Supplemental Materials

Supplemental Table 1: Characteristics of patients with secondary FSGS with identifiable risk factor(s) vs secondary FSGS without identifiable risk factor(s)

Supplemental Table 2: Treatment and renal outcomes for patient with focal segmental glomerulosclerosis

Supplemental Figure 1: Overview of study design.

Supplemental Figure2: Correlation between proteinuria and foot process effacement in patients with primary FSGS (red squares) and secondary FSGS (blue diamonds). All patients with primary FSGS had proteinuria > 3.5 g/day. However, patients with secondary FSGS had proteinuria that ranged from 46 mg/day to 11 g/day. Pearson's correlation coefficient (R) for correlation between the degree of foot process effacement and proteinuria was 0.41, *P*=.008 for the total cohort.

Supplemental Figure 3: Trends in the incidence rates of kidney biopsy, glomerular diseases and focal segmental glomerulosclerosis in Olmsted County over the period of 1994-2013. Using Poisson regression models, estimated native kidney biopsy incidence rates increased significantly from 1994-2003 to 2004-2013 (17% increase per 5 years, *P*<.001). The incidence of glomerular diseases also increased during the same time period but was not statistically significant (11% increase per 5 years, *P*=.05). Incidence of focal segmental glomerulosclerosis increased significantly over the same time period (41% increase per 5 years, *P*=.02).

Supplemental Figure 4: Trends in the incidence rates of kidney biopsy, focal segmental glomerulosclerosis and all subtypes of glomerular diseases in Olmsted County over the period of 1994-2013. Abbreviations: FSGS, focal segmental glomerulosclerosis; Global GS, global glomerulosclerosis; GN, glomerulonephritis; IgA, Immunoglobulin A Nephropathy; MN, membranous nephropathy; MPGN, membranoproliferative glomerulonephritis. Other included cases of amyloidosis, Fabry's disease, Fibrillary glomerulonephritis, HIV-associated nephropathy, infection-associated glomerulonephritis, monoclonal gammopathy of renal significance, thrombotic microangiopathy.

Characteristic Secondary FSGS with Secondary FSGS without P value identifiable risk factors identifiable risk factors^a N=13 N=21 Mean (SD) or N(%) Mean (SD) or N(%) **Demographics** Age, yr 47 ± 20.4 55 ± 18.1 .30 Male 3 (23%) 15 (71%) .01 White 11 (85%) 15 (71%) .44 Clinical characteristics at time of biopsy SBP at time of biopsy, mmHg 131 ± 28.1 141 ± 20.1 .79 DBP at time of biopsy, mmHg 77 ± 17.4 80 ± 15.9 .62 BMI, kg/m² 29.7 ± 8.6 32.9 ± 6.7 .11 Comorbidities HTN 9 (69%) 19 (90%) .17 DM 2 (15%) 7 (35%) .26 Vascular disease^b 4 (40%) 6 (30%) .69 5 (38%) 12 (57%) Dyslipidemia .48 BMI > 304 (31%) 13 (68%) .07 Medications at time of biopsy 6 (46%) 14 (67%) ACEi/ARB .30 5 (38%) 12 (57%) Statins .48 Laboratory data at time of biopsy Serum creatinine mg/dl 1.4 (1.05-2.1) 1.45 (1.05-2.3) Median (IQR) .79 Albumin, g/dl 3.9 ± 0.3 4.1 ± 0.3 .06 Proteinuria, g/day 2.8 ± 1.8 3.4 ±3.1 .92 Total cholesterol, mg/dl 219 ± 85.7 213 ±50.4 .86 **Biopsy characteristics**

Supplemental Table 1: Characteristics of patients with secondary FSGS with identifiable risk factor vs secondary FSGS without identifiable risk factor

Number of glomeruli	19 ± 15.0	12 ± 7.5	.26
% Globally sclerotic glomeruli	27% ± 24	48% ± 24	.02
Globally sclerotic glomeruli abnormal for age			
Interstitial fibrosis >5%	13 (100%)	18 (86%)	.27
Interstitial fibrosis >25%	2 (15%)	10 (48%)	.08
Arteriosclerosis 0-3 [°]	1.2 ± 1.0	1.3 ± 1.1	.74
Arteriolar hyalinosis 0-3°	0.9 ± 1.1	1.3 ± 1.1	.31
Foot process effacement	43% ± 32	38% ± 28	.65

Abbreviations: ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; DBP, diastolic blood

pressure; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate using creatinine-based CKD-EPI equation; FSGS, focal segmental glomerulosclerosis; HTN, hypertension; SBP, systolic blood pressure

^aRisk factors of secondary FSGS included: included reflux and obstructive uropathy (N=3), confirmed genetic FSGS (N=1), previous

nephrectomy or dysplastic kidney (N=2), renal artery stenosis (N=1), thin basement membrane disease (N=2), history of pre-eclampsia (N=2),

pamidronate (N=1), and chronic lithium use (N=1)

^bvascular disease is composite of coronary artery disease, stroke or peripheral arterial disease

^cscale 0-3 with 0=none, 1=mild, 2=moderate, 3=severe

	Primary FSGS N=12		Secondary FSGS N=34 ^ª
	Immunosuppression	Conservative	Conservative
	N=4	N=8	N=32
	Mean ± SD or N(%)	Mean ± SD or N(%)	Mean ± SD or N(%)
Treated with ACEi/ARB after biopsy	4 (100%)	6 (75%) ^b	27 (84%) ^c
Baseline proteinuria, g/day	10.0 (3.7)	7.0 (2.8)	3.1 (2.8)
Proteinuria at 6 months post biopsy, g/day	3.3 (2.9)	2.6 (2.1)	2.2 (2.1)
Mean difference in proteinuria after treatment, g/day	-8.1 (3.3)	-4.6 (0.7)	-1.3 (0.4)
Progressing to ESRD (%) ^d	1 (25%)	3 (38%)	10 (32%)
Progressing to ESRD or 40% decline in eGFR (%)	2 (50%)	5 (63%)	20 (63%)

Abbreviations: ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; eGFR, estimated glomerular filtration rate

using creatinine-based CKD-EPI equation; ESRD, end-stage renal disease;

^aTwo patients treated with immunosuppressive therapy.

^bTwo patients did not receive ACEi or ARB due to advanced CKD at the time of biopsy.

^CFive patients treated with blood pressure control without ACEi or ARB due to the following reasons: minimal proteinuria (n=1), advanced CKD

(n=1), unclear reasons (n=3).

^dMean time to progression to ESRD for patients with primary FSGS was 6 months vs 4.5 years for patients with secondary FSGS (*P*=.03).

Supplemental Figure 1: Overview of study design. * Primary focal segmental glomerulosclerosis was defined as foot process effacement \geq 80% without identifiable cause. All other patients were classified as secondary focal segmental glomerulosclerosis. Four patients without available electron micrographs were classified based on their clinical presentation.

Relation between Proteinuria and Foot Process Effacement

Supplemental Figure 2: Correlation between proteinuria and foot process effacement in patients with primary FSGS (red squares) and secondary FSGS (blue diamonds). All patients with primary FSGS had proteinuria > 3.5 g/day. However, patients with secondary FSGS had proteinuria that ranged from 46 mg/day to 11 g/day. Pearson's correlation coefficient (R) for correlation between the degree of foot process effacement and proteinuria was 0.41, *P*=.008 for the total cohort.

Incidence Rates in Olmsted County

Supplemental Figure 3: Trends in the incidence rates of kidney biopsy, glomerular diseases and focal segmental glomerulosclerosis in Olmsted County over the period of 1994-2013. Using Poisson regression models, estimated native kidney biopsy incidence rates increased significantly from 1994-2003 to 2004-2013 (17% increase per 5 years, *P*<.001). The incidence of glomerular diseases also increased during the same time period but was not statistically significant (11% increase per 5 years, *P*=.05). Incidence of focal segmental glomerulosclerosis increased significantly over the same time period (41% increase per 5 years, *P*=.02).

■ 1994-2003 ■ 2004-2013 3.5 3 Rate/100,000 person years 2.5 2 1.5 1 0.5 Global GS Diabelic nephropathy 0 TotalFSGS (Primary* Secondary) Necrolizing and crescentic GN 5econdary F5G5 Minimal change PrimaryFSGS NRGH other 10

Incidence Rate of Glomerular Disease in Olmsted County

Supplemental Figure 4: Trends in the incidence rates of kidney biopsy, focal segmental glomerulosclerosis and all subtypes of glomerular diseases in Olmsted County over the period of 1994-2013. Abbreviations: FSGS, focal segmental glomerulosclerosis; Global GS, global glomerulosclerosis; GN, glomerulonephritis; IgA, Immunoglobulin A Nephropathy; MN, membranous nephropathy; MPGN, membranoproliferative glomerulonephritis. Other included cases of amyloidosis, Fabry's disease, Fibrillary glomerulonephritis, HIV-associated nephropathy, infection-associated glomerulonephritis, monoclonal gammopathy of renal significance, thrombotic microangiopathy.