
Appendix 1: Standard Kalman Filter Smoother

Algorithm Standard Kalman Filter Smoother for estimating the moments
required in the E-step of an EM algorithm for a linear dynamical system

0. Define xτ
t = E(xt|Y τ

1),V
τ
t = Var(xt|Y τ

1), x̂t ≡ xT
t and P̂t ≡ V T

t + xT
t x

T
t

T

1. Forward Recursions:
xt−1
t = Axt−1

t−1

Vt−1
t = AVt−1

t−1 +Q

Kt = Vt−1
t C

T
(CV t−1

t C
T
+R)−1

xt
t = xt−1

t +Kt(yt − Cxt−1
t )

V t
t = V t−1

t −KtCV t−1
t

x0
1 = π0, V

0
1 = V0

2. Backward Recursions:

Jt−1 = V t−1
t−1 A

T
(V t−1

t )−1

xT
t−1 = xt−1

t−1 + Jt−1(x
T
t −Axt−1

t−1)

V T
t−1 = V t−1

t−1 + Jt−1(V
T
t − V t−1

t )J
T

t−1

P̂t,t−1 ≡ V T
t,t−1 + xT

t x
T
t

T

V T
T,T−1 = (I −KTC)AV T−1

T−1

Appendix 2: Derivation of The EM Algorithm

By the chain rule, the full likelihood is

P (X,Y ) = P (Y |X)P (X) = P (x0)
T∏
t=1

P (xt|xt−1)
T∏
t=1

P (yt|xt)

=
T∏
t=1

P (xt|xt−1)
T∏
t=1

P (yt|xt)1π0(x0)

where 1π0(x0) is the indicator function. Conditional likelihoods are

P (yt|xt) = (2π)−
p
2 |R|−

1
2 exp

{
−1

2
[yt − Cxt]

T

R−1[yt − Cxt]

}
P (xt|xt−1) = (2π)−

d
2 exp

{
−1

2
[xt − Axt−1]

T

[xt − Axt−1]

}

1



Then the log-likelihood, after dropping a constant, is just a sum of quadratic terms:

logP (X,Y ) =−
T∑
t=1

(1
2
[yt − Cxt]

T

R−1[yt − Cxt]
)
− T

2
log|R|

−
T∑
t=1

(1
2
[xt − Axt−1]

T

[xt − Axt−1]
)
− T

2
log|I|

+ log(1π0(x0)).

Then the optimization problem boils down to

θ̂ = argmin
θ

{ T∑
t=1

(1
2
[yt − Cxt]

T

R−1[yt − Cxt]
)
− T

2
log|R|

+
T∑
t=1

(1
2
[xt − Axt−1]

T

[xt − Axt−1]
)
− T

2
log|I|

− log(1π0(x0)) + λ1∥A∥1 + λ2∥C∥22
}

(1)

Let the target function in the curly braces be denoted as Φ(θ,Y ,X). Then Φ can be
optimized with Mr. Sid, a generalized Expectation-Maximization (EM) algorithm.

E Step

The E step of EM requires computation of the expected log likelihood, Γ = E[logP (X,Y )|Y ].
This quantity depends on three expectations: E[xt|Y ], E[xtx

T

t |Y ] and E[xtx
T

t−1|Y ]. For
simplicity, we denote their finite sample estimators by:

x̂t ≡ E[xt|Y ], P̂t ≡ E[xtx
T

t |Y ], P̂t,t−1 ≡ E[xtx
T

t−1|Y ]. (2)

Expectations (2) are estimated with a Kalman filter/smoother (KFS), which is detailed
in the Appendix. Notice that all expectations are taken with respect to the current esti-
mations of parameters.

M Step

Each of the parameters in θ = {A,C,R, π0} is estimated by taking the corresponding
partial derivatives of Φ(θ,Y ,x), setting them to zero, and then solving the equations.

2



Let the estimations from the previous step be denoted as θold = {Aold, Cold, Rold, πold
0 }

and the current estimations as θnew = {Anew, Cnew, Rnew, πnew
0 }. The estimation for the R

matrix has a closed form, as follows:

∂Φ

∂R−1
=

T

2
R−

T∑
t=1

(1
2
yty

T

t − Cx̂ty
T

t +
1

2
CP̂tC

T)
= 0

=⇒ R =
1

T

T∑
t=1

(yty
T

t − Cx̂ty
T

t )

=⇒ Rnew = diag

{
1

T

T∑
t=1

(yty
T

t − Cnewx̂ty
T

t )

}
In the bottom line, diag extracts only the diagonal of the in-bracket term, as we constrain
R to be diagonal in Constraint 4.

The estimation for π0 has a closed form. The relevant term log(1π0(x̂0)) is minimized
only when πnew

0 = x̂0.
The estimation for the C matrix also has a closed form. Terms relevant to C are

fλ2(C;X,Y ) =
T∑
t=1

(
1

2
[yt − Cxt]

T

R−1[yt − Cxt]

)
+ λ2∥C∥2. (3)

In fλ2(C;X,Y ), C is a matrix, we vectorized it to ease optimization and notation.
Without loss of generality, assume R is the identity matrix in equation (3); otherwise, one
can always write equation (3) as

T∑
t=1

(
1

2
[R− 1

2yt −R− 1
2Cxt]

T

[R− 1
2
yt −R− 1

2Cxt]

)
+ λ2∥R− 1

2C∥

Let Y ′ = (y11, . . . , yT1, y12, . . . , yT2, . . . , y1p, . . . , yTp)
T
be a Tp× 1 vector from rearranging

Y . In addition, let

X ′ =

X
T

. . .

X
T


pT×pd

.

Finally, vectorize Cold as

cold = (Cold
11 , . . . , C

old
1d , C

old
21 , . . . , C

old
2d , C

old
p1 , . . . , C

old
pd )

T

(4)

3



where Cij is the element at row i and column j of C. With these new notations, the
equation (3) is equivalent to

fλ2(C;X,Y ) = ∥Y ′ −X′c∥22 + λ2∥c∥22. (5)

With the Tikhonov regularization, equation (5) has closed form solution

cnew = (X ′TX ′ + λ2I)
−1X ′TY ′

Cnew = Rearrange cnew by equation (4)

In fλ2(C;X,Y ), C is a matrix. To simplify notation and optimization, we vectorized
it to a vector c following the methods of Turlach et al. (2005). A closed form solution for
c, denoted cnew, is given by the Tikhonov regularization. By rearranging the elements in
cnew, one gets an estimation of matrix C. That is,

Cnew = Rearrange cnew

Now consider matrix A. Terms involving A in Eq. (1) are

fλ1(A;X,Y ) =
T∑
t=1

(1
2
[xt − Axt−1]

T

[xt − Axt−1]
)
+ λ1∥A∥1

Similar to what we have done to C, fλ1(A;X,Y ) is equivalent to

fλ1(A;X,Y ) = ∥z− Za∥22 + λ1∥a∥1

where z is a Td × 1 vector obtained by rearranging X, and Z is a block diagonal matrix
with diagonal component Z

T
= (x0, . . . ,xT−1)

T
.

fλ1(A;X,Y ) does not have a closed form solution due to the ℓ1 term. However, it can
be solved numerically with a Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
The FISTA algorithm is detailed in the Appendix.

With FISTA, matrix A can be updated as follows:

Anew = FISTA(∥ZT

aold − z∥22, λ1)

4



0.1 Initialization

The R matrix is initialized as the identity matrix, while π0 is initialized as the 0 vector. For
A and C, denote Y = [y1, · · · ,yT], a p× T matrix, then the singular value decomposition
(SVD) of Y is Y = UDV

T ≈ Up×dDd×dV
T

d×T = Up×dXd×T , where Up×d is the first d

columns of U and Dd×d is the upper left block of D. This notation also applies to V
T

d×T .
C is then initialized as Up×d, while the columns of Xd×T are used as input for a vector

autoregressive (VAR) model to estimate the initial value for A.

0.2 Improving Computational Efficiency

The major factors that affect the efficiency and scalability of the above EM algorithm
involve the storage and computations of the covariance matrix R, which is a p× p matrix.
The following computational techniques are utilized to make the code highly efficient and
scalable. For the covariance matrix R, with constraint 4 (i.e. the diagonal assumption),
we employ a sparse matrix to represent R, and only the diagonal elements are directly
calculated. In the E-step, the term Kt = V t−1

t C
T
(CV t−1

t C
T
+ R)−1 involves the inverse of

a large square p× p matrix, which might be intractable. The Woodbury Matrix Identity is
employed to turn a high dimensional matrix inverse to a low dimensional one: (CV t−1

t C
T
+

R)−1 = R−1 −R−1C[(V t−1
t )−1 + C

T
R−1C]−1C

T
R−1.

Note that quantities like R−1 and C
T
R−1C can be pre-computed and reused throughout

the E step. With the above three techniques, the EM algorithm can scale to very high
dimensions in terms of p, d, and T , without causing any computational issues.

Appendix 3: FISTA Algorithm

In general, FISTA optimize a target function

min
x∈X

F(x;λ) = g(x) + λ∥x∥1 (6)

where g : Rn → R is a continuously differentiable convex function and λ > 0 is the regu-
larization parameter. A FISTA algorithm with constant step is detailed below

5



Algorithm FISTA(g, λ).
1. Input an initial guess x0 and Lipschitz constant L for ∇g, set y1 = x0, t1 = 1
2. Choose τ ∈ (0, 1/L]; Set k ← 0.
3. loop
4. Evaluate ∇g(yk)
5. Compute x1= Sτλ(yk − τ∇g(yk))

6. Compute tk+1 =
1+
√

1+4t2k
2

7. yk+1 = xk +
(

tk−1
tk+1

)
(
xk − xk−1)

8. Set k ← k + 1
9. end loop

In the above

Sλ(y) = (|y| − λ)+sign(y) =


y − λ if y > λ
y + λ if y < −λ
0 if |y| ≤ λ.

The Lipschitz constant L for∇g(z) = Z
T
(Za−z), where g(z) = ∥ZT

a−z∥22, is calculated
as follows. Denote ∥Z∥ as the induced norm of matrix Z, then L is

L = sup
x ̸=y

∥ZT
(Zx− Zy)∥
∥x− y∥

= sup
x̸=0

∥ZT
Zx∥
∥x∥

≤ ∥ZT∥∥Z∥ = ∥ZT∥∥Z∥.

Appendix 4: k-step predictions with PCA and Mr. Sid

Algorithm k-step predictions with PCA and Mr. Sid
1. Denote estimations with PCA and Mr. Sid as Apca, Cpca, Aplds, and Cplds respectively.
2. PCA estimated latent states at t = 1000: x1000,pca = column 1000 of Xd×T from Section 3.3
3. Mr. Sid estimated latent states at t = 1000: x1000,pls is from the E step in Section 3.4
4. for i = 1 to k
5. x1000+k,pca = Apca x999+k,pca

6. y1000+k,pca = Cpca x1000+k,pca

7. x1000+k,plds = Aplds x999+k,plds

8. y1000+k,plds = Cplds x1000+k,plds

9. end

6



Appendix 5: Simulation Data Generation

Algorithm Simulation Data Generation
1. Denote the dimensions as p, d and T respectively
2. Generate a p× d matrix C0 from a standard Gaussian distribution
3. Sort each column of C0 in ascending order to get matrix C
4. Generate a d× d matrix A0 from a standard Gaussian distribution
5. Add a multiple of the identity matrix to A0

6. Replace entries in A0 with small absolute values with 0
7. Scale A0 to make sure its eigen values are between −1 and 1; use A0 as the A matrix
8. Let R be a diagonal matrix with positive diagonal entries and Q be the identity matrix
9. Generate simulation data with A,C,Q and R
10. end

7


