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Supplementary Figures 

Supplementary Figure 1  

 

Survival curves of species. Red bars indicate time points for which data was generated in our study. 

Data for Homo sapiens has been obtained from the Human Life-Table Database 

(http://www.lifetable.de), data for Germany (years 2006-2008), male survival. Sampling time points: 

24-29 years, 45-50 years, 60-65 years and 75-80 years (mid-points displayed). Data for Mus musculus 

has been obtained from Kunstyr and Leuenberger 67, male data, life-table recording started at 50 

days of age, n=296. Sampling time points: 2 months, 9 months, 15 months, 24 months and 30 

months. Data for Danio rerio has been obtained from Gerhard, et al. 68, outbred animals, average of 

survival in two tanks, life-table recording started at 17 months of age, n=77. Sampling time points: 6 

months, 12 months, 24 months, 36 months and 42 months. Data for Nothobranchius furzeri has been 

obtained from Tozzini, et al. 69, data of MZM 04/10 strain, life-table recording started at 5 weeks of 

age, n= 113. Sampling time points: 5 weeks, 12 weeks, 20 weeks, 27 weeks and 39 weeks. 
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Supplementary Figure 2 

 

Number of processes with ageing-associated changes between pairs of age-groups. The shading 

(“Similarity”) indicates which fraction of differentially regulated processes were also differentially 

regulated in the general ageing signature (comparison between the young and the two old age 

groups). We found a total of 492 cases of significant differential regulation of processes in the 

comparison between individual age groups. Of these cases, 324 (66%) showed the same direction of 

regulation like the ageing signature while six cases (1.2%) showed a regulation opposing the ageing 

signature. The remaining cases corresponded to processes that were not significantly differentially 

regulated in the cross-species comparison. 
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Supplementary Figure 3 

 

Conservation of ageing-associated transcriptional changes in individual species and tissues. For each 

ontology, the number of significantly differentially regulated processes with ageing for the specific 

subset of data (i.e. from a species or a tissue) is shown for cases where ageing-regulation is 

concordant with the cross-species regulation (red) and where processes show opposite changes 

compared to cross-species regulation (turquoise). For further information see also Supplementary 

Note S3.1. 
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Supplementary Figure 4 

 

Influence of senescence-associated processes and cellular proliferation on ageing-mediated disease 

alignment. To assess the role of cellular senescence in ageing-mediated disease alignment, we 

determined AMDA scores between ageing and disease data sets after removing data for all genes 

associated with cellular senescence. As reference for genes playing a role in cellular senescence, we 

used the list of significantly differentially expressed genes of cell cultures transitioning into 

senescence (fibroblast data, 13438 genes, sub-panel A) and a list of all genes associated with gene 

ontology processes containing the term “proliferation” (2125 genes, sub-panel B). For both gene lists, 

we found a strong alignment of ageing-associated gene expression changes with the signature of 

degenerative diseases and a reversal of the gene expression signature of cancer. These results 

suggest that while cellular senescence is an important driver of ageing-associated pathologies70, also 

non-senescence-associated processes contribute to the pronounced shifts in the ageing 

transcriptome relative to disease signatures. 
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Supplementary Note 1: Epidemiology of ageing-associated diseases 

Mortality data 

Data on causes of mortality for the US population in 2010 was downloaded from the website of the 

Center for Disease Prevention and Control (http://www.cdc.gov/). Since CDC does not provide single-

year population sizes for the different age groups beyond the age of 85, the corresponding data was 

obtained from the 2010 US census. We used disease data classified according to the 113 causes list of 

CDC. To obtain the contribution of different diseases to total mortality, we only considered 

“rankable” causes of death according to the CDC site. These are diseases that can appear in the top 

15 causes of death and were assumed to be non-redundant. This distinction was necessary since 

some causes of death in the CDC 113 list are included in others (e.g. different neoplasms that also 

figure individually in the list are included in the general term “Malignant neoplasms (C00-C97)”). 

Census data for people older or equal 100 years was combined into the age group “100+” to match 

CDC data. Causes of death were grouped into the categories “Cancer”, “Cardiovascular diseases”, 

“Neurodegenerative diseases”, “Diabetes” (including type I and type II, type I accounting for 4.4% of 

cases in the US in 2012 according to CDC), “External causes” and “Other causes” as follows (ICD-10 

codes of the International Statistical Classification of Diseases and Related Health Problems of the 

World Health Organization in brackets): 

Cancer: 

 Malignant neoplasms (C00-C97) 

 In situ neoplasms, benign neoplasms and neoplasms of uncertain or unknown behavior 
(D00-D48) 

Cardiovascular diseases: 

 Diseases of heart (I00-I09,I11,I13,I20-I51) 

 Essential hypertension and hypertensive renal disease (I10,I12,I15) 

 Cerebrovascular diseases (I60-I69) 

 Atherosclerosis (I70) 

 Aortic aneurysm and dissection (I71) 
Neurodegenerative diseases: 

 Parkinson's disease (G20-G21) 

 Alzheimer's disease (G30) 
Diabetes: 

 Diabetes mellitus (E10-E14) 
External causes: 

 Accidents (unintentional injuries) (V01-X59,Y85-Y86) 

 Intentional self-harm (suicide) (*U03,X60-X84,Y87.0) 

 Assault (homicide) (*U01-*U02,X85-Y09,Y87.1) 

 Legal intervention (Y35,Y89.0) 

 Operations of war and their sequelae (Y36,Y89.1) 

 Complications of medical and surgical care (Y40-Y84,Y88) 
Other causes: all other items 
Fractional mortality contribution was obtained by dividing, for each single-year age group, the 

number of deaths attributable to each disease category by total mortality across all categories.  

Incidence of cancer, cardiovascular disease, dementia and type 2 diabetes 

Cancer incidence in the USA for the year 2010 from the Surveillance, Epidemiology and End Results 

Program (SEER, http://seer.cancer.gov/) for the SEER 18 registries covering 18 regions of the US was 

obtained from the SEER database. The SEER database contains data about diagnosis of cancer for 34 

http://www.cdc.gov/


6 
 

different cancer sites and 19 age groups, a1 … a19, spanning 0 to over 84 years in the intervals 0 – 12 

months, 1 – 4 years, 5 – 9 years, 10 – 14 years, …, 80 – 84 years and above 84 years from different 

regions of the US (grouped into registries). We considered only data for 2010 since SEER does not 

provide population data for the age groups beyond 85, while detailed age information for all age 

groups is available for this year based on the 2010 US census matched to the regions covered by 

SEER. Population numbers of the SEER 18 registries were obtained from the Census data base 

(factfinder.census.gov, Table PCT12). Based on the SEER raw data, we obtained cancer incidence 

additionally including the age groups 85 - 89 years, 90 – 94 years, 95 – 99 years and above 100 years 

by counting, for each age group, the number of persons which had a cancer diagnosed for the first 

time (information available from SEER) divided by the total population count from the census data.  

Epidemiological data for neurodegenerative diseases in form of dementia was obtained from Rocca, 

et al. 1 (incidence was averaged across all birth cohorts from Rochester, Minnesota, USA), data for 

incidence of cardiovascular disease was obtained from Driver, et al. 2 and data for type 2 diabetes 

from Thunander, et al. 3. 

A note on type 2 diabetes incidence 

In contrast to the other diseases, reliable data on the change of type 2 diabetes incidence across age 

groups is difficult to obtain due to diabetes risk being strongly influenced by obesity4 and the 

prevalent underdiagnosis of type 2 diabetes5. In particular, data from Field et al.4 shows that the risk 

of developing diabetes in case of obesity is often several times the risk of colon cancer, heart disease 

or stroke (Supplementary Table 1). Thus, the contribution of the severe rise of obesity in recent 

decades6 is expected to strongly influence cross-sectional data on the incidence of type 2 diabetes. 

Indeed, strong differences in incidence of type 2 diabetes between age groups from different birth 

cohorts has been noted in comparison of birth cohort data and cross-sectional data7. Notably, while 

cross-sectional data from the US across birth cohorts indicated a plateau or even declining type 2 

diabetes prevalence for the oldest-old, separating the population into birth cohorts showed rising 

prevalence up to the oldest age groups for the individual age groups7. The strong influence of the rise 

of obesity in these observation is also reflected in the comparison of data from the US (with declining 

diabetes prevalence for older age groups and an average body mass index (BMI) of 28.8 in the adult 

population according to the WHO) with data from North European countries (average BMI of 25.3 for 

Denmark and 25.8 for Sweden), for which rising incidence has been reported up to the oldest age 

groups3,8. Importantly, the decline in cancer incidence is also observed in data stratified for birth 

cohorts in the US9.  

Another contributing factor are observations that type 2 diabetes is often undiagnosed, with 

undiagnosed cases of diabetes estimated to contribute up to 46% of total disease cases in the above 

75 year olds5. Along these lines, diabetes is also underreported on death certificates with only 39% of 

cases with diabetes actually mentioned on death certificates10. These observations have a strong 

influence on the reliability of type 2 diabetes incidence that reflects all actual disease cases (i.e. no 

undiagnosed cases) and is not biased by the recent global rise in obesity. Longitudinal follow up data 

can overcome these issues, yet longitudinal data over long follow up times is scarcely available. 

However, there is data from the Framingham Heart Study available who measured, amongst others, 

blood glucose levels as one parameter during follow-ups11. Increasing blood glucose levels are among 

the first changes observed before the actual onset of type 2 diabetes and have been shown to 

strongly increase up to the highest age groups (95 years) in lifespan-stratified patient data from the 
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Framingham cohort11. This indicates that, besides obesity as a much stronger contributor compared 

to the other diseases, also age up to the highest age groups drives type 2 diabetes incidence.  

Supplementary Table 1  Obesity-associated risk of major ageing-associated diseases. Data taken from 4. Risks with 
reference to individuals with BMIs in the range of 18.5 to 21.9. 95% confidence intervals are indicated in brackets. A BMI 
between 18.5 and 25 is considered normal weight and a BMI of 25 to 30 as overweight according to the World Health 
Organization. 

BMI, group Diabetes risk Colon cancer risk Heart disease risk Stroke risk 

22-24.9 (female) 2.2 (1.7-3.1) 1.3 (1.0-1.7) 1.2 (1.1-1.4) 0.9- (0.7-1.1). 

22-24.9 (male) 1.8 (1.2-2.7) 1.9 (1.1-3.1) 1.1 (1.0-1.4) 1.1 (0.8-1.6) 

25-29.9 (female) 8.1 (6.1-10.7) 1.3 (1.0-1.7) 1.5 (1.4-1.7) 1.0 (0.8-1.3) 

25-29.9 (male) 5.6 (3.7-8.4) 2.0 (1.2-3.3) 1.7 (1.4-2.0) 1.3 (0.9-1.9) 

The Armitage-Doll model for modelling cancer incidence 

The Armitage-Doll model assumes that cancer arises as series of consecutive mutation events that 

are required for a normal cell to become malignant12, referred here to as malignant transformation 

steps. Assuming seven mutations to be required for such a transformation, the incidence of a specific 

cancer s at age t, 
s

tc , can be derived as12  

6

7654321 tppppppkpcs

t   

with k being a constant and p1, …, p7 the probabilities of the individual mutations. These were 

assumed to be constant across age. Through logarithmic transformation we obtained 

  tppppppkpcs

t log6loglog 7654321   

Thus, the logarithm of cancer incidence rises as a sum of a constant plus six times the logarithm of 

time. 

As already noted by Armitage and Doll, the logarithmic incidence of some cancers appeared to rise 

with a different rate with time, termed here the malignant transformation rate 
s

transc  for a cancer s, 

which corresponds to the rate at which premalignant cells (successfully) acquire additional mutations 

until full malignant transformation (i.e. a clinically detectable tumor). Hence, in this case, cancer 

incidence growth can be modelled as 

s
transcs

t tppppppkpc 7654321  

Now, if we assume the individual transition probabilities to stay relatively constant between two age-

groups ai and ai+1, we can estimate the malignant transformation rate  
s

transc  by 
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with mp(ai) being a function that returns the mid-point of the age group ai. Since this growth rate 

represents a local estimate depending on the choice of age-groups, we referred to it as 

),( 1ii

s

trans aac , the malignant transformation rate between the age groups ai and ai+1. Please note 

that the malignant transformation rate has been referred to as log-log acceleration of cancer 

incidence previously in the context of the analysis of a selected number of cancer types 13. Based on 

the Armitage-Doll model, ),( 1ii

s

trans aac  can be interpreted as the rate at which precancerous cells 

(successfully) acquire mutations and proliferate on their way to a clinically detectable tumor in the 

time that passes between the mid-points of the age groups ai and ai+1. Hence, increases of this rate 

can be caused by an increased likelihood of acquiring cancerous mutations (e.g. through mutagen 

exposure), a reduced efficiency of molecular mechanisms repairing potentially carcinogenic 

mutations (e.g. DNA damage response) or a reduced efficiency of processes clearing precancerous 

cells (e.g. immunosurveillance). 

Malignant transformation rates in humans 

For malignant transformation rates, we only considered age groups provided by SEER since for these 

age groups detailed data across all 34 cancer sites is available for the years 1975 to 2012 from the 

SEER 9 registries. We averaged cancer incidence per 100,000 persons across all incidences reported 

from 1975 to 2012, yielding the cancer incidence of each cancer site s in each age group ai, 
s

ai
c . 

Malignant transformation rates ),( 1ii

s

trans aac between each pair of adjacent age groups ai and ai+1 

for cancer site s were determined by fitting of an Armitage-Doll model by 
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where mp(ai) is a function that returns the mid-point (in years) of the age group ai. For the age group 

“85+” years a mid-point of 87.5 years was chosen. Please note that this mid-point cannot be reliably 

estimated since this group also contains individuals older than 90 years.  Based on the 2010 census 

and assuming all people older than 100 to be of age 100 (the census only provides ages in 5 year age 

groups beyond 100), the average age in this group is 89 years. 

Malignant transformation rates in mice 

We estimated malignant transformation rates for mice treated with different doses of the carcinogen 

2-acetylaminofluorene reported in the ED01 study14. This data set represents one of the largest 

studies in which the carcinogenic potential of different doses of 2-acetylaminofluorene was analyzed 

in a cohort of 25,000 mice. We only considered data from mice that were not sacrificed. Age-specific 

changes in cancer incidence growth have previously been analyzed based on this data set also 

reporting decreasing cancer incidence rates with age15. The claims of this work, however, were later 

retracted due to an error in the database16. The corrected data set was kindly provided by Charles 

Harding, who also provided a script for determining malignant transformation rates based on this 
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data set. Based on the corrected data set, we determined age-specific locally smoothed hazard rates 

for cancer incidence for mice not sacrificed during the study and diagnosed with cancer as cause of 

death using the R “muhaz” package (http:// cran.r-project.org/package=muhaz). Based on cancer 

incidence rates, we determined malignant transformation rates as described above for different 

doses of treatment with 2-acetylaminofluorene (Supplementary Fig. 5). We used the grid points 

(n=50, life span varied depending on treatment) returned by the smoothing function of “muhaz” as 

individual age groups. To obtain 95% confidence intervals for the malignant transformation rate 

estimates, we resampled the data for each dose 1000 times with replacement. In similarity to the 

results obtained for human populations, we observed the highest malignant transformation rates at 

middle-ages around 500 days (approx. 17 months) for mice treated with different doses of the 

carcinogen. At higher ages malignant transformation rates declined. Thus, also in mice cancer 

incidence growth decelerates at older ages. 

8 

  
Supplementary Figure 5 Age-specific malignant transformation rates for several cohorts of mice treated with different 
doses of 2-acetylaminofluorene displayed in the header of each plot (dose in parts per million). The light blue area 
corresponds to the 95% confidence interval for the estimates based on resampling. For clarity, malignant transformation 
rates and confidence intervals are only displayed for a range of 0 to 15 on the y-axis.   
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Supplementary Note 2: Data sets 

JenAge ageing datasets 
Supplementary Table 2 Sample overview. The age for each sample is indicated in brackets behind the number of samples. 
The total number of data sets (“n”) as well as the number of individuals from which samples have been obtained (“i”) is 
indicated (see Supplementary Data 1, sheet “Sample overview” for more information). Numbers are provided separately for 
the cross-sectional design (“CS”) and the longitudinal design (“LL”). Footnotes behind the tissue indicate works in which the 
corresponding data set was analyzed in the context of single-species analyses: Reichwald, et al. 17, Baumgart, et al. 18, 
Frahm, et al. 19, Marthandan, et al. 20. Abbreviations: w – weeks, m – months, y – years, PD – population doublings (measure 
of age in cell cultures). 

Species Tissue Number of samples and age 

Young Mature1 Mature2 Old1 Old2 

Danio rerio  
TüAB 

n=73, i=45 
 

Total(CS) 14 (6m) 14 (12m) 15 (24m) 15 (36m) 15 (42m) 

Brain(CS) 5 5 5 5 5 

Liver(CS) 4 4 5 5 5 

Skin(CS) 5 5 5 5 5 

Nothobranchius furzeri  
MZM-0410 

CS: n=75, i=33 
LL: n=90, i=45 

Total (CS)  15 (5w) 15 (12w) 15 (20w) 15 (27w) 15 (39w) 

Brain(CS)17 5 5 5 5 5 

Liver(CS) 17 5 5 5 5 5 

Skin(CS) 17 5 5 5 5 5 

Fin (LL)18 - 45 (10w) 45  - - 

Mus musculus 
C57BL/6J 

CS: n=112, i=88 
LL: n=16, i=8 

Total(CS) 22 (2m) 23 (9m) 23 (15m) 21 (24m) 23 (30m) 

Blood(CS) 5 5 5 4 5 

Brain(CS)19 8 8 8 7 8 

Liver(CS) 4 5 5 5 5 

Skin(CS) 5 5 5 5 5 

Ear (LL) - - - 8 8 

Homo sapiens 
in vivo 

n=118, i=62 

Total(CS) 28 (24-29 y) - 32 (45-50 y) 28 (60-65 y) 30 (75-80 y) 

Blood(CS) 15 - 17 15 15 

Skin(CS) 13 - 15 13 15 

Homo sapiens 
ex vivo 

Fibroblasts 
n=47 

 

Total 15 6 6 6 14 

BJ 3 (PD34) - - - 3 (PD72) 

HFF20 3 (PD16) 3 (PD26) 3 (PD46) 3 (PD64) 3 (PD74) 

IMR-90 3 (PD31) - - - 2 (PD57) 

MRC-520 3 (PD32) 3 (PD42) 3 (PD52) 3 (PD62) 3 (PD72) 

Wi-38 3 (PD35) - - - 3 (PD57) 

Ageing-regulated gene sets (JenAge and external ageing data) 

For our data, we determined differentially expressed genes between the young and old age groups 

directly from the gene expression counts using the R package DEseq221. We determined differential 

expression between the young and one of the two old groups using standard parameters. We 

deemed a gene to be differentially expressed if DEseq2 yielded a FDR-corrected p value ≤ 0.05 

between young and one of the two old age groups. Genes found to be differentially expressed in 

different directions between the young and the two old age groups were not considered further. For 

the five fibroblast cell lines, lists of genes differentially regulated in individual cell lines were merged 

to obtain a unified list since genes differentially expressed between different fibroblast cell lines have 

been reported to show a strong overlap20. Genes that showed discordant regulation between any 

two cell lines were discarded. For non-human data, genes were mapped to their human orthologues 

using BioMart22. 
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For deriving ageing-regulated genes from the cross-species comparison, ageing-regulated processes 

were mapped to the genes constituting them by using the gene-to-process annotation used for 

deriving process activity from the gene expression data. Thus, we obtained a list of genes belonging 

to processes induced by ageing, yielding ageing-induced genes, and a list of genes belonging to 

processes repressed by ageing, yielding ageing-repressed genes. In the case where a gene was 

assigned to at least one process induced during ageing and at least one process repressed during 

ageing, the corresponding gene was discarded. 

Moreover, we determined  a list of consistently ageing-regulated genes across our ageing data sets 

based on the above lists by counting for each gene (or its human orthologue) the number of cases in 

which it was significantly down-regulated or up-regulated in the individual data sets (13 JenAge data 

sets). We ordered genes according to the absolute difference in number of cases of significant up- or 

down-regulation and considered those genes as consistently regulated in which this difference was at 

least five. Thus, we obtained a list of 896 genes with consistent ageing-associated regulation across 

species (Supplementary Data 1). For motif enrichment this gene list was tested against motif gene 

sets of transcription factors (“TFT – transcription factor targets”) using mSigDB23. 

We complemented our data set with previously reported differentially expressed genes in various 

human tissues originating from blood (a cross-cohort study24 and expression data from the San 

Antonio Family Heart Study25), muscle26, brain27 and breast28. Additionally, ageing-regulated gene 

sets for humans were obtained from the Digital Ageing Atlas29 accessed on August 6, 2014. 

Supplementary Table 3 Cross species ageing. 

 Ageing data set Genes repressed Genes induced Source 

C
SA

 Gene Ontology 2131 4952 Our data 

KEGG Pathway 116 1449 Our data 

Metabolism 136 125 Our data 

Sp
ec

ie
s 

ag
ei

n
g 

(J
en

A
ge

 d
at

a
) 

D. rerio liver 461 412 Our data 

D. rerio brain 2899 2912 Our data 

D. rerio skin 1570 1829 Our data 

N. furzeri liver 1404 1227 Our data 

N. furzeri brain 3249 2952 Our data 

N. furzeri skin 3432 3352 Our data 

M. musculus liver 1028 1670 Our data 

M. musculus brain 748 965 Our data 

M. musculus skin 3792 2994 Our data 

M. musculus blood 1550 2174 Our data 

H. sapiens skin 992 1509 Our data 

H. sapiens blood 293 102 Our data 

H. sapiens fibroblasts 6385 7053 Our data 

Ex
te

rn
al

 d
at

a 

H. sapiens blood (cross-cohort study) 889 595 24 

H. sapiens blood (SAFHS) 1858 1453 25 

H. sapiens muscle 280 326 26 

H. sapiens brain 599 586 27 

H. sapiens breast 277 405 28 

H. sapiens Digital Ageing Atlas 417 434 29 
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Disease data sets 

Disease data sets were mostly obtained from Gene Expression Omnibus30 (GEO) and the 

International Cancer Genome Consortium (ICGC)31 for cancer related data. For each disease, GEO was 

searched with the respective term and data sets considered in order of the number of available 

samples. Except for three cancer data sets, studies were excluded from the analysis if no information 

about the age of the donors was available or healthy and disease samples were not age-matched. In 

some studies, age information was available and participants were not age-matched. In these cases 

we iteratively simultaneously removed the youngest sample from the controls and the oldest 

samples from the cases until the difference in median age between cases and controls was smaller 

than two years. For several major disease phenotypes, two data sets originating from the same tissue 

were included (in those cases the two largest studies in GEO fulfilling the inclusion criteria) to ensure 

that ageing-mediated disease alignment was not dataset-specific. Data originating from GEO was 

processed using the GEO2R script. Gene identifiers were translated to Ensembl gene IDs using 

BioMart22. 

For cancer data, read counts per transcript were downloaded from the ICGC Data Portal32 for the 

following tissues: bladder, breast, colon/rectum, head/neck, kidney, liver, lung, ovary and prostate. 

Exclusively data without any publication limitation were used. The p values for differentially 

expressed genes were calculated with DeSeq2 v1.4.533 using methods based on (i) the estimation of 

size factors, which controls for differences in the library size of the sequencing experiment, (ii) the 

estimation of dispersion for each gene and (iii) negative binomial generalized linear models 

("nbinomWaldTest"). To improve stability, a shrinkage estimation for dispersions and fold changes 

was applied. Outliers were detected and removed per transcript using the function 

"replaceOutliersWithTrimmedMean". Differential expression was determined considering the paired 

design in the sequencing data (i.e. healthy and disease tissue from the same patient). For the analysis 

of the skin cancer samples, a quantile normalization was applied on the Series Matrix File of the 

dataset GSE318934 from Gene Expression Omnibus. P values were determined using a Wilcoxon rank-

sum test (R function ‘wilcox.test’) and corrected for multiple testing by controlling  the false-

discovery rate (FDR, Benjamini and Hochberg35). Details on the individual data sets are provided in 

Supplementary Table 2. 

The potential influence of tumor cellularity was tested based on the renal cancer expression data 

(ICGC project code RECA-EU) for which information on tumor composition was provided. Data were 

split into samples with tumor cell content 41-60%, 41-80%, and 81-100%. Each batch was analyzed 

like described for the other cancer data sets. In total, 17,721 genes were significant differentially 

expressed between tumor and control in at least one group. Out of these genes, 15,105 genes had a 

fold change pointing in the same direction in all batches. Results of a pairwise comparison are shown 

in Supplementary Table 4.  

Supplementary Table 4 Pairwise comparison between sample batches with different tumor cellularity. Exclusively genes 
that were significantly differentially expressed between tumor and control in at least one of the three batches (n=17,721) 
were considered in the comparison of fold-changes between batches. 

Cellularity batch 1 Cellularity batch 2 
Number of genes significant in first 
batch/second batch/both batches 

(tumor vs control) 

Number of genes having same fold 
change direction in both batches 

(tumor vs control) 

41-60 61-80 5,259 / 16,137 / 4,885  15,841 (89%) 

41-60 81-100 5,259 / 10,969 / 4,050 15,319 (86%) 
61-80 81-100 16,137 / 10,969 / 9,684 16,765 (95%) 
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Supplementary Table 5 Disease data sets used for the comparison of ageing and disease-associated gene regulation. 

 Tissue/Disease cases controls  Reference Comment 

C
an

ce
r 

Bladder 17 17 ICGC BLCA-US Paired data 

Blood 1484 72 GEO GSE1320436 Not age-matched 

Brain 454 28 GEO GSE6884837 Not age-matched 

Breast 110 110 ICGC BRCA-US Paired data 

Cancer proliferation index 
60 cancer cell 
lines (NCI-60) 

Correlation between gene expression 
and cancer growth rate in the NCI-60 

panel38 

Colon and rectum 47 47 ICGC COAD-US, 
READ-US 

Paired data 

Head and neck 99 99 ICGC HNSC-US Paired data 

Kidney 102 102 ICGC KIRC-US, 
KIRP-US 

Paired data 

Liver 48 48 ICGC LIHC-US Paired data 

Lung 99 99 ICGC LUAD-US, 
LUSC-US 

Paired data 

Pancreas 45 45 GSE2873539 Paired data 

C
ar

d
io

va
sc

u
la

r 
d

is
ea

se
s 

Coronary artery disease, plaque 32 32 GSE4329240 Paired data 

Coronary artery disease, blood 99 99 GSE2068141  

Heart failure, artery, left ventricle 177 136 GSE5734542  

Hypertension, blood 
7017 individuals 

Association between gene expression 
and blood pressure phenotypes based on 

model fit in a meta-analysis43 

Myocardial infarction, peripheral blood 
mononuclear cells 

111 46 GSE5986744 First day of 
admission vs. CAD 

controls 

Stroke, blood (Stroke - blood 1) 29 14 GSE1656145 Age-matched 
through sample 

removal (see 
above) 

Stroke, blood mononuclear cells (Stroke – 
blood 2) 

20 20 GSE2225546  

Ty
p

e 
2 

d
ia

b
et

es
 Type 2 diabetes, pancreatic islets (diabetes - 

islets 1) 
54 9 GSE3864247  

Type 2 diabetes, pancreatic islets (diabetes - 
islets 2) 

20 57 GSE4176248  

Type 2 diabetes, liver 7 8 GSE1490149  

Insulin resistance, blood 19 20 GSE2095050  

N
eu

ro
d

eg
. d

is
ea

se
s 

Alzheimer’s disease, brain tissue 176 181 GSE1522251  

Alzheimer’s disease, blood 49 67 GSE6306052 AD vs. healthy 
controls (case-

control population) 

Mild cognitive impairment, blood 49 67 GSE6306052 MCI vs. healthy 
controls (case-

control population) 

Parkinson’s disease, blood (Parkinson – blood 1) 93 49 GSE5747553  

Parkinson’s disease, blood (Parkinson – blood 2) 50 22 GSE661354  
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Supplementary Note 3: Conservation of ageing-associated transcriptional 

regulation and randomization tests 

Conservation of ageing-associated regulation 

Since we observed many significant ageing-associated transcriptional changes for individual species, 

we tested whether the functional signature of ageing that we identified could be explained by a 

random overlap in ageing-regulated processes across the individual species that we considered. To 

this end, we randomly reordered the direction of change as well as its significance between the 

processes for each species and tissue. Thus, the number of significant ageing-associated 

transcriptional changes for the individual species and tissues remained the same. We repeated this 

process 1000 times and determined the functional signature of ageing for each repetition using the 

same criteria as in the main manuscript (i.e. a process is part of the functional signature of ageing if it 

is significantly regulated across all species and shows the same significant direction of change in at 

least one of the fish and one of the mammalian species). 

In the randomization experiments, we observed that the number of cases of conserved regulation 

was usually at the same level as the number of cases with opposing regulation (Supplementary 

Fig. 6). In contrast, the number of conserved ageing-associated changes in the functional signature of 

ageing in our data was much higher and the number of opposing changes was much smaller than in 

the randomization experiments. This confirms that on a functional level there is a strong 

conservation of ageing-associated changes across species. 

 

Supplementary Figure 6 Conserved and opposing regulation for randomly distributed significant ageing-associated changes. 
For each ontology the number of conserved ageing-associated changes and the number of opposing changes is displayed. 
For each subset of data (species or tissue), processes with conserved changes correspond to those processes with a 
significant ageing regulation in the same direction like the cross-species analysis. Likewise, processes with opposing 
regulation show a significant inverse regulation compared to the cross-species analysis. The left subplot for each ontology 
corresponds to the overall number of cases of conserved and opposing regulation across the individual species and tissues. 
The right subplot displays the number of conserved and opposing ageing-associated changes for individual species and 
tissues (as barplots). Boxplots denote the number of conserved and opposing changes for 1000 repetitions in which the 
association between processes and significant ageing-associated changes was randomly reordered.  

Moreover, since previous works have only reported little overlap in the differential ageing-associated 

regulation of genes across species, we performed pairwise comparisons between ageing-regulated 

gene sets between all ageing data sets in our study. Thus, for each pair of aging data sets we 

determined the overlap in significantly ageing-regulated genes and the concordance of ageing 
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regulation (i.e. which fraction of common ageing-regulated genes shows the same direction of 

regulation). In general we found a very strong concordance in ageing-regulated gene sets also on the 

gene level (Supplementary Fig. 7). 

 

Supplementary Figure 7 Pairwise comparison of ageing-regulated gene sets. All ageing-regulated gene sets were compared 
between each other and the concordance of the direction of regulation was determined. Concordance refers to the fraction 
of genes that show the same direction of regulation during ageing in the two gene sets. A value of 1 indicates that all genes 
show the same direction of regulation while a value of 0 indicates a complete opposition. Grey areas indicate cases without 
significant overlap in ageing-regulated gene sets in the pairwise comparison based on a one-sided Fisher’s exact test 
followed by correction for multiple testing across all comparisons. 

Randomization of age assignments 

We repeated the procedure for deriving ageing-regulated processes after randomly swapping the 

age labels of our samples. Swapping of age labels was performed within each tissue in each species 

separately, thus avoiding swapping age-labels between e.g. samples with different numbers of 

replicates. Subsequently, we determined ageing-regulated processes and performed the same 

filtering steps to obtain processes with significant ageing regulation across species (i.e. a process has 

to show a significant ageing regulation across species and in at least one of the mammalian as well as 

one of the fish species). We repeated the process 100 times and obtained no run with more than two 

significant ageing-regulated processes for gene ontology (various processes in each run). For KEGG, 

alpha linolenic acid metabolism was detected as significantly ageing regulated five times and for 
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human metabolic pathways fatty acid oxidation seven times as well as keratan sulfate synthesis four 

times. 

We moreover conducted a randomization study of ageing-mediated disease alignment. To this end, 

for each ageing-regulated gene set, we randomly exchanged genes between the ageing-repressed 

and ageing-induced sets. Afterward we tested whether the randomly reassigned ageing-repressed or 

–induced genes showed a significant disease alignment as described in the main manuscript. After 

correcting p values for multiple testing in each run and performing 100 runs of the random 

resampling procedure, we did not observe a single instance of significant ageing-mediated disease 

alignment in the randomized gene sets. 

  



17 
 

Supplementary Note 4: Ageing-associated regulation of oncogenes and 

tumor suppressors 

Comparison with lists of known oncogenes and tumor suppressors 

We tested whether the frequency of oncogenes or tumor suppressors found among ageing-induced 

or ageing-repressed genes was significantly higher than expected, given the total number of genes 

annotated as oncogenes among genes covered by Gene Ontology (n=10.865) and KEGG Pathway 

(n=5.000), respectively, using a one-sided Fisher exact test. Depletion tests were performed similarly 

by determining whether the number of age-regulated oncogenes or tumor suppressors was 

significantly lower than expected. Differentially regulated processes were mapped to genes as 

described in Supplementary Note 2. 

Supplementary Table 6 P values of enrichment and depletion analyses of oncogenes and tumor suppressors in ageing-
induced and ageing-repressed genes. The first value in each cell denotes the p value of the test for enrichment and the 
second the test for depletion of oncogenes as well as tumor suppressors in process-derived ageing-regulated genes. 
Enrichment and depletion was tested using a one-sided Fisher exact test (see Supplementary Note 8 for details). 

 Gene Ontology KEGG Pathway 

 Ageing Repressed Ageing Induced Ageing Repressed Ageing Induced 

Oncogenes 3.3*10-26/1.0 1.0/2.0*10-13 0.75/0.50 1.0/4.3*10-6 

Tumor suppressors 1.0/1.5*10-3 1.0/4.2*10-3 0.75/0.5 8.3*10-4/1.0 

Analysis of somatic copy number variations in tumors 

Genes with copy number variation (CNV) in human tumors (n=23 tumors, BLCA, BRCA, CESC, COAD, 

COADREAD, GBM, GBMLGG, HNSC, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, OV, PRAD, SARC, 

SKCM, STAD, STES, THCA, UCEC) of 17 different tissues and a minimum number of 200 samples from 

The Cancer Genome Atlas (downloaded from  http://gdac.broadinstitute.org/, Gistic2, Level 4, run 

2015_08_21) were compared to ageing-induced and ageing-repressed genes for all three ontologies. 

We selected CNV genes which had a high level amplification (+2) or high level of deletion (-2) in at 

least five percent of all samples of a tumor entity. To select genes with CNVs that are of importance 

across different cancer types, we considered only those that showed CNVs in at least two different 

cancer types originating from different tissues or organs. Thus, we obtained a list of 5,532 amplified 

genes and 473 deletion genes. 

Enrichment analysis using a one-sided Fisher's exact test revealed an enrichment of deletion genes in 

the ageing-induced gene set based on Gene Ontology and in KEGG Pathway (Supplementary Table 7). 

Moreover, amplified genes were depleted among ageing-induced genes in KEGG Pathway. 

Supplementary Table 7 P values of enrichment and depletion analyses of amplified genes and deletion genes in ageing-
induced and ageing-repressed genes. The first value in each cell denotes the p value of the test for enrichment and the 
second the test for depletion of amplified genes as well as deleted genes in process-derived ageing-regulated genes. 
Enrichment and depletion was tested using a one-sided Fisher exact test (see Supplementary Note 8 for details). 

 Gene Ontology KEGG Pathway 

 Ageing Repressed Ageing Induced Ageing Repressed Ageing Induced 

Ampl. genes 0.90/0.11 0.34/0.67 0.62/0.48 0.99/0.01 

Deletion genes 0.91/0.13 1.4*10-2/0.99 0.82/0.50 4.68*10-4/1.0 
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Supplementary Note 5: Ageing-mediated disease alignment at middle age 
While malignant transformation rates show a considerable decline with old age, we also observed 

periods of ageing in which they show strong increases. In particular, we observe an increase in 

malignant transformation rates across all cancer sites that occurs roughly in the age group between 

30 and 45 years in humans that results in a doubling of median rates (Supplementary Fig. 8A). This 

increase is observable also when considering female and male gender separately (Supplementary 

Fig. 8B,C). Moreover, in this period external causes are replaced by diseases as principal causes of 

death (cf. Fig. 1A of the main manuscript), which is not due to a decline in the frequency of external 

causes of death which remain relatively constant in terms of frequency within each ageing cohort 

during this time (data not shown). Interestingly, this part of human lifespan has previously been 

associated with a transient period of intensive transcriptional alterations in human skin55 and is also 

associated with considerable alterations in the human reproductive system in both sexes56,57. 

We tested whether ageing-mediated disease alignment scores in the corresponding age groups 

reflect this pronounced increases in malignant transformation rates. To this end, we used 

transcriptomic data from monocytes and T-cells of humans aged between 15 years and 55 years 58. 

Overall, the study included 461 healthy participants. We separated the microarray data into four age 

groups: 15 – 19, 20 – 29, 30 – 39, 40 – 49 and 50 – 55 years of age. We compared gene expression 

between the individual age groups using GEO2R with the same approach described in Supplementary 

Note 2 (section “Disease data sets”) and used an unadjusted p-value of 0.01 as cut-off for 

determining ageing-regulated genes. Determining AMDA scores based on the ageing-regulated 

genes, we observed a strong ageing-associated alignment with cancer gene expression signatures 

between 20 to 29 and 30 to 39 years of age in monocytes as well as T-cells (Supplementary Fig. 8D). 

This pattern is also observable when considering male and female data separately (Supplementary 

Fig. 8D). For monocytes, we observe also an alignment with degenerative diseases between these 

age groups and a reversion in T-cells, which is particularly pronounced in the female data. 

Interestingly, risk factors for cardiovascular disease such as hypertension and atherosclerosis occur 

with lower frequency in females compared to males in these age groups while they are similar at 

older ages59,60. Please note that we obtain similar results when using an FDR-corrected p-value cut-

off of 0.05, but at a lower temporal resolution for determining ageing-regulated genes during middle 

age (age groups 15 to 29 vs. 30 to 45 in monocytes and T-cells). 



19 
 

 

Supplementary Figure 8 Ageing-associated cancer epidemiology and disease alignment during middle age. a-c Malignant 
transformation rates across (a) both sexes as well as (b) females and (c) males separately from 15 to 59 years of age. d 
Ageing-mediated disease alignment for different age groups as well as gender (indicated in the labels) in gene expression 
data from monocytes and T-cells. Abbreviations: AD, Alzheimer’s disease; CAD, coronary artery disease; CPI, cancer 
proliferation index; IR, insulin resistance; MCI, mild cognitive impairment; yrs, years. 
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Supplementary Note 6: Analysis of longitudinal data 
To ascertain that the changes we observed also arise in individual organisms rather than being 

merely due to differences in the cohorts of individuals that survived to a specific age, we investigated 

whether we can observe the functional signature of ageing also during ageing of individuals. To this 

end, we determined longitudinal changes in processes belonging to the functional signature of 

ageing in fin clips of N. furzeri obtained from the same individuals at 10 and 20 weeks of age (n=45)18 

as well as in ear clips of the same mice obtained at 24 and 30 months of age (n=8). For each of these 

animals, the age of death was recorded. Thus, our analysis covered two age groups between which 

most individuals survived in N. furzeri (two mature age groups, Supplementary Figure 1 and 

Supplementary Note 2) and two age groups between which a considerable fraction of the population 

died (two old age groups in mice, Supplementary Figure 1 and Supplementary Note 2).  

For longitudinal data, process activity was derived as described in the main manuscript without the 

rank normalization step since only data for a single species in a single tissue were compared. Only 

Gene Ontology processes were considered due to the larger number of significantly regulated 

processes compared to the other ontologies. To determine ageing-associated changes for each 

process, the average log fold-change across all individuals between the two ages of sampling was 

determined in the longitudinal data. For both species (N. furzeri and mice) only processes with 

significant ageing-associated regulation in the cross-sectional design between the youngest and the 

two oldest age groups were considered. For the comparison between longitudinal and cross-

sectional ageing data, average fold-changes in process activity from longitudinal data were correlated 

with the difference in normalized process activity between young and the two old age groups in the 

cross-sectional data using Spearman correlation (Supplementary Fig. 9A). The lifespan-association of 

each process was determined as the Spearman correlation of log fold-changes in process activity 

between the two time points with the final lifespan of the corresponding individual. We found that 

changes of cross-sectional and longitudinal activity of processes belonging to the functional signature 

of ageing are significantly correlated in both species (Supplementary Fig. 9, Spearman rho=0.61, p 

value = 6.1x10-16 and Spearman rho=0.46, p value = 3.2x10-6 for N. furzeri and mice, respectively). 

Thus, the functional signature of ageing was also visible in the ageing of individual organisms, both in 

consecutive age groups with little age-related mortality and consecutive age groups with high 

mortality. 

For the analysis of ageing mediated disease alignment in the longitudinal data, we used the 1000 

genes with highest and 1000 genes with lowest log-fold change between the two age groups in N. 

furzeri and mice as ageing-induced and ageing-repressed genes, respectively. Results did not change 

qualitatively when considering a range of 500 to 2000 genes with highest or lowest fold-changes. 

Genes that had at least one sample without detectable expression were discarded. Subsequently, 

human genes were mapped to their closest orthologues in N. furzeri as well as mice and we repeated 

the tests of regulation of ageing diseases based on the up- and down-regulated genes from the 

longitudinal analysis.  

The lifespan-association of each process was determined as the Spearman correlation of log fold-

changes in process activity between the two time points of measurements with the time of death of 

the corresponding individual.  
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Supplementary Figure 9 Comparison of longitudinal and cross-sectional ageing. Ageing-associated regulation of processes 
in cross-sectional data is compared with longitudinal regulation of processes in N. furzeri and M. musculus. Cross-sectional 
regulation is based on the average difference in normalized process activity between the young and the two old age groups 
for all gene ontology processes that show a significant ageing-associated regulation in N. furzeri across all tissues. 
Longitudinal regulation is based on the average log fold-changes in process allocation between 10 and 20 weeks in fin clips 
(N. furzeri) and ear clips between 24 and 30 months of age (M. musculus). Dots correspond to individual processes and the 
blue line to the regression through all points. In the upper left corner of each plot, the Spearman correlation and its 
significance are provided.  
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Supplementary Note 7: Influence of cohort effects on ageing-mediated 

disease alignment in cross-sectional data 
As an alternative approach to test whether cohort effects play a role in the observed relationship 

between ageing-associated regulation and the epidemiology of ageing-associated diseases, we 

repeated the analysis of the influence of ageing-associated changes on ageing diseases while 

excluding the second age-group of old organisms (“old2”). Hence, we only considered the changes in 

process activity between the age groups young and old1. For this old age group, most of the 

individuals were still alive and thus cohort-effects should be strongly reduced (cf. Supplementary 

Fig. 1). In high similarity of the analyses including the oldest age group, we found that ageing-

associated gene expression changes opposed gene expression changes observed in cancer while 

gene expression changes of non-cancerous diseases were promoted. 

 

 

Supplementary Figure 10 Ageing-mediated disease alignment excluding old2. Ageing-mediated disease alignment scores 
(AMDA scores) for different ageing data sets (x-axis) and diseases (y-axis). Diseases are grouped into the four main disease 
categories. Abbreviations: AD, Alzheimer’s disease; CAD, coronary artery disease; CPI, cancer proliferation index; HMP, 
human metabolic pathways; IR, insulin resistance; MCI, mild cognitive impairment.  
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Supplementary Note 8: Supplementary Methods 

Influence of samples originating from the same animal 

Since using RNA-seq data from different tissues of the same animal (see Supplementary Data 1, sheet 
‘Sample overview’, for details) might affect our statistical analyses, tests for transcriptomic changes 
between the young and the two old age states were repeated 1000 times per ontology, each time 
sampling one measurement from each individual at random. Next, we tested each process using the 
ANOVA-based procedure described in the main manuscript. For Gene Ontology we found that out of 
171 processes with significant ageing-associated transcriptional changes, 102 were significant in at 
least 500 random samples and 50 were significant in at least 900 of the 1000 random samples. For 
KEGG Pathway we found that out of 18 processes, 13 were significant in at least 500 random 
samples, 8 in at least 900 random samples. For Template Metabolism we found that out of 10 
processes, 6 were significant in at least 500 random samples, 4 in at least 900 random samples. Only 
for Gene Ontology we found two processes (“response to estrogen”, GO:0043627, p value of 0.073 in 
the cross-species analysis and “regulation of pathway-restricted SMAD protein 

phosphorylation“,GO:0060393, p value of 0.065 in the cross-species analysis) that did not occur in 
any of the resamples. The number of times each process was found to be significantly associated 
with ageing is given in Supplementary Data 1. These results showed that the use of several tissues 
from the same animal only marginally influenced our results. 

Sensitivity analysis of ageing regulated processes 

We performed several sensitivity tests to assess the accuracy of ageing regulated processes that 

were identified. 

We tested whether there was a considerable number of processes lost due to requiring that each 

process for each species and tissue contained at least five genes with detectable expression across all 

samples. For humans, we found 53 GO terms with at least 20 annotated genes that were not 

considered due to this requirement and only 12 with more than 50 genes which is rather small 

compared to the total number of 1563 considered processes (see Supplementary Data 1). 

We repeated the analysis for a different approach of deriving process activity, whereby we first rank 

normalized all gene expression values for each tissue and each species to a range from 0 to 1 before 

determining process activity. Thus, each gene had the same weight when determining process 

activity. Determining significantly ageing-regulated processes, we found that 65 of the processes, 

which were significant in the summation-based derivation of process activity, were also significantly 

ageing-regulated based on normalized gene expression values. One process changed the direction of 

regulation. Overall, the functional categories of ageing-regulated processes were similar for both 

approaches (Supplementary Data 1).  

Additionally, we investigated differential expression of genes within the processes, which were 

classified as ageing-regulated by determining for each process the frequency of pertaining genes with 

significant dysregulation across our ageing data sets. For Gene Ontology, 138 of 171 processes (81%) 

genes belonging to a process were also preferentially regulated in the direction of the regulation of 

the process (Supplementary Data 1).  

Moreover, we determined ageing-regulated processes for the case in which all age groups were 

considered in the analysis for Gene Ontology. Out of the 523 processes, which passed the model 

assumptions of the ANOVA procedure, 333 showed an ageing-associated regulation with a FDR p-
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value<0.1. In contrast, for the comparison between the young and the two old age groups we 

observed 448 processes with a FDR p-value<0.1 (out of 900 processes that passed the model 

assumptions). Among the top 50 age-regulated processes across all age groups, 49 were also age-

regulated in the comparison between the young and the two old age groups (87 among the top 100). 

Thus, including all age groups yields a highly similar though smaller number of ageing-regulated 

processes. More information on this analysis is provided in Supplementary Data 2. 

Ageing-mediated disease alignment (AMDA) scores 

For each combination of disease d and ageing-regulated gene set set a consisting of sets of ageing-

induced aUP as well as ageing-repressed genes aDOWN, we determined the AMDA score, adAMDA , , as 

follows. First, we determined for each disease data set fold-changes between case and control 

samples. Subsequently, fold-changes were quantile normalized across all diseases. Next, for each 

disease and each gene, we replaced fold-changes by their absolute ranks in the list of fold-changes 

multiplied with the corresponding direction of change (+1 if induced, -1 if repressed). Finally, fold-

changes were divided by the number of genes covered by each disease data set such that fold-

changes had a range from -1 to +1. adAMDA ,  was then determined by subtracting the sum of 

normalized fold-changes of ageing-repressed genes from the sum of normalized fold-changes of 

ageing-induced genes and dividing by the total number of differentially regulated genes: 
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with  dfc returning the normalized fold-changes of genes in the respective disease data set and 

corresponding to the size of a gene set. 

We assumed the AMDA score to be significant, if a Wilcoxon rank-sum test of normalized fold-

changes of genes from a disease data sets between ageing-repressed and ageing-induced genes 

yielded a FDR-corrected p value < 0.05.  

Disease alignment contribution (DAC) scores, process regulation and multi-dimensional 

scaling plots 

We assessed the relevance of individual ageing-regulated processes in ageing-mediated disease 

alignment by the DAC score. The DAC score for a process p and a diseases category C, CpDAC ,

indicates how much the genes belonging to process p contribute to the ageing-mediated disease 

alignment for diseases belonging to the disease category C. Ageing-associated diseases were 

categorized into cancer, cardiovascular diseases, neurodegenerative diseases and type 2 diabetes as 

indicated in Fig. 3 of the main manuscript. We did not consider cancer proliferation indices as well as 

the hypertension data since they correspond to correlation-based analyses (while fold-changes of 

gene expression between cases and controls was available for the other disease data sets). For each 

disease category d, we normalized fold-changes in gene expression in the same way like for 

determining AMDA scores, but performed the rank normalization step just across genes measured 

across all data sets belonging to disease category C. For each disease Cd  and each ageing-

associated data set a consisting of sets of ageing-induced aUP as well as ageing-repressed genes aDOWN 
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(from the set of ageing-regulated gene sets A), we determined an additional AMDA score 
p

adAMDA ,  

excluding fold-changes of genes belonging to process p, pg 
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with  dfc returning the normalized fold-changes of genes in the respective disease data set and 

corresponding to the size of a gene set. Additionally, we determined the normal AMDA score, 

adAMDA ,  including genes belonging to p as described in the previous section. Please note, however, 

that adAMDA ,  values determined for calculation of DAC scores might differ from those determined in 

the analysis of ageing-mediated disease alignment since we considered only genes for which fold-

changes across all diseases in a disease category were available. 

Moreover, we determined the significance in the shift of the p value after removing the genes 

belonging to a process sp,d,a by 

           gg,, p\,p\log,log UPdDOWNdUPdDOWNdadp afcafcwilcoxafcafcwilcoxs   

where “wilcox(set1,set2)” returns the p value of the corresponding test. In cases where sp,d,a was 

smaller than zero (i.e. AMDA scores were more significant after removing genes belonging to a 

process), it was set to zero. 

A crude DAC score CpcDAC ,  for a process p and a diseases category C was then obtained by sum of 

shifts in disease alignment weighted by shifts in p values: 
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Finally, the disease alignment score for each disease was obtained by dividing the crude DAC score 

with the number of comparisons considered (i.e. number of ageing data sets multiplied with number 

of disease data sets) and was normalized to a maximum absolute value of 1 across all disease 

categories. 

Process fold-changes for ageing and disease categories were determined by combining raw fold-

changes between cases and controls from the disease data sets with fold-changes from the ageing 

data sets. Fold-changes for genes in ageing data sets were determined for all genes that had 

orthologues across all four species considered in our analysis. Genes were mapped to their closest 

human orthologue using Ensembl’s BioMart22 and fold-changes determined between the youngest 

and the two oldest age groups. Subsequently, fold-changes were quantile normalized across all 

disease and ageing data sets and rank normalized using the same approach described for the DAC 

scores. Fold-changes of genes were averaged for the individual disease categories and ageing 

separately. Process fold-changes for ageing or a disease category were then obtained as the median 

of averaged normalized fold-changes of genes belonging to that process. Please note that ageing-

associated process fold-changes are not necessarily the same compared to those obtained in the 

cross-species analysis since, for this analysis, a different approach for determining process activity 
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changes was used (based on the sum of gene expression values rather than the median of fold-

changes). The approach applied in the cross-species comparison is only applicable to RNASeq-data 

and hence for comparison between ageing and diseases on the process level we used the same 

approach that was applicable to the mostly microarray-based disease data. 

To obtain multi-dimensional scaling plots of disease/ageing-specific data sets, we either considered 

normalized fold-changes of genes (Fig. 4D of the main manuscript) or process fold-changes of the top 

30 processes according to total DAC score across all disease categories (Fig. 4C of the main 

manuscript). Fold-changes were normalized as described above but only genes considered with fold-

changes present in all ageing and disease data sets. To determine distances between all pairs of data 

sets (ageing and diseases), we correlated either gene or process fold-changes between all pairs of 

data sets using Spearman correlation. Correlation values (Spearman’s rho) were transformed into 

distances by subtracting them from 1. Subsequently, multi-dimensional scaling plots were generated 

using the “cmdscale()” function of R on two dimensions. 

Identification of shared risk loci 

All risk alleles from published genome-wide association studies were obtained from GWAS catalog62 

release e87 dated January 4th, 2017. Among the reported risk variants, we filtered for those for which 

the identity of the risk allele as well as an odds ratio for the corresponding trait was provided. Thus, 

we did only consider binary traits (i.e. presence or absence of trait). We obtained a total of 8031 

associations between SNPs and investigated traits. We identified risk variants for ageing-associated 

diseases by matching the reported trait for each genome-wide association study (GWAS) with a list of 

keywords/strings for each disease category as detailed in Supplementary Table 8. 

Supplementary Table 8 Keywords for identification of disease categories. 

Cardiovascular 
diseases 

Neurodegenerative 
diseases 

Type 2 diabetes Cancer 

Heart failure Alzheimer Type 2 diabet Cancer 

Stroke Parkinson Metabolic syndrome Carcinoma 

Atherosclerosis Cognitive decline  Leukemia 

Infarct Dementia  Lymphoma 

Hypertension Amyloid deposition  Glioma 

Aortic-valve 
calcification 

Hyppocampal 
atrophy 

 Glioblastoma 

Atrial fibrillation Cerebral amyloid 
angiopathy 

 Melanoma 

Coronary artery 
calcification 

Cingulate cortical 
amyloid beta load 

 Myeloma 

Cardio Glaucoma  Meningioma 

Coronary artery 
calcification 

Macular 
degeneration 

  

Plaque    

Cardiac    

All reported disease terms for ageing diseases as well as other traits were manually checked for 

correct classification. Moreover, we removed associations with secondary traits such as e.g. mortality 

due to the individual diseases, associations with chemotherapy response or disease associations for 

patients carrying specific cancer-predisposing mutations (e.g. BRCA-mutation carriers). Moreover, we 

did not consider esophageal cancer since alcohol drinking is a strong risk factor for this cancer63 and 
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heavy drinking is an established risk factor for cardiovascular diseases but often not controlled for64. 

Accounting for SNPs that were reported several times for a specific disease category, we obtained 

729 associations for degenerative ageing diseases, 871 associations for cancer and 4112 associations 

for all other reported traits (excluding secondary traits for ageing-associated diseases or risk factors 

of ageing-associated diseases such as obesity). Please note that these other traits are mostly disease 

related (e.g. schizophrenia, inflammatory bowels disease, etc.).  

In most cases, single nucleotide polymorphisms (SNPs) have a shared heritability with other 

polymorphisms in their genomic neighborhood. This shared heritability, referred to as linkage 

disequilibrium, leads to co-occurrence patterns of genetic polymorphisms in human populations. In 

genome-wide association studies, this mechanism leads to the problem that causative SNPs can 

often not be identified since they are in strong linkage disequilibrium with neighboring SNPs65. On 

the other hand, it is possible to impute the status of a SNP by just knowing the allele at another SNP 

that is in strong linkage disequilibrium with the query SNP. We used information on linkage 

disequilibrium to identify shared SNPs between cancer and degenerative diseases. To this end, we 

determined for all reported SNPs those with which they are in strong linkage disequilibrium (r²>0.7) 

in at least two of the five major populations (African, American, European, East Asian, Southeast 

Asian) from the 1000 Genomes project (Phase 3, Oct. 2014, Genomes Project Consortium, et al. 66) at 

a maximal distance of 1000 kbp using rAggr (http://raggr.usc.edu). 

Given two sets of SNPs, e.g. from cancer and degenerative ageing diseases, we identified synergistic 

and antagonistic risk SNPs. Synergistic risk SNPs correspond to cases were the same SNP allele (i.e. 

one nucleotide of two existing variants) is either a risk allele for both disease types or there is a pair 

of risk alleles from the SNP sets of both diseases that is co-inherited through linkage disequilibrium 

according to the criteria stated above. Antagonistic risk SNPs correspond to cases where either 

alternative alleles at the same SNP position are contained as risk alleles in the two SNP sets or we 

identify pairs of SNPs from either sets that are in linkage disequilibrium but the co-inherited alleles 

between the two SNP sets correspond to alternative variants at the same genomic position. A full list 

of antagonistic and synergistic risk SNPs can be found in Supplementary Data 1. 

We tested whether the number of synergistic and antagonistic risk SNPs between cancer and 

degenerative ageing diseases could also arise by chance or is typical for the overlap in genetic risk 

between cancer and other reported traits. First, we tested whether the number of antagonistic risk 

SNPs observed between cancer and degenerative ageing diseases could arise by chance based on 

shared risk SNPs between either disease type and other non-ageing associated traits reported in 

GWAS catalog. For cancer, we find 40 antagonistic and 50 synergistic risk SNPs with other traits 

(44.4% antagonistic risk SNPs). For degenerative ageing diseases, we find 23 antagonistic and 52 

synergistic risk alleles with other traits (30.7% antagonistic risk SNPs). Based on these two 

frequencies we can test the likelihood of finding 36 antagonistic risk SNPs among 40 shared risk SNPs 

between cancer and degenerative ageing diseases using a binomial test (binomial test p-values of 

1.99∙10-9 and 7.28∙10-15 tested against p0=0.444 and p0=0.307, respectively). Second, we performed 

randomization in which we compared the overlap between SNPs reported for both sets of diseases 

with sub-sampled SNPs reported for other traits contained in GWAS catalog. For the comparison 

involving cancer, we randomly selected the same number of 729 SNPs reported for degenerative 

ageing diseases from the set of 4112 SNPs reported for other traits. Then we determined synergistic 

and antagonistic risk SNPs between cancer SNPs and the randomly drawn SNP set. We repeated the 

procedure 10.000 times, similarly also for degenerative ageing diseases instead of cancer. We did not 

http://raggr.usc.edu/
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encounter a single case with an equal or higher number of antagonistic risk alleles that we observed 

in the comparison between cancer and degenerative ageing diseases (36 antagonistic risk alleles). 

The maximal number of antagonistic risk SNPs observed in the randomization experiments was 19 for 

cancer and 17 for degenerative diseases. Considering the combined number of synergistic and 

antagonistic risk SNPs, there were no instances for cancer and five of 10.000 instances for 

degenerative diseases in which an equal or higher number of shared risk SNPs like in the comparison 

between cancer and degenerative diseases (40 shared risk SNPs) was detected. Thus, beyond the 

number of antagonistic risk SNPs between cancer and degenerative ageing diseases that is unlikely to 

have arisen by chance, the overlap in risk SNPs between cancer and degenerative diseases is also 

much larger than between either type of disease and other traits reported in GWAS catalog. 

To test the robustness of the comparison of risk SNPs between cancer and degenerative ageing 

diseases, we repeated our analysis for different parameter choices including  

1) requiring a stronger linkage disequilibrium (LD) between SNPs of r²≥0.9 for identifying SNPs 

with shared heritability 

2) requiring linkage disequilibrium in at least three of the five populations of the 1000 genomes 

project 

3) requiring a stronger reported p-value cut-off for reported SNPs of p≤5*10-8 

4) defining a minimal odds ratio cut-off of 1.1 

For all analyses, we observed a much larger number of antagonistic risk SNPs compared to synergistic 

risk SNPs (Supplementary Table 9). Interestingly, more conservative parameters had stronger effects 

on synergistic risk SNPs with none remaining if requiring a more conservative p-value cut-off of less 

than 5*10-8 or a minimal odds ratio of 1.1. This suggests that the antagonism between cancer and 

degenerative ageing diseases is even more pronounced for more conservative cut-offs. 

Moreover, we tested the effect sizes of shared risk alleles between cancer and degenerative 

diseases. We found that odds ratios between both disease categories were comparable and on 

average 1.24 (+/- 0.22) for degenerative diseases and 1.19 (+/- 0.09) for cancer (see Supplementary 

Data 1 for a detailed list of odds ratios). 

Supplementary Table 9 Sensitivity analysis of number of synergistic and antagonistic risk alleles. The first column provides 
the parameter tested, the second column the number of remaining SNPs for degenerative ageing diseases (fulfilling the 
corresponding criteria), the third column the number of reported SNPs for cancer (fulfilling the corresponding criteria) and 
the last two columns the number of synergistic as well as antagonistic risk SNPs. Abbreviations: DAD, degenerative ageing 
diseases. 

 Total SNPs 
DAD 

Total SNPs 
cancer 

Synergistic risk 
SNPs 

Antagonistic risk 
SNPs 

Full comparison 729 846 4 36 

Strong LD (r²≥0.9) 729 846 1 17 

LD in ≥3 
populations 

729 846 2 27 

SNP p-value ≤5*10-8 417 557 0 26 

Odds ratio ≥ 1.1 585 754 0 24 
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