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Abstract 23 

Background: Left ventricular size and shape is important for quantifying cardiac 24 

remodelling in response to cardiovascular disease. Geometric remodelling indices have been 25 

shown to have prognostic value in predicting adverse events in the clinical literature, but 26 

these do not independently describe shape changes. We developed a novel method for 27 

deriving orthogonal shape components directly from any set of clinical indices. Six clinical 28 

remodelling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection 29 

fraction, apical conicity and longitudinal shortening) were evaluated using cardiac magnetic 30 

resonance images of 300 patients with myocardial infarction, and 1,991 asymptomatic 31 

subjects, obtained from the Cardiac Atlas Project.  32 

Results: Partial least squares (PLS) regression of left ventricular shape models resulted in 33 

shape components that were optimally associated with each remodelling index. A Gram–34 

Schmidt orthogonalization process, by which components were removed from the shape 35 

space in order of variance explained, resulted in a set of orthogonal shape components. A 36 

single PLS hidden variable per clinical index resulted in the greatest decorrelation between 37 

scores, and complete decorrelation with all previously removed remodelling indices.  38 

Conclusions: The PLS orthogonal remodelling components had similar power to describe 39 

differences between patients and subjects as principal component analysis, but were more 40 

correlated to well-understood clinical indices of cardiac remodelling. The data and analyses 41 

are available from www.cardiacatlas.org. 42 

Keywords: cardiac remodelling, magnetic resonance imaging, feature extraction, partial least 43 

squares regression.  44 
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Background  45 

Left ventricular (LV) remodelling refers to the process by which the heart adapts its size, 46 

shape and function in response to disease processes, or under the influence of mechanical, 47 

neurohormonal and genetic factors [1]. Remodelling can be compensatory, for example 48 

increased concentric hypertrophy in hypertension, or adverse, for example increased end-49 

systolic volume after myocardial infarction. Adverse LV remodelling characteristics after 50 

myocardial infarction provide important diagnostic and prognostic information for the 51 

therapeutic management of disease progression [2-5]. Clinical studies have identified 52 

quantitative geometric parameters (termed remodelling indices in this paper) that describe 53 

recognised clinical patterns of remodelling with prognostic value for predicting adverse 54 

events. For example, increased LV volume index has been shown to be an important 55 

predictor of mortality after myocardial infarction [6]. Increased LV sphericity has also been 56 

linked with decreased survival [5]. Relative LV wall thickness [1] and apical conicity [7] are 57 

also important indices of adverse remodelling after myocardial infarction. Functional 58 

parameters such as ejection fraction (EF), which is the most common index of cardiac 59 

function performance in clinical practice, are also heavily influenced by the degree of LV 60 

remodelling [8, 9]. LV longitudinal shortening is also a sensitive marker of LV remodelling 61 

[10]. 62 

Although these clinical remodelling indices have validated prognostic value, they are often 63 

co-dependent and do not provide an orthogonal decomposition of cardiac shape. Such an 64 

orthogonal decomposition would enable computational analysis of the independent 65 

components of remodelling present in various forms of heart disease. In particular, 66 

orthogonal shape decompositions enable simplified tensor calculus in the computation of e.g. 67 

arc lengths and areas, because they do not present off-diagonal terms in their metric tensor 68 

[11]. An orthogonal basis for shape enables robust calculation of contribution of each 69 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 

 

component independently to the overall shape. Also, regressions using orthogonal shape 70 

components as independent variables do not suffer from the problem of multicolinearity. 71 

Thus, when analysing the combined effects of different remodelling characteristics, it is 72 

preferred to have an orthogonal basis in a linear space. 73 

Principal component analysis (PCA) [12] is a powerful and widely used shape analysis 74 

technique that provides an orthogonal linear shape basis. In previous work, PCA analysis of 75 

cardiac remodelling has achieved more powerful descriptions of remodelling, and their 76 

relationships with risk factors, than traditional mass and volume analysis [13]. In a large 77 

population study, the first and second PCA components corresponded with LV size and 78 

sphericity respectively [14]. However, PCA shape components do not generally relate to 79 

clinical remodelling indices, making clinical interpretation of the relative contribution of 80 

shape components difficult. Remme et al. [15] developed a method to decompose shape 81 

changes into modes with clear clinical interpretation. However, these modes were not 82 

orthogonal. 83 

In this paper, we used partial least squares (PLS) regression to sequentially construct an 84 

orthogonal shape decomposition that is optimally related to clinical remodelling indices. At 85 

each step, the contribution of the previous component was removed mathematically from the 86 

shape description, similar to Gram–Schmidt orthogonalization. Clinical remodelling indices 87 

of end-diastolic volume index (EDVI), sphericity, ejection fraction, relative wall thickness, 88 

conicity and longitudinal shortening, known from the literature to have important prognostic 89 

information in the management of myocardial infarction, were used to create corresponding 90 

orthogonal components from the shape parameters. By using a single PLS hidden variable per 91 

clinical index, the resulting component scores were maximally de-correlated, and completely 92 

de-correlated with those clinical indices previously removed.   93 
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Data Description  94 

Patient Data 95 

LV shape models of 300 patients with myocardial infarction and 1,991 asymptomatic study 96 

subjects were obtained through the Cardiac Atlas Project [16]. The patient data have been 97 

described previously [13] [17] and are available from the Cardiac Atlas Project 98 

(http://www.cardiacatlas.org). Briefly, myocardial infarction patients (n=300, age 31−86, 99 

mean age 63, 20% women) had clinical history of myocardial infarction with EF>35% and 100 

infarct mass >10% of LV myocardial mass. Asymptomatic subjects (n=1991, age 45−84, 101 

mean age 61, 52% women) did not have physician-diagnosed heart attack, angina, stroke, 102 

heart failure of atrial fibrillation, and had not undergone procedures related to cardiovascular 103 

disease, at the time of recruitment [13] [17].   104 

Finite element shape models were customized to cardiac MRI exams in each case using a 105 

standardized procedure [13]. The shape models were evenly sampled at sufficient resolution 106 

to capture all visible features, which resulted in 1,682 Cartesian ( , , )i i ix y z  points in 107 

homologous anatomical locations for each LV model.  108 

Clinical Remodelling Indices 109 

Clinical remodelling indices included EDVI, EF, relative wall thickness, sphericity, apical 110 

conicity and longitudinal shortening. LV mass and volumes were calculated by numerical 111 

integration of the LV shape models. EDVI was calculated as EDV divided by body surface 112 

area. Ejection fraction was calculated as (EDV-ESV)/EDV. Relative wall thickness was 113 

defined as twice the posterior wall thickness divided by the end-diastolic diameter [18] at 114 

mid-ventricle. Sphericity was calculated as the EDV divided by the volume of a sphere with a 115 

diameter corresponding to the major axis at end-diastole in LV long axis view [19]. Apical 116 

conicity was calculated as the ratio of the apical diameter (defined as the diameter of the 117 
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endocardium one third above the apex) over the basal diameter [7] at end-diastole. 118 

Longitudinal shortening was calculated as the difference of the distance of the central basal 119 

point to the apical point at end-diastole and end-systole over the distance at end-diastole. 120 

Partial Least Squares Regression  121 

Partial least squares (PLS) regression [20, 21] is a statistical method that is related to 122 

principal components regression; however, instead of using independent variables derived 123 

from their ability to explain variance in the predictive variables only, PLS finds independent 124 

variables by projecting both the predicted variables and the predictor variables to a new space, 125 

typically with reduced dimension, chosen to maximize the correlation between predicted and 126 

predictor variables. PLS is typically used to find the fundamental relations between the 127 

predicted and predictor variables, i.e. a latent variable approach to modelling the covariance 128 

structures in these two spaces.  129 

Mathematically, let  represent the data matrix where each row contains the coordinates of 130 

3D points describing the shape of one case at ED, concatenated with the points at ES. In our 131 

application all asymptomatic and myocardial infarction cases were included in this matrix. 132 

Given a vector of clinical remodeling indices (e.g. EDVI) denoted as , PLS finds a linear 133 

decomposition of both X and Y such that 134 

   135 

where T and U are, respectively, the projections of X and Y (also termed scores);  P and Q are 136 

the loading matrices of reduced dimensionality Nlatent (i.e. the number of latent variables used 137 

in the PLS decomposition) and E and F are the error terms assumed to be independent and 138 

identically distributed random normal variables. This decomposition is optimised to 139 

maximise the covariance between T and U [20]. 140 

X

Y

T

T

X TP E

Y UQ F

 
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The regression coefficients are also calculated so that , where  is 141 

a matrix of coefficients including the intercept. In this paper we used the SIMPLS algorithm 142 

as provided by the Statistics and Machine Learning Toolbox (MATLAB R2013a, The 143 

MathWorks, Inc., Natick, Massachusetts, United States). In this implementation T is 144 

orthonormal, but P, Q and U are not. However, each column of U is orthogonalised with 145 

respect to preceding columns of T, so that  is lower triangular. 146 

Orthogonalization of PLS Components 147 

The orthogonal remodelling components were created using PLS sequentially as shown in 148 

Figure 1. EDVI was selected as the first component, because it accounts for the greatest 149 

variance in the LV shape [13]. The contribution of this component was then removed from 150 

the shape description, by using a mathematical formulation similar to the Gram–Schmidt 151 

orthogonalization algorithm [22], prior to the calculation of the following components. This 152 

step ensures orthogonality in the new shape basis. The other remodelling components were 153 

calculated by PLS regression to the remaining clinical indices, using the deflated shape space. 154 

The component explaining the greatest variance in shape was then chosen as the next 155 

component to be removed from the shape space. This procedure was performed iteratively 156 

until all components were explained. The final order of the components was: (1) EDVI, (2) 157 

sphericity, (3) ejection fraction, (4) relative wall thickness, (5) conicity and (6) longitudinal 158 

shortening. 159 

Following Figure 1, using super-indices to enumerate steps and sub-indices for columns, let 160 

0X X , the original shape space, and 1Y Y , the first clinical index, i.e. EDVI. After the 161 

PLS regression, we define our “PLS component” as the normalized PLS regression 162 

coefficients 
1  omitting the intercept term. This is a vector in shape space that is maximally 163 

 1Y X Yresiduals  

T TU
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correlated with EDVI.  The projections associated with that component are 
0 1X  , and these 164 

were used as the component scores in the remodelling analysis below.  165 

The shape space is then deflated by the EDVI-derived PLS component, giving rise to a new 166 

data matrix 1X : X1=X0 - X0B1(B1)T. The next clinical index is then chosen as the one that 167 

explains the most variation of the population in the new shape space, and the PLS regression 168 

and deflation are repeated for the remaining indices kY  where at each step the previous PLS 169 

component contribution is removed: 170 

 Xk=Xk-1 – Xk-1Bk(Bk)T

 
 171 

Note that subsequent 
1k  will be orthogonal to 

k  by construction since 1kX   is orthogonal 172 

to 
k . Therefore the set of basis vectors  k generate an orthogonal linear sub-space of 0X .   173 

Number of latent variables  174 

Selection of the number of latent variables Nlatent is critical for obtaining PLS regression 175 

models with good predictive ability [23]. However, there is currently no standard method to 176 

choose the number of latent variables for PLS. We compared PLS regression results with 177 

Nlatent =1 and Nlatent =10. Results for Nlatent >10 were similar to Nlatent =10 because 10 latent 178 

variables accounted for most of the covariance between Y and X. Experiments for 179 

1<Nlatent<10 gave intermediate results. 180 

Characterization of myocardial infarction 181 

To assess the clinical applicability of the orthogonal remodelling components, we analysed 182 

how these components were associated with myocardial infarction. Logistic regression 183 

models [24] were used to evaluate the discriminatory power of the orthogonal remodelling 184 

components to characterize LV remodelling due to myocardial infarction. Confounding 185 
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factors (age, gender, BMI, SBP, smoking status and diabetes history) were included in each 186 

regression model as baseline variables (covariates).  Four logistic regression models were 187 

examined. Model 1 consisted of the baseline variables and the first 6 PCA scores. This was 188 

used as a reference for comparison. Model 2 consisted of the baseline variables and the 189 

clinical remodelling indices. Model 3 included the baseline variables and the orthogonal 190 

component scores for Nlatent =1.  Model 4 included the baseline variables and the orthogonal 191 

component scores for Nlatent =10. 192 

Four commonly-used measures were used to quantify the goodness-of-fit of the regression 193 

models: Deviance, Akaike information criterion (AIC), Bayesian information criterion (BIC) 194 

and the area under the receiver operating characteristic curve (AUC) [13]. Smaller Deviance, 195 

AIC and BIC, and larger AUC, are indicative of better goodness-of-fit. 196 

Analyses 197 

Participant characteristics are summarised in Table 1. Demographic characteristics were 198 

significantly different between the asymptomatic subjects and the myocardial infarction cases, 199 

including gender ratio, age, height, weight, blood pressure, diabetes history and smoking 200 

status. Clinical LV remodelling indices were also significantly different. The myocardial 201 

infarction patients had larger LV EDVI and ESV, increased sphericity, thicker walls, less 202 

conicity, smaller EF and reduced longitudinal shortening than the asymptomatic subjects.  203 

The orthogonal PLS components corresponding to EDVI, sphericity, ejection fraction, 204 

relative wall thickness, conicity and longitudinal shortening, computed across all patient and 205 

asymptomatic cases, are shown in Figure 2 (Nlatent =1) and Figure 3 (Nlatent =10). Linear 206 

correlation coefficients were calculated between the clinical indices and the component 207 

scores in the combined population. Linear correlation coefficients between all PLS 208 

component scores and clinical indices are reported in Table 2 for Nlatent =1 and in Table 3 for 209 
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Nlatent =10. The linear correlation coefficients among the clinical indices are shown in Table 4, 210 

among the PLS component scores are shown in Table 5 for Nlatent =1 and in Table 6 for Nlatent 211 

=10. Correlation coefficients between clinical indices and scores of the first six PCA 212 

components of the original dataset are shown in Table 7 for comparison with PLS 213 

components in Tables 2 and 3.  214 

The minimum correlation between remodelling scores was achieved with Nlatent =1 (Table 5), 215 

because the PLS regression with only one latent variable finds the single shape vector that is 216 

maximally correlated with the clinical index. A single latent variable also resulted in 217 

complete decorrelation between the remodelling scores and the remodelling indices of all the 218 

components previously removed in the Gram-Schmidt procedure (Table 2).  219 

Using more latent variables resulted in a subspace that yielded better correlation between 220 

each score and its corresponding index (diagonal elements are higher in Table 3 than in Table 221 

2). However the deflated shape space retains correlation with the index. 222 

Figure 4 shows the shape variance explained by each one of the PLS components for Nlatent=1,  223 

Nlatent=10 and by PCA. The total variance explained was the highest for PCA components 224 

(75.7% for 6 components). For PLS with Nlatent=1, variance explained was 66.49% for 6 225 

components, whereas for Nlatent =10 it was 15.0%. This reflects the fact that PLS is designed 226 

to explain covariance between indices and shapes, rather than variance in the shapes 227 

themselves.  228 

The results of logistic regression models to characterize remodelling associated with 229 

myocardial infarction using the orthogonal remodelling components are shown in Table 8. 230 

The scores from all orthogonal remodelling components showed significant odds ratios. The 231 

odds ratio of EDVI, sphericity, wall thickness, conicity, ejection fraction and longitudinal 232 
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shortening component scores indicate that myocardial infarction patients tend to have larger 233 

and more spherical LV shapes with thinner walls, and a less conical shape.  234 

Table 9 shows the comparisons of the regression models with the baseline models. All three 235 

regression models showed significant improvement compared with the baseline model. The 236 

logistic regression based on orthogonal remodelling components showed smaller Deviance, 237 

AIC and BIC and higher AUC than the PCA logistic regression. The AUC (Figure 5) for the 238 

PLS components with a single latent variable was 97.38%, slightly greater than that for the 239 

PLS components with 10 latent variables (95.99%), or the logistic classification using scores 240 

from the first 6 PCA components (97.28%), or the logistic classification using the 241 

corresponding clinical indices (95.96%). The PLS components with a single latent variable 242 

(Model 3) obtained the best classification power and goodness-of-fit measures. 243 

The standardized coefficients of the logistic regression model were used to create a linear 244 

combination of the PLS (Nlatent =1) components generating a combined remodelling score, 245 

called the LR score (Figure 6), separating the two groups. The median LR scores (Model 3) 246 

for all cases were calculated and the median shapes were calculated by projecting the 247 

coefficients of the PLS components estimated in the logistic regression model back on the 248 

population shape space. These are plotted in Figure 6. This graphically shows the shape 249 

changes which best distinguish the two groups with baseline variables adjusted, showing that 250 

LV remodelling due to myocardial infarction is associated with larger volume, more spherical 251 

shape, and thinner wall thickness. Since the logistic regression coefficients refer to 252 

contributions from remodelling components, the amount of each remodelling component 253 

contributing to the LR score could be quantified. This gives an intuitive explanation of the 254 

LR score in terms of remodelling components associated with clinical remodelling indices.  255 
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Discussion  256 

Patients with myocardial infarction exhibit significant shape changes with respect to the 257 

normal population, due to cardiac remodelling. An atlas-based analysis of cardiac 258 

remodelling has previously shown better characterization of remodelling due to myocardial 259 

infarction than traditional mass and volume analysis in large data sets [13]. The framework 260 

consisted of three steps: (1) fitting a finite element model to the LV MR images, (2) feature 261 

extraction of the aligned shape parameters, and (3) quantification of the association between 262 

the features and disease using logistic regression. Although PCA provides orthogonal shape 263 

features, which describe the maximum amount of variation for the fewest number of 264 

components, these components typically do not correspond with clinical indices of cardiac 265 

remodelling. To avoid this problem, and maintain the advantages of orthogonality, we 266 

developed a method to generate orthogonal shape components from any set of clinical indices 267 

using PLS. 268 

In this paper, we generated a linear orthogonal shape basis from the full finite element shape 269 

parameters. Clinical indices, such as EDVI, sphericity, ejection fraction, relative wall 270 

thickness, conicity and longitudinal shortening, were derived from the finite element shape 271 

model. Similar to PCA, the shape components derived from PLS regression are orthogonal 272 

(zero dot product between different component shape vectors). In PCA, the resulting 273 

component scores are also decorrelated across the population cohort, but this is not the case 274 

with PLS. Table 6 shows that PLS component scores with Nlatent =10 were significantly 275 

correlated, similar to the original clinical indices in Table 4. This is expected since Nlatent =10 276 

results in strong correlations between scores and indices (Table 3). PLS components both 277 

using Nlatent =10 and Nlatent =1 obtain effective shape representation for each clinical index, as 278 

evidenced by the correlation coefficients with the clinical indices (diagonal terms in Tables 2 279 

and 3). However correlations between the scores of different indices for PLS with Nlatent =1 280 
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become smaller than the original indices and scores of PLS with Nlatent =10. For example, the 281 

correlation between EDVI and EF was originally -0.60 (Table 4), then became -0.68 from 282 

PLS with Nlatent =10 (Table 6); however it was -0.15 from PLS  with Nlatent =1 (Table 5).  283 

Not only did a single latent variable result in the greatest decorrelation between component 284 

scores (Table 5), but it also resulted in total decorrelation between component scores and 285 

previously removed indices (upper triangle of Table 2).  286 

These orthogonal components derived from traditional remodelling indices may be used to 287 

partition shape into contributions from each component, independent of the others. 288 

Correlation analysis shows that these clinically derived components have high 289 

correspondence with traditional remodelling indices (diagonals in Tables 2 and 3), either 290 

virtually following the clinical indices’ original correlation (Table 4) in Nlatent =10 (Table 3), 291 

or by sacrificing some of the diagonal correlations in exchange for decoupling with previous 292 

indices in Nlatent =1 (Table 2). Shapes features at Nlatent =10 are more correlated with the 293 

original clinical indices than Nlatent =1 but at the expense of their ability to explain variance in 294 

the original shape space (Figure 7). It can therefore be argued that Nlatent =10 generates more 295 

‘specific’ shapes with lesser representative power.  296 

The results also show that clinically derived components quantitatively characterise 297 

remodelling features associated with myocardial infarction with similar power as PCA 298 

components. Three logistic regression models based on the clinical indices, PCA components 299 

and orthogonal remodelling components derived from clinical indices were all similar in 300 

terms of goodness of fit.  301 

Coefficients of the PLS components estimated in the logistic regression model were projected 302 

back on the population shape space. By projecting these components back onto the 303 

population space (Figure 5), we can visualise the shape changes of the six features (the 304 
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change of EDVI, sphericity, EF, RWT, conicity and longitudinal shortening) due to 305 

remodelling. This combined component can be used for tracking individual patients over time 306 

in future studies, by quantifying the degree to which their LV shapes compare with the 307 

remodelling spectrum.  308 

Supervised feature extraction techniques such as information maximising component analysis 309 

and linear discriminate analysis have also been used to extract a remodelling component 310 

which can best characterize myocardial infarction using surface sampling [25]. In the current 311 

study, the shape features of each clinical index were obtained first and then combined using 312 

logistic regression with baseline information removed. The shape changes due to myocardial 313 

infarction obtained by this LR model can be more easily explained as a combination of well-314 

understood shape features, through the LR coefficients.   315 

This method can be applied to any index with particular clinical utility, with visualization of 316 

their corresponding shape features and quantification of components, thereby further 317 

exploiting shape information in a clinically meaningful fashion. 318 

Potential implications 319 

This work enables precise multi-dimensional characterization of the ways in which the heart 320 

adapts with the progression of disease after myocardial infarction. The computed shape 321 

components are clinically meaningful since they are optimally related to indices with proven 322 

prognostic value. The resulting shape component scores can be used to track the progression 323 

of remodelling over time, against reference populations. This enables automatic computation 324 

of z-scores giving precise information on how the patient’s heart compares against the 325 

reference population.  326 

Availability of supporting data and materials 327 
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LV shape models, clinical indices and orthogonal shape modes, together with code for their 328 

calculation and visualization, are available for public download at 329 

http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/. Information on the 330 

original imaging studies can be found at http://www.cardiacatlas.org/studies/. DICOM image 331 

data and associated clinical variables are obtainable on request at 332 

http://www.cardiacatlas.org/data-access/request-cap-access/. Because of the variety of 333 

sources of imaging data, each with different IRB and steering committee requirements, the 334 

DICOM images and associated clinical information are not publically available; however, 335 

these data are made available to researchers on approval of a research application submitted 336 

under the Cardiac Atlas Project data sharing policy (www.cardiacatlas.org).  337 
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Tables 459 

 460 

Table 1 Baseline variables and clinical remodelling indices for asymptomatic subjects and 461 

patients with myocardial infarction (mean ± SD) 462 

Variable Unit Asymptomatic MI cases p-value 

Sex F/M 1034/975 60/238 <0.01 

Age years 61.47±10.15 62.76±10.76 0.043 

Height cm 165.98±9.99 173.82±9.77 <0.001 

Weight kg 76.75±16.50 90.06+14.14 <0.001 

BMI 
 

27.77±5.09 29.73+5.57 <0.001 

SBP mmHg 126.28±21.98 126.36±17.50 >0.05 

DBP mmHg 71.49±10.33 73.26±9.82 0.006 

Diabetes 

history 
% 13.11 35.67 <0.001 

Smoking 

status 
% 12.51 11.33 >0.05 

EDVI ml/m2 67.83±13.29 96.53±25.03 <0.001 

Sphericity 
 

0.38±0.08 0.41±0.09 <0.001 

RWT % 39.71±9.49 35.21±8.38 <0.001 

Conicity 
 

0.74±0.08 0.70±0.08 <0.001 

EF 
 

0.63±0.07 0.41±0.11 <0.001 

LS 
 

0.13±0.04 0.08±0.03 <0.001 

 463 

MI=Myocardial infarction; BMI=Body mass index; SBP=Systolic blood pressure; DBP=diastolic 464 

blood pressure; EDV= end diastolic volume; RWT=relative wall thickness; EF= ejection fraction; 465 

LS=longitudinal shortening. 466 

 467 
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Table 2 Correlation coefficients between the clinical indices and the PLS component scores 469 

(Nlatent =1) 470 

 EDVI 

score 

Sphericity 

score 

EF 

score 

RWT 

score 

Conicity 

score 

LS 

score 

EDVI 0.82 0 0 0 0 0 

Sphericity 0.03 0.83 0 0 0 0 

EF -0.75 0.03 0.61 0 0 0 

RWT -0.20 -0.16 -0.04 0.53 0 0 

Conicity -0.14 -0.28 0.30 0.21 0.72 0 

LS -0.45 0.03 0.61 -0.17 0.20 0.53 

 471 

Table 3 Correlation coefficients between the clinical indices and the PLS component scores 472 

(Nlatent =10) 473 

 EDVI 

score 

Sphericity 

score 

WT score EF 

score 

Conicity 

score 

LS 

score 

EDVI 0.94 0.27 -0.64 -0.34 -0.13 -0.31 

Sphericity 0.30 0.97 -0.16 -0.15 -0.25 -0.13 

WT -0.65 -0.12 0.99 0.26 0.25 0.53 

EF -0.41 -0.28 0.22 0.90 0.25 -0.02 

Conicity -0.13 -0.22 0.25 0.38 0.97 0.24 

LS -0.32 -0.13 0.56 0.02 0.25 0.98 

  474 
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Table 4 Correlation coefficients among the clinical indices.  476 

 EDVI Sphericity EF RWT Conicity LS 

EDVI 1 0.28 -0.60 -0.37 -0.11 -0.29 

Sphericity 0.28 1 -0.11 -0.28 -0.22 -0.13 

EF -0.60 -0.11 1 0.18 0.26 0.57 

RWT -0.37 -0.28 0.18 1 0.32 0.00 

Conicity -0.11 -0.22 0.26 0.32 1 0.26 

LS -0.29 -0.13 0.57 0.00 0.26 1 

 477 

Table 5 Correlation coefficients among the PLS clinical modes’ scores (Nlatent =1)  478 

 EDVI 

score 

Sphericity 

score 

EF 

score 

 

RWT 

score 

Conicity 

score 

LS 

score 

EDVI score 1 -0.29 -0.15 0.22 -0.15 -0.08 

Sphericity score -0.29 1 0.001 -0.04 0.01 0.22 

EF score -0.15 0.001 1 0.09 0.09 0.09 

RWT score 0.22 -0.04 0.09 1 -0.08 0.002 

Conicity score -0.15 0.01 0.09 -0.08 1 0.16 

LS score -0.08 0.22 0.47 0.002 0.16 1 

 479 
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Table 6 Correlation coefficients among the PLS clinical mode scores (Nlatent =10)  481 

 

EDVI 

score 

Sphericity 

score 
EF score 

WT 

score 

Conicity 

score 
LS score 

EDVI score 1 0.29 -0.68 -0.37 -0.15 -0.34 

Sphericity score 0.29 1 -0.17 -0.15 -0.25 -0.14 

EF score -0.68 -0.17 1 0.27 0.25 0.53 

WT score -0.37 -0.15 0.27 1 0.31 -0.01 

Conicity score -0.15 -0.25 0.25 0.31 1 0.24 

LS score -0.34 -0.14 0.53 -0.01 0.24 1 

 482 

Table 7 Correlation coefficients between the clinical indices and the first 6 modes of 483 

variation of X0 using PCA 484 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

EDVI 0.80 -0.01 -0.74 -0.18 -0.13 -0.45 

Sphericity -0.26 -0.80 0.19 0.19 0.30 0.06 

EF -0.01 0.09 -0.11 0.03 -0.09 -0.20 

RWT 0.10 0.24 -0.21 -0.25 -0.25 -0.18 

Conicity 0.10 0.13 -0.15 -0.11 -0.15 -0.14 

LS 0.21 0.02 0.03 -0.15 0.50 0.37 

 485 
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Table 8 Four logistic regressions for myocardial infarction 487 

Variable Coefficient 
Standard 

error 
p value 

Standardized 

Coefficient 
Odds 

Ratio(OR) 

OR 95% Confidence 

Interval 

Model 1: PCA modes + Baseline model 

PC 1* 2.647 0.177 <.0001 1.459 14.108 9.969 19.967 

PC 2* -0.605 0.102 <.0001 -0.334 0.546 0.447 0.666 

PC 3 0.077 0.112 0.492 0.042 1.080 0.867 1.345 

PC 4* 2.024 0.153 <.0001 1.116 7.571 5.610 10.217 

PC 5* 0.394 0.106 0.0002 0.217 1.483 1.204 1.826 

PC 6 -0.115 0.119 0.331 -0.064 0.891 0.706 1.124 

Model 2: Clinical indices + Baseline model 

EDVI* 0.042 0.008 <.0001 0.420 1.043 1.028 1.059 

Sphericity 0.003 0.014 0.803 0.015 1.003 0.977 1.031 

EF 0.002 0.014 0.885 0.011 1.002 0.975 1.030 

RWT *  -0.161 0.015 <.0001 -0.948 0.852 0.827 0.877 

Conicity* -0.037 0.016 0.020 -0.159 0.964 0.935 0.994 

LS* -0.148 0.037 <.0001 -0.327 0.862 0.802 0.927 

Model 3: PLS modes (Nlatent =1) + Baseline model 

EDVI 

score* 

2.838 0.189 <.0001 1.565 17.078 11.782 24.756 

Sphericity 

score* 
0.895 0.125 <.0001 0.494 2.448 1.917 3.126 

EF score* -1.315 0.148 <.0001 -0.725 0.269 0.201 0.359 

RWT 

score  

-1.542 0.149 <.0001 -0.850 0.214 0.160 0.286 

Conicity 

score 

0.343 0.124 0.006 0.189 1.409 1.105 1.797 

LS score* -0.036 0.140 0.797 -0.020 0.965 0.733 1.269 

Model 4: PLS modes (Nlatent =10) + Baseline model 

EDVI 

score* 

0.839 0.161 <.0001 0.463 2.315 1.688 3.175 

Sphericity 

score* 
-0.172 0.113 0.126 -0.095 0.842 0.675 1.050 

EF score* 
0.092 0.129 0.474 0.051 1.096 0.852 1.411 

RWT 

score  

-1.809 0.178 <.0001 -0.998 0.164 0.115 0.232 

Conicity 

score* 

-0.390 0.122 0.001 -0.215 0.677 0.533 0.859 

LS score -0.668 0.142 <.0001 -0.368 0.513 0.389 0.677 

All the modes are adjusted for age, gender, BMI, SBP, smoking status and diabetes history. *p<0.05 488 
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Table 9 Comparison of the four logistic regression models 490 

 

Deviance AIC BIC AUC 

Baseline Model 1559 1573 1614 0.7441 

Index model 704 730 804 0.9596 

PCA model 606 632 707 0.9728 

PLS model (Nlatent =1) 569 595 669 0.9738 

PLS model (Nlatent =10) 686 712 786 0.9599 

AIC = Akaike information criterion ; BIC =Bayesian information criterion; AUC =Area under the ROC curve. 491 
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 Figure 1 Data processing flow chart  
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Figure 2 Plot of the PLS clinical components (Nlatent =1) 
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Figure 3 Plot of the PLS clinical components (Nlatent=10) 
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Figure 4 Variance explained by each PLS component and PCA component 
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Figure 5 ROC curves for the five logistic regression models. The right figure shows a zoomed-in view to demonstrate the differences between 

the four models. 
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Figure 6 Visualization of shape changes between volunteers and patients, using the 

combined PLS (Nlatent =1) component. Plots show the median LR score for the 

volunteer and patient groups respectively. 
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