

Supplementary Figure S1. Growth of parental and F1 plants from $xd22 \times atm3-1$ and $xd105 \times atm3-1$ crosses. Plants were grown for 11 days (A) or 15 days (B) on $\frac{1}{2}$ MS-agar plates. atm3-1 and atm3-4 are in the Col-0 background, xd22 and xd105 are in the Ler background. Close-up of an F1 plant from $xd22 \times atm3-1$ (C) and $xd105 \times atm3-1$ (D). Scale bar is 0.5 cm.

В

WТ

=						
seq	AMVLCSQGIV	NGQMTVGDLV	MVNGLLFQLS	LPLNFLGSVY	RETIQSLVDM	450
pred	нннноооооо	oooooooHH	нннннннн	нннннннн	1111111111	
seq	KSMFQLLEEK	SDITNTSDAK	PLVLKGGNIE	FENVHFSYLP	ERKILDGISF	500
pred	iiiiIIIII	IIIIIIIII	IIIIIIIiii	1111111111	ііінннннн	
seq	VVPAGKSVAI	VGTSGSGKST	ILRMLFRFFD	TDSGNIRIDG	QDIKEVRLDS	550
pred	нннннннн	НННооооооо	0000000000	000000000	0000000000	
xd105						
seq	AMVLCSQGIV	NGQMTVGDLV	MVNELLFQLS	LPLNFLGSVY	RETIQSLVDM	450
pred	нннноооооо	0000000000	000000000	0000000000	000000000	
seq	KSMFQLLEEK	SDITNTSDAK	PLVLKGGNIE	FENVHFSYLP	ERKILDGISF	500
pred	000000000	000000000	000000000	000000000	000000000	
seq	VVPAGKSVAI	VGTSGSGKST	ILRMLFRFFD	TDSGNIRIDG	QDIKEVRLDS	550
pred	000000000	000000000	000000000	000000000	000000000	

Supplementary Figure S2. Modelling of structural changes caused by Glycine 424 into Glutamate (G424>E) in ATM3

A. Secondary structure prediction using TMPred (www.ch.embnet.org/cgibin/TMPRED_form_parser). The red arrow indicates the 6th transmembrane helix.

B. Secondary structure prediction using DAS (www.sbc.su.se/~miklos/DAS/tmdas.cgi). The red arrow indicates the 6th transmembrane helix.

Reference: Cserzö M, Wallin E, Simon I, von Heijne G, Elofsson A (1997). Prediction of transmembrane a-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Engineering 10, 673-676.

Secondary C. structure prediction using HMMTOP (www.enzim.hu/hmmtop/ server/hmmtop.cgi).

Reference: Tusnady GE, and Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850.

Supplementary Figure S3. Mapping-by-sequencing of the *xd*22 mutation.

A. Diagram of chromosome 2 with the centromere (grey oval) and percentage recombination at specific SSPL markers. The percentages were calculated based on the analysis of 80 F2 plants from the xd22 (Ler) x Col-0 with the xd22 phenotype.

B. Frequency of SNPs in the mapping interval indicated in (A).

phenotype	n	Wild-type like	Mutant-like	Ungerminated
line		[%]	[%]	[%]
Wild type	271	99.6		0.4
cnx2-1/CNX2	461	79.1	20.9	0.0

Supplementary Figure S4. Genetic analysis of the cnx2-1 line.

A. Segregation frequency of wild-type and mutant phenotypes from a heterozygous *cnx2-1/CNX2* plant.

B. Allelism between *cnx2-2* and *cnx2-1*. Homozygous *cnx2-2* plants were cross-fertilised with heterozygous *cnx2-1/CNX2* plants and heterozygous *cnx2-2 cnx2-1* seedlings isolated from the F1 generation, and grown alongside *cnx2-1* and wild type parentals (Ler for *cnx2-2*, Col-0 for *cnx2-1*) on $\frac{1}{2}$ MS plus 1% (w/v) sucrose. Scale bar is 1 cm.

C. PCR analysis and restriction digests to confirm the genotype of the seedlings shown in (B). The PCR product for *CNX2* is present in wild type and the *cnx2-2* allele (top panel), but the *cnx2-2* allele lacks a BsaWI restriction site (bottom panel), see Figure 4A for details.

Α

Supplementary Figure S5. Comparison of seedling growth in *cnx2* and *atm3* knockout mutants.

A. Growth of *cnx2-1* and *atm3-2* seedlings, knock-out mutants in *CNX2* and *ATM3*, respectively, on agar plates containing $\frac{1}{2}MS$ salts and 1% (w/v) sucrose for 3 weeks. Scale bar is 5 mm.

B. Genotype analysis of plants in (A). Primer pairs CNX2 2F and CNX2 2R were used to amplify the wild-type allele of *CNX2*; primers CNX2 2F and LBb1.3 were used to detect the T-DNA insertion in *CNX2* (*cnx2-1*). For the *ATM3* wild-type allele, primers ATM3 F1 and RWT were used, and primers ATM3 F1 and GK8409 for the T-DNA insertion in *ATM3* (*atm3-2*).

Table S1 List of oligonucleotides

Oligonucleotide	5'-3' sequence	Use
ACT2 F2	CCCAAAGGCCAACAGAGAGA	RT-PCR ACTIN2
ACT2 R2	ACCATCACCAGAATCCAGCA	RT-PCR ACTIN2
ATM3 RT-F1	TTGAGTGGTGGAGAGAAACAAA	RT-PCR ATM3
ATM3 RT-R1	TCCCGTTTTCCAGTACTACGAT	RT-PCR ATM3
CNX2 3F	GGGTGATCTTGCATTCGTTT	RT-PCR CNX2
CNX2 3R	CCGTCTGAAGGTGTGGAACT	RT-PCR CNX2
CNX2 2F	CTCAAGTTGGTTGCTTTTTCG	Genotyping cnx2-1
CNX2 2R	TTTGAAGTTCCCATCTGCAAG	Genotyping cnx2-1
LBb1.3	ATTTTGCCGATTTCGGAAC	Genotyping cnx2-1
CNX2endog 1F	AGAAACTAGATTTGCATACCTGGT	Genotyping cnx2-2
CNX2endog 1R	CGATTTCATAACCCTATCATGCCCTT	Genotyping cnx2-2
CNX2trans F	CGGTCTGGTGCTGATGATGA	Transgene CNX2
CNX2trans R	TAAAGTGCCCCTGATGATGAGATTTTCTTAAA	Transgene CNX2
ATM3 F1	GATGTCGAGAGGATCTCGATTCG	Genotyping atm3-2
ATM3 RWT	GAAAACTAGAGCTATTGAGAGTTACCA	Genotyping atm3-2
GK8409	ATATTGACCATCATACTCATTGC	Genotyping atm3-2
A1F	CTGGCGCGCCAAGCTTTTATTTCCTACTAACTAGTTAA	Cloning of CNX2
A1R	TCATCCTTGTAATCGACATTATATTGTTATGAATAAGC	Cloning of CNX2
At1g07810 F	GTTCACGGACAAAGAGCCTGAAAT	Mapping
At1g07810 R	AAGCAGTCAATATTGCAGGAAGGG	Mapping
At1g49610 F	ACATTTTCTCAATCCTTACTC	Mapping
At1g49610 R	GAGAGCTTCTTTATTTGTGAT	Mapping
At1g72650 F	TGTTTTTAGGACAAATGGCG	Mapping
At1g72650 R	CTCCAGTTGGAAGCTAAAGGG	Mapping
At1g09940 F	TCATGACGTGAAGAAGAAGAAAA	Mapping
At1g09940 R	CATATCGCTGCTACTAATTTTAAACAA	Mapping
At2g04066 F	GGGATAATGGATAGGACTCACG	Mapping
At2g04066 R	GCTGAGAAGGCAAGGAAGAG	Mapping
At2g14890 F	GAAACTCAATGAAATCCACTT	Mapping
At2g14890 R	TGAACTTGTTGTGAGCTTTGA	Mapping
At2g39010 F	TCGTCTACTGCACTGCCG	Mapping
At2g39010 R	GAGGACATGTATAGGAGCCTCG	Mapping
AT2G21420 F	GATGCCTTTCTCCTGGTTG	Mapping
AT2G21420 R	AATATAGCCGTCGTCTTCATCA	Mapping
AT2G31070 F	AAAGAGATGAGAATTTGGAC	Mapping
AT2G31070 R	CATATCAATATATAAAGTAGC	Mapping
AT2G44798 F	TGTTCTTCACTTTGCAAACCA	Mapping
AT2G44798 R	GTGGCAAATGGGCTAAACTA	Mapping
AT2G29995 F	CTGCATATTGTTAATGAGAAAAGAAT	Mapping
AT2G29995 R	TCATGTCGAAAACATATAATTGAGC	Mapping
At3g11220 F	GGATTAGATGGGGATTTCTGG	Mapping
At3g11220 R	TTGCTCGTATCAACACACAGg	Mapping
At3g26605 F	CCCCGAGTTGAGGTATT	Mapping

At3g26605 R	GAAGAAATTCCTAAAGCATTC	Mapping
At3g50820 F	GTTCATTAAACTTGCGTGTGT	Mapping
At3g50820 R	TACGGTCAGATTGAGTGATTC	Mapping
At4g01710 F	AGATTTACGTGGAAGCAAT	Mapping
At4g01710 R	GGTTAAAAATTAGGGTTACGA	Mapping
At4g10360 F	GCCAAACCCAAAATTGTAAAAC	Mapping
At4g10360 R	TAGAGGGAACAATCGGATGC	Mapping
At4g29860 F	GCCCAGAGGAAGAAGAGCAAACTAGC	Mapping
At4g29860 R	TGGGAATTCATGAGAGAATATGTGGGAC	Mapping
At5g22545 F	TAGTGAAACCTTTCTCAGAT	Mapping
At5g22545 R	TTATGTTTTCTTCAATCAGTT	Mapping
AT5G42600 F	CAGACGTATCAAATGACAAATG	Mapping
At5g42600 R	GACTACTGCTCAAACTATTCGG	Mapping
At5g63640 F	ATCACTGTTGTTTACCATTA	Mapping
At5g63640 R	GAGCATTTCACAGAGACG	Mapping