transfected with a Fam172a-expressing or empty vector) or of adult mouse olfactory bulbs (B; WT vs Toupee^{Tg/Tg}). IPs were performed with an anti-Fam172a antibody and analyzed by western blot using an anti-Ago2 antibody. Inputs correspond to 10% of protein extracts used for IP (n=3 per condition). (C) Luciferase activity from the psi-CHECK2-let-7x8 reporter relative to empty psi-CHECK2 vector in cultures of dissociated e10.5 embryos (WT vs Toupee^{Tg/Tg}). (D) Double immunofluorescence labeling of Fam172a (red) and Ago1 (green) in dissociated cells from WT e10.5 embryos (n=7). DAPI was used to counterstain nuclei (blue). The right panel shows the overlap of Fam172a and Ago1 signals (Pearson's correlation coefficient of 0.63) as determined with the AutoOuant 3X software. Scale bar: 25µm. (E-F) Co-IP assays using whole cell extracts of COS7 cells transfected with empty or MvcFam172a-expressing vector. IPs were performed with an anti-Ago1 (E) or anti-Fam172a (F) antibody and analyzed by western blot using anti-Ago1 and either anti-Myc (E) or anti-Fam172a (F) antibodies. Inputs correspond to 10% of protein extracts used for IP (n=3 per condition). The asterisk indicates the presence of mouse IgG heavy chain. (G) Impact of DNase and RNase treatments on the integrity of proteins (left panel), DNA (middle panel) and RNA (right panel) in whole-cell extracts, as described in Fig.4B. (H-I) Co-IP assays using whole cell extracts of Neuro2A cells (transfected with a MycFam172a-expressing vector) in presence of different concentrations of NaCl. IPs were performed with an anti-Ago2 (H) or anti-Chd7 (I) antibody and analyzed by western blot using anti-Myc, anti-Ago2 and anti-Chd7 antibodies. Inputs correspond to 10% of protein extracts used for IP (n=3 per condition).

cellular macromolecule	hosphate-containin compound metabolic process		taining protein d metabolic cess process		macromolecule modification egulatior of lipid		intracellular signal transduction regulation of signal transcuction		cel resp to l dan stin	lular oonse DNA nage nulus	regulation of transferase activity		of me p	RNA etabolio rocess
metabolic process									egulat of ce	ion II	dsRNA fragmentation		F proc	RNA cessing
									Ing hication		gen	e exp	ress	cellular
	macromolecu catabolic proce	le " ess	process		metabolic process process		cellular response	cellular response to cortiso		egative gulatior growth	bsttranscriptiona gene silencing tra by RNA		ation	protein complex disassemply
cellular protein metabolic process	regulation of	f r	regulation cellular polysaccharide		of protein		starvatio	n jeere	se	ormone		RN	IA	
	cellular b metabolic process regulation of mac phosphorus bio metabolic process		of lipid metabolic process		metabolic process		response to	iespo	onsee	spons	chromatin proc		ithetic ess	histone
			heparan nacromolecul biosynthetic process		eoglycan etabolic meta		protein stin		ght to ulus	meta ion	nvolve deve		thylatic n embr pment	on ^{exchange} 'YC
					proces	process		nuc		clear				cell
inter of Union	protoin	vesicle	e-mediated	mediated mitocho		cerebral cortex cel	autopha	gy di	envelope disassembly		cell Morphogene		esis :	differentiaton involved in salivary gland development
transport	transport	tra	ansport	transp	oort	migration	DNA			G1/S		Τ		
	cell motility ar		di trans port \		le	lipid transport	rocess	of cell	nun	iber c ell cycle	cell o and n	differ 10rph	enti noge	ation nesis
	microtubule	mi	gration	coatir	ng tra	ansmembran	, cell cycle	pos	positive		hard pala	ite post-	embryoni	skeletal muscle
establishment of	cytoskeleton				transport		arrest	macroa	regulation of macroautophagy		developm	ent body norphogene		satellité cell differentiation
localization	organization	ytoskele intracell	ton-depender Iular transport	^{it} endocyt	osis _I	regulation of pinocytosis	meiotic spindle midzone assembly	spir mid: asse	ndle zone mbly	assembly	limb bu formati	on ^{sc}	uamous basa ell differentia state gland ac	al epithelial sten tion involved in cinus development

Figure S9. Enriched GO terms associated with the modulated transcript variants in *Toupee*^{Tg/Tg} NCCs. REVIGO TreeMap representation of the GO analysis of the 1166 aberrantly spliced transcripts displayed in Fig.4C. The 75 enriched terms (ontology level ≥ 5 and P < 0.05) are distributed into 6 main categories: Metabolic processes; Cell motility and transport; Cell signaling; Gene expression; Control of cell number; and Cell differentiation and morphogenesis. Size of boxes is proportional to statistical significance.

Figure S10. Detailed analysis of alternative splicing in *Toupee*^{Tg/Tg} and *Chd7*^{Gt/+} mutants. (A) RTqPCR analysis of variably (delineated in red) and constantly expressed regions of 4 previously described Ago2-regulated genes (*Cd44*, *Col5a3*, *Mical2* and *Ift74*) in the head of *G4-RFP* (WT), *Toupee*^{Tg/Tg};*G4-RFP* (*Toupee*^{Tg/Tg}) and *Chd7*^{Gt/+} e12.5 embryos (n=5 per genotype). Transcript levels were normalized relative to *Gapdh*. * $P \leq 0.05$ (Student's *t*-test). (B) Donut chart showing the distribution of the differentially modulated alternative splicing events (P < 0.05; variation in inclusion level ≥ 0.1) in P7 granule neuron progenitors from heterozygous (227 events; Dataset S3) and homozygous (253 events; Dataset S4) *Chd7* mutants as determined by rMATS-based analysis of recently published RNAseq data (22). Upward- and downward-pointing arrows indicate splicing events that are over- and under-represented in *Chd7* mutants, respectively.

Figure S11: Variants of Fam172 identified in human CHARGE patients fail to interact with Ago2. (A) Co-IP assays using whole cell extracts of Neuro2A cells transfected with $_{Myc}Fam172a$, $_{Myc}Fam172a^{E229Q}$ - or $_{Myc}Fam172a^{R307*}$ -expressing plasmids. Following Ago2 IP, the presence of Myc-tagged Fam172a and Ago2 proteins was revealed using anti-Myc and anti-Ago2 antibodies, respectively. Inputs correspond to 10% of protein extracts used for IP (n=3 per condition). (B) Quantification of Fam172a localization following anti-Myc immunofluorescence labeling of Neuro2A cells transfected with $_{Myc}Fam172a^{E229Q}$ or $_{Myc}Fam172a^{R307*}$ expression vectors. ** *P*≤0.01, *** *P*≤0.001 (Student's *t*-test)

Figure S12: Dysregulation of alternative splicing in supplemental CHARGE syndrome patients. RTqPCR analysis of splicing events for *CD44*, *COL5A3*, *MICAL2* and *IFT74* in lymphoblastoid cell lines. Expression levels of variable regions were normalized with levels of corresponding constant regions (indicated between parentheses). Results for unaffected parents were combined and used as reference value for calculation of splicing fold change (red dashed line). Each graph depicts the results obtained for a given family (for each individual, n=9 from 3 independent experiments). Results for other families can be found in Fig.5A-C, while detailed information about each patient can be found in Table S8. * $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$ (Student's *t*-test).

■ rapamycin #1: CHA194 (*CHD7*) #2: CHA441 (*FAM172A*) #3: CHA442 (*FAM172A*) #4: CHA272 (unknown) #5: CHA275 (unknown) #6: CHA333 (unknown) #7: CHA367 (unknown)

□ vehicle

С

Vehicle

Figure S13: Analysis of rapamycin effects in human LCLs and *Toupee*^{Tg/Tg} **mouse embryos. (A-B)** *GAPDH*-normalized RT-qPCR analyses of *FAM172A* and *CD44* expression in human LCLs derived from CHARGE patients and/or one of their unaffected parents, in absence (A) or presence (B) of rapamycin. The decreased expression of *CD44* constant exons 4-5 demonstrates the efficacy of the rapamycin treatment (left panel in B). Note that basal expression of *FAM172A* is generally lower in CHARGE patients and that rapamycin has very little effect on it (right panel in B). **(C)** Bright field images of e12.5 *Toupee*^{Tg/Tg} embryos that were previously exposed to vehicle (20% ethanol) or rapamycin (1mg/kg) for 3 days *in utero* (n=8 embryos per condition). Exposition to rapamycin decreased the incidence of coloboma (red arrows in bottom panels), while it also increased the incidence of growth retardation and malformation/resorption. The ratios displayed in the top right corner of top panels refer to the number of embryos with similar morphology, which is not correlated with their ocular phenotype. Scale bar, 1mm (whole embryos) or 50µm (eyes).

Figure S14: p53 expression appears unaffected in *Toupee*^{Tg/Tg} **embryos.** Immunofluorescence analysis of p53 protein distribution in dissociated cells from WT and *Toupee*^{Tg/Tg} e10.5 embryos. Neither the expression levels of p53 nor its localization appears affected in *Toupee*^{Tg/Tg} cells. Scale bar, 10µm

Table S1: Overview of major and minor features of CHARGE syndrome in $Toupee^{Tg/Tg}$ mice

	Abnormality			Frequency
r	Coloboma of the eye			86% (n=14) ^a
lajc	Inner ear defects (circling behavior)			67% (n=61)
2	Cleft palate		21% (n=14)	
	Heart malformation (le	80% (n=10)		
	Cranial nerve anomali	I, IX and/or X)	60% (n=10)	
	Retardation of growth	61% (n=61)		
L L	Genital abnormalities	Male Fem	es (cryptorchidism) ales (hypoplastic uterine horns)	52% (n=27) 58% (n=12)
lind	Thymus hypoplasia	36% (n=22)		
2	Olfactory bulb hypopla	isia		30% (n=10)
	Craniofacial malformat	tions	Delayed closure of fontanelles Twisted skull Oropharyngeal atresia	30% (n=10) 18% (n=61) 16% (n=61)
	Kidney hypoplasia			8% (n=12)

Note: ^a10/14 unilateral, 2/14 bilateral.

 Table S2: Toupee^{Tg/Tg} mice are subfertile

Reproduction parameter	WT males WT females (n = 9 couples)	<i>Toupee^{Tg/Tg}</i> males WT females (n = 10 couples)	WT males Toupee ^{Tg/Tg} females (n = 9 couples)	
Average number of days before vaginal plug	1.33 ± 1.00	1.92 ± 0.79 ^{n.s.}	7.73 ± 6.60*	
Average number of pups per litter	11.11 ± 1.76	7.44 ± 2.92**	7.00 ± 0.66*	
Number of unproductive matings	0	1	5	

Note: n.s. not significant; **P*<0.05; ***P*<0.01.

Genotype	Chd7 ^{Gt/+}	<i>Toup</i> ee ^{^{7g/+}}	<i>Toup</i> ee ^{<i>Tg/+</i>} ;Chd7 ^{Gt/+}
Phenotype	(n=29) ^a	(n=32) ^b	(n=20) ^b
Frequency at birth	49%	62%	38%
(expected)	(50%)	(50%)	(50%)
Weight at P25 (g)	11.40	13.26	6.69
	± 2.01	± 2.14	± 2.56
Premature postnatal death (≤P30)	3%	0%	20%
Circling behavior	27%	0%	45%
Male-to-female sex	12%	0%	33%
reversal (number of XY)	(16)	(15)	(12)
Width of choroidal	10.32	4.23	26.37
fissure at e12.5 (µm) ^c	± 8.16	± 7.40	± 27.31

Table S3: Genetic interaction between *Toupee*^{Tg} and *Chd7*^{Gt} alleles

Note: ^a From $Chd7^{Gt/+}$ X WT FVB/N crosses

^c n=16 for *Chd7^{Gt/+}* and 34 for the others

Table S4: Dysregulation of the NCC gene regulatory network in *Toupee*^{Tg/Tg} NCCs

Category	Gene name				
Effectors of neural crest induction signals	Lef1, Lrp5, Fzd3, Fzd5*, Fzd7, Bmpr1a, Bmpr2, Smad1, Smad5, Notch1,Notch2, Notch3, Dll1, Hes5				
Neural crest specifiers	Sox8, Sox10, Tfap2a, Tfap2b, Tfap2c, Pax3, Mycn, Meis3, Dnmt3a, Dnmt3b, Ets1, Cited4*, Nr2f2, Tead1, Tead2				
Neural crest AP patterning	Ednra, Hoxb2, Hoxa3, Hoxb5				
Neural crest EMT and migrationLims1*, Cdh2, Cdh6, Mmp14, Adam10*, Rxrg, Gja1, Vangl1*, Vangl2, Pr Daam2, Ptk7, Celsr1, Celsr2, Celsr3, Erbb2, Erbb3, Erbb4					
Neural crest pathfinding	Ephb3, Epha7, Ephb2, Ephb4, Epha8*, Efna5, Nrp1, Nrp2, Plxna1, Plxna3, Plxna4, Plxnb1, Plxnc1, Sema3b, Sema3d, Sema3g, Sema4c, Sema4g, Sema6a, Robo1, Robo2, Slit2, Slit3				
Craniofacial differentiation	Sox5, Alx3, Rara				
Melanocyte differentiation	Mitf , Tyr, Dct, Mef2c, Kit, Nf1, Ctbp2				
Neuronal differentiation	Phox2b, Phox2a, Hand2, Ascl1, Th, Dbh, Runx1*				
Glial differentiation	Plp1, Fabp7, Rela*				
Enteric nervous system	Ednrb, Ret, Gfra1, Gfra2, Gfra3, Foxo3*, L1cam, Dcc, Kif26a, Lgi4, Prokr1*				

Note: Genes included were those whose expression was modulated at least 1.5-fold ($P \le 0.01$). Asterisks indicate upregulated genes.

Catogory	Brotoin namo	Gene	Accession	MW	omDΛI
Category	Frotein name	name	number	(kDa)	empai
	Histone H4	Hist1h4a	P62806	11	10,000
	Histone H3.2	Hist1h3b	P84228	15	5,640
	Histone H2A type 2-A	Hist2h2aa1	Q6GSS7	14	5,143
	Core histone macro-H2A.1	H2afy	Q9QZQ8	39	2,480
	Histone H2AX	H2afx	P27661	15	1,577
llistense	Histone H1.5	Hist1h1b	P43276	22	1,415
Histories	Histone H1.1	Hist1h1a	P43275	21	1,167
	Histone H1.3	Hist1h1d	P43277	22	0,716
	Histone H1.2	Hist1h1c	P15864	21	0,673
	Histone H1.4	Hist1h1e	P43274	21	0,598
	H1 histone family, member X	H1fx	Q80ZM5	20	0,149
	Histone H1.0	H1f0	P10922	20	0,126
	Histone-binding protein RBBP7	Rbbp7	Q60973	47	0,138
	Histone-lysine N-methyltransferase ASH1L	Ash1l	Q99MY8	331	0,082
Histone	Histone deacetylase 2	Hdac2	P70288	55	0,068
regulators	Histone deacetylase 7	Hdac7	Q8C2B3	101	0,046
-	Histone-lysine N-methyltransferase EHMT2	Ehmt2	Q9Z148	138	0,013
	JmiC domain-containing histone demethylation protein 2C	Jmid1c	Q69ZK6	260	0.003
	Regulator of chromosome condensation	Rcc1	Q8VE37	44	0.374
Other chromatin factors	FACT complex subunit SSRP1	Ssrp1	Q08943	81	0.137
	Heterochromatin protein 1-binding protein 3	Hp1bp3	Q3TEA8	60	0.013
	DNA replication licensing factor MCM5	Mcm5	P49718	82	0.009
	Serine/arginine-rich splicing factor 1	Srsf1	Q6PDM2	27	1.410
	Heterogeneous nuclear ribonucleoprotein A/B	Hnrnpab	Q99020	30	0.796
	Heterogeneous nuclear ribonucleoprotein K	Hnrnpk	P61979	50	0.698
	Heterogeneous nuclear ribonucleoprotein D0	Hnrnpd	Q60668	38	0.314
	Heterogeneous nuclear ribonucleoproteins C1/C2	Hnrnpc	Q9Z204	34	0.303
mRNA	Polypyrimidine tract-binding protein 1	Ptbp1	P17225	56	0.183
splicing	Serine/arginine-rich splicing factor 7	Srsf7	Q8BL97	30	0.083
	ELAV-like protein 1	Elavl1	P70372	36	0.075
	NHP2-like protein 1	Nhp2l1	E9PZS4	5	0.055
	RNA-binding protein FUS	Fus	P56959	52	0.048
	Intron-binding protein aquarius	Aar	Q8CFQ3	170	0.011
	Ribosomal L1 domain-containing protein 1	Rsl1d1	Q8BVY0	50	0.242
RNA .	Pumilio domain-containing protein KIAA0020	Kiaa0020	Q8BKS9	72	0.051
processing	U3 small nucleolar RNA-associated protein 18 homolog	Utp18	Q5SSI6	61	0.012
	40S ribosomal protein S3	Rps3	P62908	26	2.542
	Nucleophosmin	Npm1	Q61937	32	2.540
	Nucleolin	Ncl	P09405	76	0.975
	60S ribosomal protein L18a	Rpl18a	P62717	20	0.700
Ribosome	60S ribosomal protein L5	Rpl5	P47962	34	0.325
biogenesis	60S ribosomal protein L6	Rpl6	P47911	33	0.311
0	Nucleolar transcription factor 1	Ubtf	P25976	89	0.132
	40S ribosomal protein S25	Rps25	P62852	13	0.129
	60S ribosomal protein L22	Rpl22	P67984	14	0.053
	60S ribosomal protein L19	Rpl19	P84099	23	0.033
	GTP-binding nuclear protein Ran	Ran	P62827	24	0.430
GTPase-	GTP-binding protein Di-Ras2	Diras2	Q5PR73	22	0.076
related	Arf-GAP with SH3 domain. ANK repeat and PH domain-		070100		
proteins	containing protein 2	Asap2	Q/SIG6	106	0,016

Table S5: Fam172a interacting proteins in the chromatin fraction of Neuro2a cells

Cytoskeleton- associated proteins	Actin, cytoplasmic 1	Actb	P60710	41	1,141
	Neuronal migration protein doublecortin	Dcx	O88809	40	0,256
	Junction plakoglobin	Jup	Q02257	81	0,155
	Echinoderm microtubule-associated protein-like 6	Eml6	Q5SQM0	217	0,008
	Desmoglein-1-alpha	Dsg1a	Q61495	114	0,007
	Casein kinase II subunit alpha	Csnk2a1	Q60737	45	0,247
	Elongation factor 1-alpha 1	Eef1a1	P10126	50	0,087
	Glyceraldehyde-3-phosphate dehydrogenase	Gapdh	P16858	35	0,095
Other	Chymotrypsinogen B	Ctrb1	Q9CR35	27	0,062
Other	Voltage-dependent anion-selective channel protein 3	Vdac3	Q60931	30	0,053
	Sorting nexin-29	Snx29	Q9D3S3	91	0,031
	Stress-70 protein, mitochondrial	Hspa9	P38647	73	0,021
	Fibrous sheath-interacting protein 2	Fsip2	A2ARZ3	784	0,019

Note: Proteins were included if enriched at least 1.5-fold in comparison to the MBP negative control and detected in at least two out of the three biological replicates of this analysis. The indicated emPAI (exponentially modified Protein Abundance Index) value corresponds to the average of the three biological replicates. Accession number is for the Uniprot database.

Category	Protein name	Gene name	Accesion number	MW	emPAI
	Lupus La protein homolog	Ssb	P32067	47	0,217
	ATP-dependent RNA helicase A	Dhx9	O70133	149	0,090
	Nucleoprotein TPR	Tpr	F6ZDS4	273	0,053
RNA binding	Exosome complex component MTR3	Exosc6	Q8BTW3	28	0,039
/processing	tRNA (cytosine(34)-C(5))-methyltransferase	Nsun2	Q1HFZ0	85	0,030
	DAZ-associated protein 1	Dazap1	Q9JII5	43	0,025
	Heterogeneous nuclear ribonucleoprotein Q	Syncrip	Q7TMK9	69	0,016
	Bifunctional glutamate/prolinetRNA ligase	Eprs	Q8CGC7	170	0,008
	Nuclease-sensitive element-binding protein 1	Ybx1	P62960	35	0,130
	Serine/arginine-rich splicing factor 3	Srsf3	P84104	19	0,114
	Pre-mRNA-splicing regulator WTAP	Wtap	Q9ER69	44	0,084
mRNA	Interleukin enhancer-binding factor 2	llf2	Q9CXY6	43	0,080
splicing	TAR DNA-binding protein 43	Tardbp	Q921F2	44	0,039
	RNA-binding protein FUS	Fus	P56959	52	0,021
	Far upstream element-binding protein 2	Khsrp	Q3U0V1	76	0,018
	Histone-binding protein RBBP7	Rbbp7	Q60973	47	0,173
	Superoxide dismutase [Cu-Zn]	Sod1	P08228	15	0,140
DNA	DNA damage-binding protein 1	Ddb1	Q3U1J4	126	0,029
binding/repair	DNA dC->dU-editing enzyme APOBEC-3	Apobec3	Q99J72	50	0,023
	Tyrosine-protein kinase BAZ1B	Baz1b	Q9Z277	170	0,018
	Tumor suppressor p53-binding protein 1	Tp53bp1	P70399	211	0,002
	Tubulin beta-5 chain	Tubb5	P99024	49	0,546
	MARCKS-related protein	Marcksl1	P28667	20	0,088
• • • • •	Peripherin	Prph	P15331	53	0,083
Cytoskeleton-	WD repeat-containing protein 1	Wdr1	O88342	66	0,064
nroteins	Drebrin	Dbn1	Q9QXS6	77	0,021
proteins	Echinoderm microtubule-associated protein-like 6	Eml6	Q5SQM0	217	0,005
	Spectrin beta chain, non-erythrocytic 1	Sptbn1	Q62261	274	0,004
	Microtubule-actin cross-linking factor 1	Macf1	Q9QXZ0	831	0,001
	Leukocyte elastase inhibitor B	Serpinb1b	Q8VHP7	42	1,870
	Elongation factor 1-alpha 1	Eef1a1	P10126	50	0,360
	ATP synthase subunit alpha	Atp5a1	Q03265	59	0,299
	GTP-binding protein Di-Ras2	Diras2	Q5PR73	22	0,285
	40S ribosomal protein S3	Rps3	P62908	26	0,233
Other	Malate dehydrogenase, mitochondrial	Mdh2	P08249	35	0,165
	Fibrous sheath-interacting protein 2	Fsip2	A2ARZ3	784	0,110
	Myristoylated alanine-rich C-kinase substrate	Marcks	P26645	29	0,061
	Asparagine synthetase	Asns	Q61024	64	0,037
	E3 ubiquitin-protein ligase TRIM8	Trim8	Q99PJ2	61	0,019
	Teneurin-1	Tenm1	Q9WTS4	305	0,003

Table S6: Fam172a interacting proteins in the nucleoplasm fraction of Neuro2a cells

Note: Proteins were included if enriched at least 1.5-fold in comparison to the MBP negative control and detected in at least two out of the three biological replicates of this analysis. The indicated emPAI (exponentially modified Protein Abundance Index) value corresponds to the average of the three biological replicates. Accession number is for the Uniprot database.

Category	Protein name	Gene name	Accesion number	MW	emPAI
	Bifunctional glutamate/prolinetRNA ligase	Eprs	Q8CGC7	170	0,259
	Nuclease-sensitive element-binding protein 1	Ybx1	P62960	36	0,148
KNA binding	Eukaryotic translation initiation factor 2 subunit 1	Eif2s1	Q6ZWX6	36	0,039
processing	RNA-binding protein FUS	Fus	P56959	52	0,015
	Squamous cell carcinoma antigen recognized by T-cells 3	Sart3	Q9JLI8	109	0,007
	ATP synthase subunit beta, mitochondrial	Atp5b	P56480	56	1,565
	ADP/ATP translocase 1	Slc25a4	P48962	32	1,384
	Nucleoside diphosphate kinase A	Nme1	P15532	17	1,307
	High mobility group protein B2	Hmgb2	P30681	24	0,523
Nucleotide	ADP/ATP translocase 2	Slc25a5	P51881	286	0,518
binding	Up-regulated during skeletal muscle growth protein 5	Usmg5	Q78IK2	5	0,410
/processing	ATP synthase subunit gamma, mitochondrial	Atp5c1	Q91VR2	32	0.126
	GTP-binding protein Di-Ras2	Diras2	Q5PR73	22	0.074
	5'-AMP-activated protein kinase catalytic subunit alpha-1	Prkaa1	Q5EG47	63	0.048
	Arf-GAP with SH3 domain. ANK repeat and PH domain-		070100	400	
	containing protein 2	Asap2	Q7SIG6	106	0,015
	Peptidyl-prolyl cis-trans isomerase A	Ppia	P17742	17	6,238
2 / · ·	Prohibitin	Phb	P67778	29	2,208
	Elongation factor 1-alpha 1	Eef1a1	P10126	50	1,083
	Prohibitin-2	Phb2	O35129	33	0,825
	Elongation factor 2	Eef2	P58252	95	0,624
	Elongation factor 1-gamma	Eef1g	Q9D8N0	44	0,465
Protein	T-complex protein 1 subunit alpha	Tcp1	P11983	60	0,345
/renair	Aminoacyl tRNA synthase complex-interacting multifunctional	Aimn2		25	0.240
nepan	protein 2	Aimpz	QORUIU	35	0,249
	Thioredoxin	Txn	P10639	11	0,238
	Prolyl endopeptidase	Prep	Q9QUR6	80	0,191
	26S protease regulatory subunit 6B	Psmc4	P43686	47	0,058
	Transcription factor BTF3	Btf3	Q64152	22	0,057
	Alpha-2-HS-glycoprotein	Ahsg	P29699	37	0,028
	Glyceraldehyde-3-phosphate dehydrogenase	Gapdh	P16858	35	1,586
	L-lactate dehydrogenase A chain	Ldha	P06151	36	1,005
	Aspartate aminotransferase, mitochondrial	Got2	P05202	47	0,767
	Glucose-6-phosphate isomerase	Gpi	P06745	62	0,412
	Bifunctional purine biosynthesis protein PURH	Atic	Q9CWJ9	65	0,298
	D-3-phosphoglycerate dehydrogenase	Phgdh	Q61753	56	0,290
Matabalia	Fatty acid-binding protein, epidermal	Fabp5	Q05816	15	0,255
nrocesses	Malate dehydrogenase, cytoplasmic	Mdh1	P14152	36	0,190
p10003303	Inorganic pyrophosphatase	Ppa1	Q9D819	32	0,185
	Cytosolic acyl coenzyme A thioester hydrolase	Acot7	Q91V12	42	0,164
	Dolichyl-diphosphooligosaccharideprotein	Ddoot	054724	40	0 115
	glycosyltransferase	Duosi	054754	49	0,115
	Dihydrolipoyllysine-residue succinyltransferase	DIst	Q9D2G2	48	0,086
	Glycogen phosphorylase, brain form	Pygb	Q8CI94	96	0,027
	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3	Plod3	Q9R0E1	84	0,025
0.4	Clathrin heavy chain 1	Cltc	Q68FD5	191	0,220
Cytoskeleton-	T-complex protein 1 subunit gamma	Cct3	P80318	60	0,197
nroteine	Spectrin beta chain, non-erythrocytic 1	Sptbn1	Q62261	275	0,065
proteins	Desmoplakin	Dsp	E9Q557	332	0.046

Table S7: Fam172a interacting proteins in the cytoplasm fraction of Neuro2a cells

	Leukocyte elastase inhibitor B	Serpinb1b	Q8VHP7	42	4,340
0/1	14-3-3 protein zeta/delta	Ywhaz	P63101	27	1,015
	Voltage-dependent anion-selective channel protein 1	Vdac1	Q60932	32	0,519
Other	Macrophage migration inhibitory factor	Mif	P34884	15	0,480
	Voltage-dependent anion-selective channel protein 3	Vdac3	Q60931	30	0,306
	Voltage-dependent anion-selective channel protein 2	Vdac2	Q60930	31	0,113

Note: Proteins were included if enriched at least 1.5-fold in comparison to the MBP negative control and detected in at least two out of the three biological replicates of this analysis. The indicated emPAI (exponentially modified Protein Abundance Index) value corresponds to the average of the three biological replicates. Accession number is for the Uniprot database.

Table S8: Genetic and phenotypic information about the CHARGE syndrome patients included in this study

Patient ID (sex)	CHD7 variant	FAM172A variant	Possible transmission	Phenotypic presentation
CHA194 (XX female)	NM_017780.3: c.5050+1G>T	no	<i>De novo</i> dominant	Coloboma, choanal atresia, ear malformations, hearing loss, delayed puberty, short stature
CHA272 (XY male)	no	no	Recessive or <i>de</i> <i>novo</i> dominant	Coloboma, choanal atresia, ear malformation, hearing loss, heart malformation, swallowing problems, developmental delay
CHA275 (XX female)	no	no	Recessive or <i>de</i> <i>novo</i> dominant	Choanal atresia, Mondini malformation, hearing loss, growth retardation, swallowing problems
CHA333 (XX female)	no	no	Recessive or <i>de</i> <i>novo</i> dominant	Coloboma, choanal stenosis, hearing loss, ear malformation, heart malformation, short stature, swallowing problems
CHA367 (XX female)	no	no	Recessive or <i>de</i> <i>novo</i> dominant	Coloboma, hypoplastic optic nerves, unilateral choanal atresia, ear malformation, heart malformation, short stature, agenesis of corpus callosum, swallowing problems
CHA441^ª (XX female)	no	NM_032042.5: c.682G>C	<i>De novo</i> dominant	Choanal atresia, small abnormal ears, moderate hearing loss, vestibular dysfunction
CHA442 ^a (XX female)	no	NM_032042.5: c.682G>C NM_032042.5: c.916C>T	Inherited from mother / <i>De novo</i> dominant	Choanal atresia, profound hearing loss, small left kidney, genital hypoplasia, delayed puberty, growth retardation, growth hormone deficiency, hypothyroidism

Note: ^a Mother (CHA441) and child (CHA442) from the same family.

Table S9: Genetic and phenotypic information about the *FAM172A* mutation-positive mother-child pair from the replication cohort

Family member	<i>CHD7</i> variant	FAM172A variant	Possible transmission	CHARGE syndrome-related features
Mother	no	NM_032042.5: c.682G>C	<i>De novo</i> dominant	Choanal atresia, blocked tear ducts, severe hearing loss, growth hormone deficiency hydronephrotic left kidney, hypothyroidism
Child	no	NM_032042.5: c.682G>C	Inherited from mother	Choanal atresia, blocked tear ducts, strabismus, abnormal ears, severe hearing loss, developmental delay, immune deficiency, hypothyroidism

	Antibody Namo	Dilution	Sourco	חוסס
			Source	RRID
Primary Antibodies	Rabbit molyclonal Anti-Fam172a	IF (1:500) IF (2 μg/ml)	Abcam ab121364	AB_11127114
	Rat monoclonal Anti-AGO2	IF(1:1000)	Sigma SAB4200085	AB_10600719
	Rat monoclonal Anti-AGO1	WB (1:1000) IF (1:1000) IP (3 µg/ml)	Sigma SAB4200084	AB_10602786
	Rabbit monoclonal Anti-CHD7 (D3F5)	WB (1:1000) IP (3 µg/ml)	Cell Signaling #6505	AB_11220431
	Rabbit polyclonal Anti-AGO2	WB (1:1000) IF (1:500) IP (3 µg/ml)	Abcam ab32381	AB_867543
	Rabbit polyclonal Anti-Active Caspase 3	IF (1:500)	Abcam ab13847	AB_443014
	Goat polyclonal Anti-Sox10	IF (1:250)	Santa Cruz Sc-17342	AB_2195374
	Mouse monoclonal Anti-Neurofilament	IHC (1:500)	DSHB 2H3	AB_2618380
	Rabbit polyclonal Anti-H3	WB (1:2500) IP (1 μg/ml)	Abcam ab1791	AB_302613
	Rabbit polyclonal Anti-Ki67	IF (1:1000)	Abcam ab15580	AB_443209
	Mouse monoclonal Anti-p53	IF (1:250)	Cell Signaling #2524 (1C12)	AB_331743
	Mouse monoclonal Anti-Myc tag	WB (1:500) IF (1:100)	In house hybridoma (9E10)	-
Secondary Antibodies	Donkey Alexa Fluor 488 Anti-Rat IgG	IF (1:500)	Jackson ImmunoResearch 712-545-150	AB_2340683
	Donkey Alexa Fluor 594 Anti-Rabbit IgG	IF (1:500)	Jackson ImmunoResearch 711-585-152	AB_2340621
	Donkey Alexa Fluor 647 Anti-Mouse IgG	IF (1:500)	Jackson ImmunoResearch 715-605-150	AB_2340862
	Bovine Alexa Fluor 647 Anti-Goat IgG	IF (1:500)	Jackson ImmunoResearch 805-605-180	AB_2340885
	Donkey Anti-Rabbit IgG HRP	WB (1:10 000)	AbD Serotec Star124p	AB_615912
	Donkey Anti-Mouse IgG HRP	WB (1:10 000)	AbD Serotec Star117	AB_324488
	Goat Anti-Rat IgG HRP	WB (1:10 000)	Santa Cruz Sc-2032	AB_631755

Table S10: Antibodies used in this study

Table S11: Oligonucleotide primers used for RT-qPCR

Oligo Name	Sequence (5'-3')
Fam172a Forward	AGG TGA CTG CTG TGG CAT TGA C
Fam172a Reverse	GGC TTC TGC GAG CTG CTC TT
FAM172A Forward	ACC GCC TCT TGA TTT TCC TGA
FAM172A Reverse	GCC TCG TAT CTT TTC TGG TTC C
Nr2f1 Forward	CTT TCA GGA ACA GGT GGA GAA GC
Nr2f1 Reverse	AGG AAC ACT GGA TGG ACA TGT AAG G
A830082K12Rik Forward	TTC AAT AGT TCT GCT GAA TGC TCC
A830082K12Rik Reverse	ATA AAG TAG GGA TCC GTT TCC AGT TGT GTC AAC
Pou5f2 Forward	AGT GTG GTT TTC TAA CCG GAG CCA
Pou5f2 Reverse	TCA GAG AAC TGA ACG CTA ACC CTG
Gapdh Forward	CTG TGG CGT GAT GGC CGT GG
Gapdh Reverse	CCT CAG TGT AGC CCA AGA TG
Cd44_Ex8 (v4) Forward	TAC CCC AGT TTT TCT GGA TCA GG
Cd44_Ex9 (v5) Reverse	GCC ATC CTG GTG GTT GTC TG
CD44_Ex7 (v4) Forward	AGG CTG GGA GCC AAA TGA AG
CD44_Ex8 (v5) Reverse	CCG GAT TTG AAT GGC TTG GG
Cd44_Ex13 (v9) Forward	TGG AAG ACT TGA ACA GGA CAG G
Cd44_Ex14 (v10) Reverse	GTT TTC GTC TTC TTC CGG CTC
CD44_Ex12 (v9) Forward	GCT TCA GCC TAC TGC AAA TCC
CD44_Ex13 (v10) Reverse	GCC TTC ATG TGA TGT AGA GAA GC
Cd44_Ex4 Forward	ACA GAC CTA CCC AAT TCC TTC G
_Ex5 Reverse	GGG TGC TCT TCT CGA TGG TG
CD44_Ex4 Forward	TGC CCA ATG CCT TTG ATG GAC
CD44_Ex5 Reverse	GAA GTG CTG CTC CTT TCA CTG
Cd44_Ex16 Forward	GGA GTT CCC GCA CTG TGA C
Cd44_Ex17 Reverse	GGT CTC CTC ATA GGA CCA GAA G
CD44_Ex16 Forward	AGG TGG AGC AAA CAC AAC CTC
CD44_Ex17 Reverse	GAA TCA AAG CCA AGG CCA AGA G
Col5a3_EX6 Forward	CCC CAA AGA CGA TGA ACC AG
Col5a3_EX7 Reverse	TCT CTG TCT CAG GGA TGT GGA
COL5A3_EX6 Forward	TCA AGT CCA CCT CCT GAC TCC
COL5A3_EX7 Reverse	TAG GAT CGT GGC ATT GAG TCC
Col5a3_EX28 Forward	TAC CTC TGG TAA CCG GGG TCT C
Col5a3_EX29 Reverse	CCT TTT GGT CCC TCA TCA CCC
COL5A3_EX28 Forward	AGG GGG AGA AAG GCG AGA A
COL5A3_EX29 Reverse	CCT TTT GGT CCC TCA TCA CCC
Col5a3_EX66 Forward	GCA GCC CAT CAG AGG TTC AC
Col5a3_EX67 Reverse	AAG AGG GTC TTC GCC TGT CC
COL5A3_EX66 Forward	ACC TAC TCC TGC CAG AAT GC

COL5A3 EX67 Reverse	GGT СТТ СGT СТG ТСС ТТТ ССG
Col5a3 EX10 Forward	GGA CAG CAG TTT GAG GGG
– Col5a3 EX11 Reverse	CAC GGT CCC CAG GGA AG
COL5A3_EX10 Forward	GGG CAG CAG TTT GAG GGA C
COL5A3_EX11 Reverse	GGG TCG CCA GGG AAT CCT
Ift74_EX10 Forward	ACA CTT CAG CAA CAG CTA GAT TC
Ift74_EX11 Reverse	GGC GAT CCC ATG CTT TTG TC
IFT74_EX10 Forward	TCA ACA ACA ATT GGA TTC ACA GAA C
IFT74_EX11 Reverse	TGA TCT CGA TGG GAC TCC AAC
Ift74_EX5 Forward	TGT ACA ACC AAG AAA ATT CAG TGT
Ift74_EX6 Reverse	TGT TGT AGT CTG CTA GTT GTC CT
IFT74_EX5 Forward	TGT CAT ATG AAA AGA GGG CTG AG
IFT74_EX6 Reverse	TGT TGT AGT CTG CTA GTT GTC C
Mical2_EX8 Forward	GGA CAG TAC CCA CTA CTT TGT C
Mical2_EX9 Reverse	CCG AAC ACA GCA GCA TCT CT
MICAL2_EX8 Forward	CTG CTC GAC AAA GGT GTC ATC
MICAL2_EX9 Reverse	CGG GCA TAG GAT AGC AGG TT
Mical2_EX18 Forward	CGG GTC TCA GGC ATA GGT AAG
Mical2_EX19 Reverse	AGC CGG TAC TTG GTT GAG TTC
MICAL2_EX24 Forward	CGT GTG TAC GTG ATG GAA CG
MICAL2_EX25 Reverse	GCT TCA ACT CTG CCC GTC TC
Mical2_EX3 Forward	GTG GCA CAA ACT GGA TAA GCG
Mical2_EX4 Reverse	GCA GGA CAT TGT TCC GGG AG
MICAL2_EX3 Forward	CCT GGA AAG CCA AAG CCC TG
MICAL2_EX4 Reverse	GTT GTT CCG GGA GAA GGA GTC

Table S12: Oligonucleotide primers used for mouse genotyping as well as for cloning and mutagenesis of *Fam172a*

	Oligo Name	Sequence (5'-3')	
Genotyping	Fam172a_Mut_Forward	GGG AGT AAG TCC TAC CAA TGT TAA ATC	
	Fam172a_Mut_Reverse	TGA CCT TCT AAA CAG TCC CAT ATC CCC	
	Fam172a_WT_Forward	GAA GTG GGA ACA AAA CAC CCT TGG	
	Fam172a_WT_Reverse	CTA ATG AGT TTG GGG AAA TTA TCA TAG	
	Chd7_WT/Mut_Forward	GCT CGC TTT TCA ACC TCA TTA CG	
	Chd7_WT_Reverse	ATC AAC AAT GCC AAC CCA GGC	
	Chd7_Mut_Reverse	CCT CCG ATT GAC TGA GTC GC	
	Smcxy Forward	TGA AGC TTT TGG CTT TGA G	
	Smcxy Reverse	CCA CTG CCA AAT TCT TTG G	
	Zfy Forward	GAC CAG ATT GTT GTG GAA GTA CAA G	
	Zfy Reverse	CCA GTG TGT CTG AAG TGT CAG CTG	
Fam172a ORF and mutagenesis	Fam172a ORF (Xhol) Forward	CTC GAG ATG AAA AAG GAC GAA CCA CCT TTT GAT TTT CC	
	Fam172a ORF(EcoRI) Reverse	GAA TTC TCA CAG CTC CTC GTG CTT GAT CC	
	p.Glu229Gln (mut1_Arb2)	GGG AAG CGG <u>C</u> AA AGG AGA GAT AAG	
	p.Arg307* (mut2_Arb2)	CTG ATG ATT CAA <u>T</u> GA GAA GCA GAT	
	p.Ser294Ala (mut_hydrolase)	GTC CTC CAT AG <u>G</u> CAT GAG CCA CAA A	

OTHER SUPPORTING INFORMATION

Dataset S1: RNAseq data of *Toupee*^{Tg/Tg} NCCs analyzed with edgeR and DESeq (3488 genes; FC \geq 1.5; DESeq $P \leq 0.01$).

Dataset S2: RNAseq data of *Toupee*^{Tg/Tg} NCCs analyzed with rMATS (1166 events; inclusion level \geq 0.1; P < 0.01).

Sheet 1: Skipped exons (611 events)

Sheet 2: Retained introns (368 events)

Sheet 3: Alternative 3' splice site (91 events)

Sheet 4: Alternative 5' splice site (69 events)

Sheet 5: Mutually exclusive exons (27 events)

Dataset S3: RNAseq data of *Chd7*-het granule neuron progenitors analyzed with rMATS (227 events; inclusion level ≥ 0.1 ; P < 0.05).

Sheet 1: Skipped exons (115 events)

Sheet 2: Retained introns (58 events)

Sheet 3: Alternative 3' splice site (26 events)

Sheet 4: Alternative 5' splice site (20 events)

Sheet 5: Mutually exclusive exons (8 events)

Dataset S4: RNAseq data of *Chd7*-null granule neuron progenitors analyzed with rMATS (253 events; inclusion level ≥ 0.1 ; P < 0.05).

Sheet 1: Skipped exons (147 events)

Sheet 2: Retained introns (52 events)

Sheet 3: Alternative 3' splice site (26 events)

Sheet 4: Alternative 5' splice site (17 events)

Sheet 5: Mutually exclusive exons (11 events)