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Abstract 23 

Background: Left ventricular size and shape is important for quantifying cardiac 24 

remodelling in response to cardiovascular disease. Geometric remodelling indices have been 25 

shown to have prognostic value in predicting adverse events in the clinical literature, but 26 

these often describe interrelated shape changes. We developed a novel method for deriving 27 

orthogonal remodelling components directly from any (moderately independent) set of 28 

clinical remodelling indices.  29 

Results: Six clinical remodelling indices (end-diastolic volume index, sphericity, relative 30 

wall thickness, ejection fraction, apical conicity and longitudinal shortening) were evaluated 31 

using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 32 

1,991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares 33 

(PLS) regression of left ventricular shape models resulted in remodelling components that 34 

were optimally associated with each remodelling index. A Gram–Schmidt orthogonalization 35 

process, by which remodelling components were successively removed from the shape space 36 

in the order of shape variance explained, resulted in a set of orthonormal remodelling 37 

components. Remodelling scores could then be calculated which quantify the amount of each 38 

remodelling component in each case. A one-factor PLS regression resulted in the least 39 

correlation between resulting remodelling scores, and zero correlation with all previously 40 

removed remodelling indices.  41 

Conclusions: The PLS orthogonal remodelling components had similar power to describe 42 

differences between myocardial infarction patients and asymptomatic subjects as principal 43 

component analysis, but were better associated with well-understood clinical indices of 44 

cardiac remodelling. The data and analyses are available from www.cardiacatlas.org. 45 
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Background  48 

Left ventricular (LV) remodelling refers to the process by which the heart adapts its size, 49 

shape and function in response to disease processes, or under the influence of mechanical, 50 

neurohormonal and genetic factors [1]. Remodelling can be compensatory, for example 51 

increased concentric hypertrophy in hypertension, or adverse, for example increased end-52 

systolic volume after myocardial infarction. Adverse LV remodelling characteristics after 53 

myocardial infarction provide important diagnostic and prognostic information for the 54 

therapeutic management of disease progression [2-5]. Clinical studies have identified 55 

quantitative geometric parameters (termed clinical remodelling indices in this paper) that 56 

describe recognised clinical patterns of remodelling with prognostic value for predicting 57 

adverse events. For example, increased LV end-diastolic volume index (EDVI) has been 58 

shown to be an important predictor of mortality after myocardial infarction [6]. Increased LV 59 

sphericity has also been linked with decreased survival [5]. Relative LV wall thickness [1] 60 

and apical conicity [7] are also important indices of adverse remodelling after myocardial 61 

infarction. Functional parameters such as ejection fraction (EF), which is the most common 62 

index of cardiac performance in clinical practice, are also heavily influenced by the degree of 63 

LV remodelling [8, 9]. LV longitudinal shortening is another sensitive marker of LV 64 

functional remodelling [10]. 65 

Although these clinical remodelling indices have validated prognostic value, they are often 66 

coupled so that it is difficult to separate the relative effects on heart shape. For example, end-67 

diastolic volume is often correlated with ejection fraction in patients with myocardial 68 

infarction. It is therefore difficult to tease out the relative effects of dilatation (structural) 69 

from contraction (functional). In computational shape analysis, it is desirable to characterize 70 

the space of possible heart shapes in terms of orthogonal components. A shape component is 71 

a unit vector in shape space, and orthogonal components have zero dot product between 72 
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different components. An orthogonal decomposition of heart shape, in which each component 73 

is related to a remodelling index with clear clinical importance, would assist clinical 74 

interpretation of the relative effects of different physiological processes underlying the 75 

development of disease. In addition, such an orthogonal decomposition would enable 76 

computational analysis of a single component of remodelling present in various forms of 77 

heart disease. In particular, an orthogonal basis for shape enables robust calculation of 78 

contribution of each component independently to the overall shape. Also, regressions using 79 

orthogonal shape components as independent variables do not suffer from the problem of 80 

multicolinearity. Thus, when analysing the combined effects of different remodelling 81 

characteristics, it is preferred to have an orthogonal basis in a linear space. 82 

Principal component analysis (PCA) [11] is a powerful and widely used shape analysis 83 

technique that provides an orthogonal linear shape basis. In previous work, PCA analysis of 84 

LV geometry has achieved more powerful descriptions of LV shape, and their relationships 85 

with risk factors, than traditional mass and volume analysis [12]. In a large population study, 86 

the first and second PCA LV shape components were associated with LV size and sphericity 87 

respectively [13]. However, PCA shape components are not designed to be related to any 88 

particular clinical remodelling index, and the clinical interpretation of PCA shape 89 

components is often difficult. Previous work has shown that LV PCA shape components do 90 

not have clear clinical interpretation beyond the first two [12]. This is a common problem 91 

with PCA shape components, since they are designed to efficiently characterize shape 92 

variation without regard to possible underlying mechanisms of disease processes. Remme et 93 

al. [14] developed a method to decompose shape changes into modes with clear clinical 94 

interpretation. However, these modes were not orthogonal. 95 

Decomposition of the shapes into orthogonal components enables calculation of scores as 96 

projections of each patient’s shape onto the corresponding component (see Appendix). These 97 

R2.4 

R1.9 

R1.2 

R2.4 

R3.5 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

 

scores quantify the amount of each component present in the patient. One advantage of PCA 98 

shape components is that the resulting scores have zero correlation within the population (see 99 

Appendix). This is desirable in some applications, i.e. if the scores can be related to 100 

underlying processes, then low correlation between scores implies that the processes have 101 

different effects within the population.  102 

Previously, orthogonal remodelling components were generated from clinical remodelling 103 

indices using an ad hoc approach [24]. For each clinical index, a subset of cases was chosen 104 

outside two standard deviations from the mean, i.e. those with very high and very low values 105 

of the clinical index. The remodelling component was then derived from these cases, by 106 

fitting a line between the two groups. The problem with this method is that it relied on 107 

extremes of the distribution of the clinical index and ignored the majority of cases. This may 108 

lead to difficulties in the interpretation of the remodelling component. Therefore, the current 109 

paper sought to provide the following novel contributions: i) calculation of remodelling 110 

components directly from regression coefficients, ii) use of the entire distribution of clinical 111 

index to formulate the remodelling component, and iii) reduction of correlation among 112 

resulting remodelling scores. 113 

In this paper, we used partial least squares (PLS) regression to sequentially construct an 114 

orthogonal shape decomposition that is optimally related to clinical remodelling indices. 115 

Clinical remodelling indices of EDVI, sphericity, ejection fraction, relative wall thickness, 116 

conicity and longitudinal shortening, known from the literature to have important prognostic 117 

information in the management of myocardial infarction, were used to create corresponding 118 

orthogonal components from the shape parameters. By using a single PLS latent factor per 119 

clinical index, the resulting component scores were less correlated with each other, and had 120 

zero correlation with those clinical indices previously removed.   121 
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Data Description  122 

Patient Data 123 

LV shape models of 300 patients with myocardial infarction and 1,991 asymptomatic study 124 

subjects were obtained through the Cardiac Atlas Project [15]. The patient data have been 125 

described previously [12] [16] and are available from the Cardiac Atlas Project 126 

(http://www.cardiacatlas.org). Briefly, myocardial infarction patients (n=300, age 31−86, 127 

mean age 63, 20% women) had clinical history of myocardial infarction with EF>35% and 128 

infarct mass >10% of LV myocardial mass. All had stable myocardial infarction (i.e. no acute 129 

cases). Asymptomatic subjects (n=1991, age 45−84, mean age 61, 52% women) did not have 130 

physician-diagnosed heart attack, angina, stroke, heart failure or atrial fibrillation, and had 131 

not undergone procedures related to cardiovascular disease, at the time of recruitment [12] 132 

[16].   133 

Finite element shape models were customized to cardiac MRI exams in each case using a 134 

standardized procedure [12]. The shape models were evenly sampled at sufficient resolution 135 

to capture all visible features, which resulted in 1,682 Cartesian (x, y, z) points in 136 

homologous anatomical locations for each LV model.  137 

Clinical Remodelling Indices 138 

Clinical remodelling indices included EDVI, EF, relative wall thickness, sphericity, apical 139 

conicity and longitudinal shortening. Volumes were calculated by the summation of surface 140 

triangle volumes [17]. LV mass was calculated by subtracting epicardial with endocardial 141 

volumes and then multiplied by 1.05 g/ml [18]. EDVI was calculated as endocardial surface 142 

volume at end-diastole (EDV) divided by body surface area. Ejection fraction was calculated 143 

as (EDV-ESV)/EDV, where ESV is the endocardial surface volume at end-systole. Relative 144 

wall thickness was defined as twice the posterior wall thickness divided by the end-diastolic 145 

R2.12 

 

R1.15 

 

R1.7 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.cardiacatlas.org/


8 

 

diameter [19] at mid-ventricle. Sphericity was calculated as the EDV divided by the volume 146 

of a sphere with a diameter corresponding to the major axis at end-diastole in LV long axis 147 

view [20]. Apical conicity was calculated as the ratio of the apical diameter (defined as the 148 

diameter of the endocardium one third above the apex) over the basal diameter [7] at end-149 

diastole. Longitudinal shortening was calculated as the difference of the distance between the 150 

centroid of the most basal ring of points to the most apical point at end-systole divided by the 151 

distance at end-diastole. These indices not intended as a comprehensive list and were limited 152 

to geometric indices (i.e. ratios which correct for size in some sense), which have either been 153 

studied for many years (e.g. relative wall thickness as a measure of concentric versus 154 

eccentric hypertrophy), or can be readily calculated from several different imaging modalities 155 

(e.g. 3D echocardiography, MRI, or CT). Some attempts were made to only include indices 156 

that are moderately independent (e.g. end-systolic volume index was not included since it can 157 

be derived from end-diastolic volume index and ejection fraction).  158 

Remodelling Components  159 

In this paper, we use partial least squares (PLS) regression [21, 22] to explain each 160 

remodelling index 𝒀 ∈ ℝ𝑁×1 with a linear combination of predictor variables 𝑿 ∈ ℝ𝑁×𝑃 so 161 

that 162 

 𝒀 = 𝑿𝜷′ + 𝑬𝑌 (1) 163 

where 𝜷′ ∈ ℝ𝑃×1 is a vector of regression coefficients and 𝑬𝑌 is the residual vector. In this 164 

paper, the dimensions N and P denote the number of cases and the number of shape features 165 

(3D surface points) respectively. 166 

Details of the PLS regression method in comparison with principal component regression are 167 

given in the Appendix. PLS regression calculates the regression coefficients 𝜷′ as a linear 168 
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combination of M latent factors, where M<P. The latent factors are chosen to maximize the 169 

covariance between response and predictor variables.  170 

In this paper, we use centered Y and X so that the intercept is zero. We define the normalized 171 

vector of regression coefficients (ignoring the intercept term) as the “remodelling component” 172 

associated with the corresponding remodelling index Y. By analogy with PCA shape 173 

components, the remodelling component is a unit length vector in shape space (column space 174 

of X). We define “remodelling scores” by analogy with PCA scores, as the projection of each 175 

case onto the remodelling component: 176 

 𝒀𝒔𝒄𝒐𝒓𝒆 = 𝑿𝜷 (2) 177 

where  is the normalized regression coefficients. The estimated remodelling indices can be 178 

calculated from 𝒀𝑠𝑐𝑜𝑟𝑒 by scaling by the norm of 𝜷′ and adding the mean index. 179 

Orthogonal Remodelling Components  180 

Orthogonal remodelling components are calculated following the flow chart in Figure 1. First, 181 

the remodelling index with the highest variance is chosen (EDVI). The corresponding 182 

remodelling component is calculated by PLS regression. Then a residual data matrix is 183 

generated by subtracting the projections of all cases onto the remodelling component:  184 

 𝐗(i+1) = 𝐗i − 𝐗i𝛃i(𝛃i)
T
 (3) 185 

for i=1,…,K, where K is the number of indices. The residual data matrix is then used in the 186 

next iteration to calculate the next remodelling component, associated with the remodelling 187 

index with the next highest variance in the data set (in this case the second index is 188 

sphericity). This process is repeated for all K=6 remodelling indices (Figure 1). The resulting 189 

orthonormal remodelling components [𝜷1, 𝜷2, … , 𝜷𝐾], form an orthogonal basis for a linear 190 
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sub-space of X. Each 𝜷(𝑖+1)  is orthogonal to the preceding 𝜷𝑖  because the residual data 191 

matrix 𝑿(𝑖+1) is orthogonal to 𝜷𝑖.  192 

With this approach, the order of the response variables is important. We ordered the 193 

remodelling indices based on their variance in remodelling scores over the population. This is 194 

a measure of the shape variance explained by each index. The order of remodelling indices 195 

was: 1) EDVI, 2) sphericity, 3) ejection fraction, 4) relative wall thickness, 5) conicity and 6) 196 

longitudinal shortening. 197 

Number of latent factors  198 

Selection of the number of latent factors M has a fundamental effect on the resulting 199 

remodelling components. In the current context, there is no standard method to choose the 200 

number of latent factors. In the context of prediction, cross-validation is commonly used to 201 

determine estimation error in the response variable [23]. We compared remodelling 202 

components and scores calculated from one-factor PLS (M=1) to multi-factor PLS up to 203 

M=30 (see Figure 2). Standard 10-fold cross-validation was performed to test estimation 204 

error, showing that 10 latent factors accounted for most of the mean squared error in 205 

estimating Y. In term of remodelling components, results for M>10 were similar to M=10. 206 

Experiments for 1<M<10 gave intermediate results. Therefore, in the following, we only 207 

compared two remodelling models: one-factor PLS (M=1) and multi-factor PLS (M=10). 208 

Characterization of myocardial infarction 209 

We demonstrated the clinical applicability of our proposed shape decomposition method to 210 

analyse how these clinically driven remodelling components were associated with myocardial 211 

infarction, compared to the clinical indices themselves, or PCA shape components. Logistic 212 

regression models were used to evaluate the discriminatory power of the orthogonal 213 
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remodelling components to characterize LV remodelling due to myocardial infarction. 214 

Logistic regression is a common clinical tool for examining relative effects on disease, and 215 

relative strengths of associations with disease can be quantified using odds ratios.  216 

Confounding factors (age, sex, body mass index, diastolic blood pressure, smoking status and 217 

diabetes history) were included in each regression model as baseline variables (covariates), 218 

since there were significantly different between cohorts in Table 1. This was done to control 219 

for the effects of these confounding factors in each of the logistic regression models. Four 220 

logistic regression models were examined. Model 1 consisted of the baseline variables and 221 

the first 6 PCA component scores. This was used as a reference for comparison. Model 2 222 

consisted of the baseline variables and the six clinical remodelling indices. Model 3 included 223 

the baseline variables and the orthogonal remodelling component scores for M=1.  Model 4 224 

included the baseline variables and the orthogonal remodelling component scores for M=10. 225 

In each case the presence or absence of symptomatic disease was defined by the dependant 226 

variable as 1 or 0 respectively. 227 

Implementation 228 

Codes were implemented in Matlab (Mathwork, Natick, MA) and R (The R Foundation, 229 

Vienna, Austria) programming languages, and are available from the Cardiac Atlas Project 230 

website1. The Matlab implementation requires the plsregress function from the Statistics and 231 

Machine Learning Toolbox. The R implementation requires the pls package [25]. We used 232 

SIMPLS algorithm [22] to compute the PLS regression in both versions due to its fast 233 

calculation. We compared the PLS regression coefficients using different methods provided 234 

by the pls package from R, i.e. kernel, wide kernel and classical orthogonal scores algorithms, 235 

and the results were very similar in the regression coefficients obtained. 236 

                                                 

1 http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/ 
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Statistical analyses 237 

Root mean square (RMS) errors in the angle between remodelling component unit vectors 238 

were used to quantify the differences arising from different training data sets: 1) 239 

asymptomatic cases from 100 to 1900, vs all asymptomatic cases, and 2) balanced data set 240 

(300 asymptomatic and 300 myocardial infarction) vs the full data set (1991 asymptomatic 241 

and 300 myocardial infarction). 242 

For the logistic regression, the independent variables (components and baseline variables) 243 

were included simultaneously and the models were computed using SAS. A p value of <0.05 244 

was considered significant. Four commonly-used measures were used to quantify the 245 

goodness-of-fit of the regression models: Deviance, Akaike information criterion (AIC), 246 

Bayesian information criterion (BIC) and the area under the receiver operating characteristic 247 

curve (AUC) [12]. Smaller Deviance, AIC and BIC, and larger AUC, are indicative of better 248 

goodness-of-fit. Statistical tests to determine whether the AUC of a model is significantly 249 

greater or less than another model were performed using one-sided paired non-parametric 250 

tests for AUC values [26], implemented in the pROC package [27]. A p value of <0.05 was 251 

considered as statistically higher or smaller AUC value. 252 

Results 253 

Unless otherwise stated all experiments were performed including all cases (asymptomatic 254 

and MI patients). Participant characteristics are summarised in Table 1. Some demographic 255 

characteristics were significantly different between the asymptomatic subjects and the 256 

myocardial infarction cases, including gender ratio, age, height, weight, blood pressure, and 257 

diabetes history. Clinical LV remodelling indices were also significantly different, as 258 

expected. The myocardial infarction patients had larger LV EDVI, increased sphericity, 259 
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thicker walls, less conicity, smaller EF and reduced longitudinal shortening than the 260 

asymptomatic subjects.  261 

The orthogonal PLS components corresponding to EDVI, sphericity, ejection fraction, 262 

relative wall thickness, conicity and longitudinal shortening, are visualized in Figure 3 (M=1) 263 

and Figure 4 (M=10). These visualizations are useful in understanding the effect of each 264 

component on shape.  265 

Linear correlation coefficients (Pearson) were calculated between the clinical indices and the 266 

component scores in the combined population. Correlation coefficients between PLS 267 

remodelling scores and clinical indices are reported in Table 2 for M=1 and in Table 3 for 268 

M=10. A single latent factor resulted in zero correlation between the remodelling scores and 269 

the corresponding indices of all the components previously removed in the Gram-Schmidt 270 

procedure (Table 2). Using more latent factors resulted in better correlation between each 271 

remodelling score and its corresponding index (diagonal elements are higher in Table 3 than 272 

in Table 2). Correlation coefficients between clinical indices and scores of the first six PCA 273 

components of the original dataset are shown in Table 4 for comparison.  274 

The correlation coefficients among the clinical indices are shown in Table 5. These show 275 

strong correlations between several clinical indices. The decreasing diagonal correlations in 276 

Tables 2 and 3 are likely due to this interdependence between clinical indices. Thus, RWT 277 

and LS are related to indices previously removed by the orthogonalization process (RWT is 278 

related to EDVI and sphericity, LS is related to EF, etc).  279 

 Correlations between the PLS remodelling scores are shown in Table 6 for M=1 and in Table 280 

7 for M=10. The minimum correlation between remodelling scores was achieved with M=1 281 

(Table 6).  282 
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A series of experiments was performed to compare remodelling components between the full 283 

data set (1991 asymptomatic + 300 myocardial infarction) with symmetric datasets, i.e. 300 284 

asymptomatic and 300 MI patients) with 50 trials of randomly selected asymptomatic subsets. 285 

In this case, similar remodelling components are reflected by the same unit 𝜷 vectors, which 286 

can be measured by angle differences between two 𝜷 vectors. Figure 5a shows the root mean 287 

square errors (RMSE) of 𝜷 vector differences between the subset and the full models. Only 288 

the first component (EDVI) showed less than 5 degrees differences, but increasing 289 

differences in other components were observed. This was expected since the characteristics 290 

of the cases included in the training set have an influence on the results. 291 

Considering only the asymptomatic cases, we investigated the differences in the remodelling 292 

components with different number of samples. Figure 5b shows the RMS errors of randomly 293 

sampled cases (50 trials each) with respect to the full 1991 cases. At least 1100 cases were 294 

needed to get below 10 degrees difference with the full cohort in all components.  295 

The results of logistic regression models to characterize remodelling associated with 296 

myocardial infarction using the orthogonal remodelling scores are shown in Table 8. For the 297 

one-factor PLS remodelling scores, the odds ratio of EDVI, sphericity, ejection fraction, wall 298 

thickness, and conicity, indicate that myocardial infarction patients tend to have larger and 299 

more spherical LV shapes with thinner walls, and a less conical shape. The multi-factor PLS 300 

remodelling scores showed somewhat different results, with EDVI, EF, Conicity and 301 

longitudinal shortening scores being significant. This may be due to the increased multi-302 

colinearity between remodelling scores in the multifactor case. 303 

Table 9 shows the comparisons of the regression models. All four regression models showed 304 

significant improvement compared with the baseline variables alone. The logistic regression 305 

based on one-factor PLS orthogonal remodelling scores showed the best Deviance, AIC and 306 
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BIC and AUC. The AUC (Figure 6) for the one-factor remodelling scores was significantly 307 

greater than the multi-factor remodelling scores, and the original clinical indices, but was not 308 

significantly different from the PCA model. 309 

The standardized coefficients of the logistic regression model were used to create a linear 310 

combination of the PLS (M=1) components generating a combined remodelling score, called 311 

the logistic regression score, separating the two groups. The F logistic regression scores 312 

(Model 3) for all cases were calculated and the median shapes were calculated by projecting 313 

the coefficients of the PLS components estimated in the logistic regression model back on the 314 

population shape space. These are plotted in Figure 7. This graphically shows the shape 315 

changes which best distinguish the two groups with baseline variables adjusted, showing that 316 

LV remodelling due to myocardial infarction is associated with larger volume, more spherical 317 

shape, and thinner wall thickness. Since the logistic regression coefficients refer to 318 

contributions from remodelling components, the amount of each remodelling component 319 

contributing to the logistic regression score could be quantified. This gives an intuitive 320 

explanation of the logistic regression score in terms of remodelling components associated 321 

with clinical remodelling indices.  322 

Discussion  323 

Patients with myocardial infarction exhibit significant shape changes with respect to the 324 

normal population, due to cardiac remodelling. An atlas-based analysis of cardiac 325 

remodelling has previously shown better characterization of remodelling due to myocardial 326 

infarction than traditional mass and volume analysis in large data sets [12]. The framework 327 

consisted of three steps: (1) fitting a finite element model to the LV MR images, (2) feature 328 

extraction of the aligned shape parameters, and (3) quantification of the association between 329 

the features and disease using logistic regression. Although PCA provides orthogonal shape 330 
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features, which describe the maximum amount of variation for the fewest number of 331 

components, these components typically do not correspond with clinical indices of cardiac 332 

remodelling. To avoid this problem, and give the components a clear clinical interpretation, 333 

while maintaining the advantages of orthogonality, we developed a method to generate 334 

orthogonal shape components from any set of clinical indices using PLS. 335 

In this paper, we generated a linear orthogonal shape basis from the full finite element shape 336 

parameters. Clinical indices, such as EDVI, sphericity, ejection fraction, relative wall 337 

thickness, conicity and longitudinal shortening, were derived from the finite element shape 338 

model. Similar to PCA, the shape components derived from PLS regression are orthogonal. 339 

In PCA, the resulting component scores also have zero correlation across the population 340 

cohort, but this is not the case with PLS. Table 7 shows that PLS component scores with 341 

M=10 were significantly correlated, similar to the original clinical indices in Table 5. This is 342 

expected since M=10 results in strong correlations between scores and indices (Table 3). PLS 343 

components both using M=10 and M=1 obtain effective shape representation for each clinical 344 

index, as evidenced by the correlation coefficients with the clinical indices (diagonal terms in 345 

Tables 2 and 3), compared to the first six components of PCA (Table 4).  346 

We found that the correlations between the scores of different indices for PLS with M=1 347 

become smaller than the original indices and scores of PLS with M=10. For example, the 348 

correlation between EDVI and EF was originally -0.60 (Table 5), then became -0.68 from 349 

PLS with M=10 (Table 7); however it was -0.15 from PLS with M=1 (Table 6). Not only did 350 

a single latent factor result in the least correlation between component scores (Table 6), but it 351 

also resulted in zero correlation between component scores and previously removed indices 352 

(upper triangle of Table 2).  353 
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These orthogonal components derived from traditional remodelling indices may be used to 354 

partition shape into contributions from each component, independent of the others. 355 

Correlation analysis shows that these clinically derived components have high 356 

correspondence with traditional remodelling indices (diagonals in Tables 2 and 3), either 357 

virtually following the clinical indices’ original correlation (Table 5) in M=10 (Table 3), or 358 

by sacrificing some of the diagonal correlations in exchange for decoupling with previous 359 

indices in M=1 (Table 2). Remodelling scores at M=10 are more correlated with the original 360 

clinical indices than M=1 but at the expense of their ability to explain variance in the original 361 

shape space. It can therefore be argued that M=10 generates more ‘specific’ shapes with 362 

lesser representative power.  363 

Previous studies have also used PLS to derive information on cardiac remodelling [28]. 364 

Lekadir et al. [28] used PLS to characterize myocardial infarction using class labels as the 365 

response variable and the data matrix as the predictor variables. They found that running the 366 

regression with a range of latent factors and combining the estimations with a median 367 

operator could obtain better performance. In the current paper, logistic regression was used 368 

(instead of PLS in [28]) with the class labels as the response variable, because this is a 369 

commonly used clinical tool to examine associations with disease, and it is simple to 370 

calculate relative effects of the components on the response variable as odds ratios. The 371 

current paper also differs from [28] in the use of PLS to derive orthogonal remodelling 372 

components and the finding that a single latent factor reduces correlations in the resulting 373 

remodelling scores.  374 

The results also show that clinically derived components quantitatively characterise 375 

remodelling features associated with myocardial infarction with similar power as PCA 376 

components. Three logistic regression models based on the clinical indices, PCA components 377 

and orthogonal remodelling components derived from clinical indices were all similar in 378 
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terms of goodness of fit. Significance tests on areas under the ROCcurves (AUC) revealed 379 

that the one-factor PLS model showed significantly greater AUC compared with the multi-380 

factor PLS model and the clinical indices model, but not significantly different from the PCA 381 

model. Hence the single latent factor remodelling components characterised myocardial 382 

infarction similarly to PCA, while having the added advantage of having clear clinical 383 

interpretation with respect to their corresponding clinical indices, as well as being an 384 

orthogonal decomposition of shape space. 385 

Coefficients of the remodelling components estimated in the logistic regression model were 386 

projected back on the population shape space. Figure 7 visualises the shape changes 387 

characterizing presence of disease. This combined component can be used for tracking 388 

individual patients over time in future studies, by quantifying the degree to which their LV 389 

shapes compare with the remodelling spectrum.  390 

In this study, we included all of the available cases (1,991 asymptomatic and 300 myocardial 391 

infarction), since we were primarily interested in the proof of concept. Having a balanced 392 

data set is preferable to enable the analysis of differences between “asymptomatic 393 

remodelling” and “symptomatic remodelling”, which would be of considerable interest in 394 

terms of physiological driving factors. However, Figure 5b indicates that over 1000 cases 395 

would be required for robust identification of remodelling components. Also, physiological 396 

functions between different pathological groups can be quite different. For example, 397 

comparing the remodelling components of 1991 asymptomatic subjects only with 398 

remodelling components of 1991 asymptomatic + 300 myocardial infarction revealed 399 

differences of 9.1 degrees in EDVI, 6.4 degrees in sphericity, 15.1 degrees in EF, 7.0 degrees 400 

in RWT, 9.5 degrees in conicity and 8.4 degrees in longitudinal shortening. Hence, the 401 

myocardial infarction patients, which were only 24% from all samples, had a significant 402 

influence on all the remodelling components. 403 
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Supervised feature extraction techniques such as information maximising component analysis 404 

and linear discriminate analysis have also been used to extract a remodelling component 405 

which can best characterize myocardial infarction using surface sampling [29]. In the current 406 

study, the shape features of each clinical index were obtained first and then combined using 407 

logistic regression. The shape changes due to myocardial infarction obtained by this logistic 408 

regression model can be more easily explained as a combination of well-understood shape 409 

features, through the logistic regression coefficients.   410 

This method can be applied to any index with particular clinical utility, with visualization of 411 

their corresponding shape features and quantification of components, thereby further 412 

exploiting shape information in a clinically meaningful fashion. 413 

Limitations 414 

The cross-sectional nature of these data limits the understanding that can be gained on the 415 

physiological factors underlying remodelling processes. However, the methods developed in 416 

this work can be applied to future studies to track patients over time, or to epidemiological 417 

studies such as the Multi-Ethnic Study of Atherosclerosis [30] and the UK Biobank [31]. We 418 

also limited the clinical remodelling indices examined in this paper to those geometric indices 419 

which have been well established in the clinical literature. These indices are also readily 420 

available from several imaging modalities such as 3D echo and CT. The order the indices are 421 

included in the basis has an effect on the resulting remodelling components. While we used 422 

the variance of the corresponding remodelling scores (a measure of shape variance explained), 423 

other methods are possible and this requires further research. Finally, we did not include 424 

structural information on the location and size of the infarct. While more information is 425 

becoming available on the interesting effects of infarct size and transmurality, this is left for 426 
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future work. Also, many patients have comorbidities such as valvular disease, which was not 427 

examined in the current study. 428 

Potential implications 429 

An orthogonal decomposition of shape in relation to remodelling indices of known prognostic 430 

value will enable multi-dimensional characterization of the ways in which the heart adapts 431 

with the progression of disease, e.g. after myocardial infarction. The remodelling components 432 

were able to characterize disease as well as standard methods, with the added advantages of 433 

having clear clinical interpretation with respect to their corresponding clinical indices, as well 434 

as being an orthogonal decomposition of shape space. The resulting remodelling scores can 435 

be used to track the progression of remodelling over time, against reference populations. This 436 

would enable automatic computation of z-scores giving precise information on how the 437 

patient’s heart compares against the reference population (in this case the MESA cohort). 438 

Although the remodelling components were generated from a largely asymptomatic 439 

population in this work, we showed how they describe the shape changes undergone in 440 

myocardial infarction relatively well. We also showed how the amount of each remodelling 441 

component could be quantified in association with the presence of clinical disease, 442 

highlighting significant contributions of ventricular size, sphericity and relative wall 443 

thickness. These methods enable new knowledge to be derived from medical imaging 444 

examinations on the underlying mechanisms driving the adaptation of the heart in response to 445 

disease. Future work can also examine how the remodelling scores are related to future 446 

adverse events, e.g. using clinical outcomes for MESA which are known over a >10 year 447 

follow up period.  448 
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Appendix 493 

Principal Component Regression 494 

Let 𝑿 ∈ ℝ𝑁×𝑃be a data matrix of predictor variables where each row is a case (shape vector) 495 

and each column a shape feature (in our case [x y z] coordinates of sampled points). There 496 

are N cases and P shape features. We first “column center” the data by subtracting the mean 497 

across cases.  498 

Principal Component Analysis (PCA) decomposes X into an othonormal matrix 𝜱 ∈499 

ℝ𝑃×𝑀 containing eigenvectors of the covariance matrix XTX.  The columns of  define 500 

“shape components”. M is the number of shape components used to approximate X, typically 501 

M<P, by 502 

 𝑿𝑒𝑠𝑡 = 𝑻𝜱𝑇 (A.1) 503 

 𝑻 = 𝑿𝜱 (A.2) 504 

where 𝑻 ∈ ℝ𝑁×𝑀  is a matrix of “scores”. Each case is thus approximated by a linear 505 

combination of shape components. The weights of the combination (rows of T) are the 506 

amount of each shape component present in that case, and are calculated by projecting each 507 

shape vector onto the shape component.  508 

In principal component regression (PCR), the response or dependent variable Y (at present we 509 

consider a single response variable being a centered remodeling index such as EDVI) is 510 

regressed against the principal component scores (scores being used as predictor variables): 511 

 𝒀𝑒𝑠𝑡 = 𝑻𝑩𝑃𝐶𝑅 (A.3) 512 

where 𝑩𝑃𝐶𝑅 is a vector of regression coefficients.  513 
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The advantage of this method is that the regression coefficients do not suffer from the well-514 

known multicolinearity problem, in which the regression coefficients can be ill-defined if the 515 

independent variables are correlated, leading to instability in future predictions. Note that in 516 

PCA the resulting scores T are orthogonal, so the resulting scores have zero correlation 517 

within the dataset between different component scores.   518 

PCR Remodeling Component: 519 

The PCR can be written as 520 

 𝒀𝑒𝑠𝑡 = 𝑻𝑩𝑃𝐶𝑅 = 𝑿𝜱𝑩𝑃𝐶𝑅 = 𝑿𝜷𝑃𝐶𝑅
′  (A.4) 521 

Here X are the predictor variables and the regression coefficients are calculated from the PCR 522 

as 𝜷𝑃𝐶𝑅
′ = 𝜱𝑩𝑃𝐶𝑅 . This vector of regression coefficients can be thought of as the linear 523 

combination of shape components that best predict the response variable. We define a “PCR 524 

remodeling component” 𝜷𝑃𝐶𝑅by normalizing 𝜷𝑃𝐶𝑅
′  (note the data and response are centered 525 

so we exclude the zero intercept). The PCR remodelling scores are defined as follows:  526 

 𝒀𝑃𝐶𝑅𝑠𝑐𝑜𝑟𝑒 =
𝑿𝜷𝑃𝐶𝑅

′

|𝜷𝑃𝐶𝑅
′ |

= 𝑿𝜷𝑃𝐶𝑅 (A.5) 527 

The remodelling score for each case is then a projection (inner product) of the shape vector 528 

on the remodelling component. The remodelling component is defined by analogy to PCA 529 

shape components as a unit length direction in shape space. Remodelling scores are defined 530 

by analogy to shape scores in PCA; we can get the estimated remodelling index from 531 

𝒀𝑃𝐶𝑅𝑠𝑐𝑜𝑟𝑒 by scaling by the norm of 𝜷𝑃𝐶𝑅
′  and adding the mean.  532 

Partial Least Squares Regression 533 

A problem with PCR is that the independent variables are chosen by their ability to explain 534 

variance in X, not Y. Partial least squares (PLS) regression solves this problem by finding the 535 
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“latent factors” that best explain the covariance between Y and X. These are ranked from 536 

largest to smallest covariance, so the first factor explains the most covariance, the second 537 

factor for the second largest covariance, and so on.  538 

PLS finds a linear decomposition of X and Y such that 539 

 𝑿 = 𝑻𝜳𝑇 + 𝑬𝑋 (A.6) 540 

 𝒀 = 𝑼𝜴𝑇 + 𝑬𝑌 (A.7) 541 

where 𝑻 ∈ ℝ𝑁×𝑀  and 𝑼 ∈ ℝ𝑁×𝑀  are PLS scores for predictor and response variables, 542 

respectively. Similarly, 𝜳 ∈ ℝ𝑃×𝑀 and 𝜴 ∈ ℝ𝐾×𝑀 (K=1 for a single response variable) are 543 

the PLS components or loadings for the predictor and response variables. Unlike PCR,  and 544 

 are not orthogonal and not normalized. The parameter 𝑀 ≤ 𝑃  is the number of latent 545 

factors, typically determined by examining the percentage variance explained in Y.  546 

PLS derives the 𝜷 regression coefficients as linear combinations of the PLS loadings, which 547 

are chosen to be maximally correlated. Several variants exist in the literature, differing in the 548 

calculation of T [21, 22]. However, similar to PCR, we can define PLS remodelling 549 

components and remodelling scores as 550 

 𝒀𝑃𝐿𝑆𝑠𝑐𝑜𝑟𝑒 =
𝑿𝜷𝑃𝐿𝑆

′

|𝜷𝑃𝐿𝑆
′ |

= 𝑿𝜷𝑃𝐿𝑆 (A.8) 551 

As for PCR, the estimated Y can be derived from the scores by scaling by |𝜷𝑃𝐿𝑆
′ | and adding 552 

the mean.  553 

Orthogonal Remodelling Components 554 

The orthogonalization process given in (3) can be applied to the results of PCR or PLS 555 

regression. PLS regression is always more efficient than PCA regression, in that fewer terms 556 
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are required to capture the variance of the response variable. However, if all PCA 557 

components are included in the PCR, and all latent factors in the PLS, the two methods are 558 

equivalent. One-factor PLS (ie M=1 in the PLS regression) has particular properties which 559 

may make it attractive in some applications. For example one-factor PLS has been shown to 560 

be equivalent to rescaled ridge regression as the ridge parameter tends to infinity [22].  561 

For K>1, ie more than one response variable included in Y, the PLS regression finds latent 562 

factors which explain the most covariance between the X and Y matrices simultaneously. This 563 

was not considered for the current work because the resulting regression coefficients are not 564 

orthogonal.    565 
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Tables 671 

Table 1 Demographics and clinical remodelling indices for asymptomatic subjects and 672 

patients with myocardial infarction (mean ± SD). MI=Myocardial infarction; BMI=Body 673 

mass index; SBP=Systolic blood pressure; DBP=diastolic blood pressure; EDVI= end 674 

diastolic volume index; RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal 675 

shortening. 676 

Variable Unit Asymptomatic MI cases p-value 

Sex F/M 1034/975  60/238 <0.01 

Age years 61.47±10.15 62.76±10.76 0.043 

Height cm 165.98±9.99 173.82±9.77 <0.001 

Weight kg 76.75±16.50 90.06+14.14 <0.001 

BMI 
 

27.77±5.09 29.73+5.57 <0.001 

SBP mmHg 126.28±21.98 126.36±17.50 >0.05 

DBP mmHg 71.49±10.33 73.26±9.82 0.006 

Diabetes 

history 
% 13.11 35.67 <0.001 

Smoking 

status 
% 12.51 11.33 >0.05 

EDVI 
 

67.83±13.29 
96.53±25.03 

<0.001 

Sphericity 
 

0.38±0.08 0.41±0.09 <0.001 

RWT % 39.71±9.49 35.21±8.38 <0.001 

Conicity 
 

0.74±0.08 0.70±0.08 <0.001 

EF 
 

0.63±0.07 0.41±0.11 <0.001 

LS 
 

0.13±0.04 0.08±0.03 <0.001 
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Table 2 Correlation coefficients between the clinical indices and the PLS remodelling 680 

component scores (M=1). EDVI= end diastolic volume index; RWT=relative wall thickness; 681 

EF= ejection fraction; LS=longitudinal shortening. 682 

  EDVI 

score 

Sphericity 

score 

EF 

score  

RWT 

score  

Conicity 

score 

LS 

score 

EDVI 0.82 0 0 0 0 0 

Sphericity 0.03 0.83 0 0 0 0 

EF -0.75 0.03 0.61 0 0 0 

RWT  -0.20 -0.16 -0.04 0.53 0 0 

Conicity -0.14 -0.28 0.30 0.21 0.72 0 

LS -0.45 0.03 0.61 -0.17 0.20 0.53 

 683 

Table 3 Correlation coefficients between the clinical indices and the PLS remodelling 684 

component scores (M=10). EDVI= end diastolic volume index; RWT=relative wall thickness; 685 

EF= ejection fraction; LS=longitudinal shortening. 686 

  EDVI 

score 

Sphericity 

score 

EF score RWT score Conicity 

score 

LS score 

EDVI 0.94 0.27 -0.34 -0.64 -0.13 -0.31 

Sphericity 0.30 0.97 -0.15 -0.16 -0.25 -0.13 

EF -0.41 -0.28 0.90 0.22 0.25 -0.02 

RWT -0.65 -0.12 0.26 0.99 0.25 0.53 

Conicity -0.13 -0.22 0.38 0.25 0.97 0.24 

LS -0.32 -0.13 0.02 0.56 0.25 0.98 

 Table 4 Correlation coefficients between the clinical indices and the first 6 PCA shape 687 

components. EDVI= end diastolic volume index; RWT=relative wall thickness; EF= ejection 688 

fraction; LS=longitudinal shortening. 689 

  PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

EDVI 0.80 -0.01 -0.74 -0.18 -0.13 -0.45 

Sphericity -0.26 -0.80 0.19 0.19 0.30 0.06 

EF -0.01 0.09 -0.11 0.03 -0.09 -0.20 

RWT  0.10 0.24 -0.21 -0.25 -0.25 -0.18 

Conicity 0.10 0.13 -0.15 -0.11 -0.15 -0.14 

LS 0.21 0.02 0.03 -0.15 0.50 0.37 

 690 

R1.49 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 

 

Table 5 Correlation coefficients among the clinical indices. EDVI= end diastolic volume 691 

index; RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal shortening. 692 

 EDVI Sphericity EF  RWT Conicity LS 

EDVI 1 0.28 -0.60 -0.37 -0.11 -0.29 

Sphericity 0.28 1 -0.11 -0.28 -0.22 -0.13 

EF -0.60 -0.11 1 0.18 0.26 0.57 

RWT  -0.37 -0.28 0.18 1 0.32 0.00 

Conicity -0.11 -0.22 0.26 0.32 1 0.26 

LS -0.29 -0.13 0.57 0.00 0.26 1 

 693 

Table 6 Correlation coefficients among the PLS remodelling scores (M=1). EDVI= end 694 

diastolic volume index; RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal 695 

shortening. 696 

  EDVI 

score 

Sphericity 

score 

EF 

score  

 

RWT 

score 

Conicity 

score 

LS 

score 

EDVI score 1 -0.29 -0.15 0.22 -0.15 -0.08 

Sphericity score -0.29 1 0.001 -0.04 0.01 0.22 

EF score  -0.15 0.001 1 0.09 0.09 0.47 

RWT score  0.22 -0.04 0.09 1 -0.08 0.002 

Conicity score -0.15 0.01 0.09 -0.08 1 0.16 

LS score -0.08 0.22 0.47 0.002 0.16 1 
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Table 7 Correlation coefficients among the PLS remodelling scores (M=10). EDVI= end 699 

diastolic volume index; RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal 700 

shortening. 701 

 

EDVI 

score 

Sphericity 

score 
EF score  

RWT 

score 

Conicity 

score 
LS score 

EDVI score 1 0.29 -0.68 -0.37 -0.15 -0.34 

Sphericity score 0.29 1 -0.17 -0.15 -0.25 -0.14 

EF score -0.68 -0.17 1 0.27 0.25 0.53 

RWT score  -0.37 -0.15 0.27 1 0.31 -0.01 

Conicity score -0.15 -0.25 0.25 0.31 1 0.24 

LS score -0.34 -0.14 0.53 -0.01 0.24 1 
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Table 8 Four logistic regressions for myocardial infarction. EDVI= end diastolic volume 704 

index; RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal shortening. 705 

Variable 
Coeffici

ent 

Standard 

error 
p value 

Standardized 

Coefficient 

Odds 

Ratio(OR) 

OR 95% Confidence 

Interval 

Model 1: PCA shape components + Baseline variables 

PC 1 2.644 0.177 <.0001 1.455 14.066 9.942 19.901 

PC 2 -0.605 0.102 <.0001 -0.334 0.546 0.447 0.666 

PC 3 0.071 0.112 0.524 0.039 1.074 0.863 1.336 

PC 4 2.031 0.153 <.0001 1.111 7.625 5.652 10.287 

PC 5 0.391 0.106 <.0001 0.215 1.478 1.200 1.821 

PC 6 -0.113 0.119 0.342 -0.062 0.893 0.708 1.127 

Model 2: Clinical indices + Baseline variables 

EDVI 0.041 0.008 <.0001 0.412 1.042 1.027 1.058 

Sphericity 0.002 0.014 0.870 0.010 1.002 0.975 1.030 

EF -0.164 0.015 <.0001 -0.966 0.849 0.825 0.874 

RWT  0.002 0.014 0.875 0.012 1.002 0.975 1.030 

Conicity -0.037 0.016 0.018 -0.161 0.963 0.934 0.994 

LS -0.148 0.037 <.0001 -0.325 0.862 0.802 0.927 

Model 3: PLS remodelling scores (M=1) + Baseline variables 

EDVI 

score 2.859 0.191 <.0001 1.574 17.444 11.997 25.365 

Sphericit

y score 0.895 0.125 <.0001 0.492 2.446 1.915 3.124 

EF score 
-1.540 0.148 <.0001 -0.846 0.214 0.160 0.287 

RWT 

score  -1.289 0.146 <.0001 -0.710 0.275 0.207 0.367 

Conicity 

score 0.331 0.124 0.007 0.181 1.392 1.093 1.774 

LS score 
-0.041 0.140 0.769 -0.023 0.960 0.729 1.263 

Model 4: PLS remodelling scores (M=10) + Baseline variables 

EDVI 

score 0.823 0.161 <.0001 0.454 2.277 1.661 3.120 

Sphericity 

score -0.189 0.114 0.098 -0.103 0.828 0.662 1.036 

EF score -1.843 0.180 <.0001 -1.016 0.158 0.111 0.225 

RWT 

score  0.087 0.128 0.495 0.048 1.091 0.849 1.403 

Conicity 

score -0.393 0.122 0.001 -0.216 0.675 0.531 0.858 

LS score -0.665 0.141 <.0001 -0.365 0.514 0.390 0.678 
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All the models are adjusted for age, gender, BMI, DBP, smoking status and diabetes history. Bold 706 

rows indicate p<0.05.  707 
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 709 

Table 9 Comparison of the four logistic regression models. AIC = Akaike 710 

information criterion ; BIC =Bayesian information criterion; AUC =Area under the 711 

ROC curve. Smaller Deviance, AIC and BIC, and larger AUC, are indicative of better 712 

goodness-of-fit. Bold row indicates best performance.   713 

 714 

 

Deviance AIC BIC AUC 

Baseline  1560 1574 1615 0.7415 

Indices  710 727 802 0.9594 

PCA scores 607 633 708 0.9725 

PLS scores (M=1) 569 595 669 0.9739 

PLS scores (M=10) 683 709 784 0.9598 
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 Figure 1 Data processing flow chart. LV=left ventricle; X = shape space; Y = 

response variable; PLS = partial least squares; EDVI= end diastolic volume index; 

RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal shortening. 
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Figure 2. Mean squared error predictions of PLS regression coefficients using different 

number of latent factors (M). 10-fold cross validations were applied. EDVI= end diastolic 

volume index; RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal 

shortening. 
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Figure 3. Plot of the PLS clinical components (M =1). EDVI= end diastolic volume index; 

RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal shortening. ED = end-

diastole; ES = end-systole. Full animations of each clinical component are shown 

http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/. 
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Figure 4. Plot of the PLS clinical components (M=10). EDVI= end diastolic volume index; 

RWT=relative wall thickness; EF= ejection fraction; LS=longitudinal shortening. ED = end-

systole; ES = end-diastole.  



 

 

(a) Root mean squared errors between randomly sampled balanced data sets (300 

ASYMP and 300 MI) and full data set (1991 ASYMP and 300 MI). Average 

of 50 trials. 

 

(b) Root mean squared errors varying number of asymptomatic subjects compared 

with the full data set (1,991 samples). Average of 50 trials. 
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Figure 5. Root mean squared error (RMSE) in terms of angle differences between 

remodelling components. EDVI= end diastolic volume index; RWT=relative wall 

thickness; EF= ejection fraction; LS=longitudinal shortening. 

 



 

Figure 6. ROC curves for the five logistic regression models. The right figure shows a zoomed-in view to demonstrate the differences between 

the four models. ROC= reciever operating curve; PCA = principal component analysis; PLS = partial least squares. 
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Asymptomatic MI Patients 

    

ED ES ED ES 

Figure 7. Visualization of shape changes between asymptomatic volunteers and MI 

patients, using the combined PLS (M=1) components. Plots show the shapes 

associated with the median logistic regression score for the asymptomatic and MI 

patient groups respectively. MI patients show larger ventricles, less ejection, and 

thinner walls. MI= myocardial infarction; ED = end-diastole; ES = end-systole. 
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Dear Nicole 
Please find our revision of this paper attached. We appreciate the large effort 
of the reviewers and we believe the manuscript has improved considerably as 
a consequence. Here is a detailed response to the reviewers. In the revision, 
we have marked up the changes for clarity and included a reference number 
(e.g. R1.1 for reviewer 1, point 1, etc) by each. Since there are a lot of 
changes, reviewers can search for each point to find where the manuscript 
has changed. 
Regards 
Alistair 
 
 
 
Reviewer #1: General comments: 
I appreciate the large effort from this group to share data and code to help 
advance progress in the research community. It is also nice to see analysis of 
large populations. 
 
Overall, I find the manuscript well written and concise. However, some of the 
methods and motivation are still unclear to me, and due to this I have some 
major concerns with the methodology and results, as summarized and further 
detailed below. 
 
R1.1 

My main concern with this work is with the methods. Some of the results are 
not consistent with my experience with PLS (and SIMPLS). Based on looking 
at the code, it seems that the 'pc_scores' that are computed in 
'GenerateOrthogonalModes.m' are actually the prediction of Y and not the 
'scores' T. I believe this could be the reason why there are unusual results for 
the variance of the 10-component model plotted in Fig. 4, because the 
incorrect scores were used (the PCTVAR output of plsregress should be what 
is plotted).   
 
We have redefined the terminology to distinguish clearly between “shape 
components” (i.e. PCA shape components or PLS XLOADINGS returned by 
MATLAB’s plsregress function) and our “remodelling components” which we 
define to be the normalized vector in shape space calculated from the 
regression coefficients. Similarly we distinguish between “shape scores” (i.e. 
XSCORES returned by plsregress), response scores (YSCORES from 
plsregress), and our “remodelling scores” which we define to be the projection 
of the shapes onto the remodelling component. We have included an 
Appendix to clarify this formulation, using both PCA regression and PLS 
regression to illustrate the method. Using centered data X and response 
vector Y, we show that the normalized regression coefficients can be thought 
of as a vector in shape space (column space of X) such that the projection of 
the shape onto this vector best explains the response. We call this vector the 
“remodeling component” by analogy to PCA shape components, which are 
also vectors in shape space. The difference is that the remodelling component 
is more directly related to the response variable (i.e. clinical remodelling index 
in our application). In the appendix, we first derive PCA shape components 
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and PCA scores. We then show how PCA regression can be used to calculate 
remodelling components (by analogy to shape components) and remodelling 
scores (analogous to PCA scores). The remodelling components derived from 
PCA regression are linear combinations of the PCA shape components. Then 
we show how PLS regression can be used to calculate (different) remodelling 
components. Here the remodelling components are derived from both 
XLOADING and YLOADING in plsregress. For a given number of latent 
factors in PLS, and the same number of principal components in PCA, 
remodelling components derived from PLS regression always explain more of 
Y than remodelling components derived from PCA regression.  
 
The orthogonalization part of our algorithm can then be applied to either PCA 
or PLS remodelling components, by subtracting the projection of the shapes 
onto the remodelling component (giving a residual data matrix), in sequence. 
This procedure gives an orthogonal set of remodelling components, each 
related to their associated clinical indices, but forming an orthogonal basis for 
the shape space. By analogy to PCA shape components, these orthogonal 
remodelling components can be used as a shape decomposition, but unlike 
PCA shape components, the orthogonal remodelling components have clear 
clinical interpretation in terms of clinical remodelling indices.  
 
We have also changed the names of some variables in the code to be 
consistent with this terminology.  
 
For discussion on Figure 4 see point 1.31 below 
 
 
 
R1.2 

In addition, there is a strong emphasis placed on the computed latent 
variables being "de-correlated". In my experience, when one computes PLS 
for a given factor, the first component will maximise the covariance between X 
and Y, but not 100%, meaning that subsequent shapes will also have some 
correlation with other Y - e.g. EDVi score has -0.75 correlation with EF, so this 
shape does not seem 'de-correlating' at all (if I understand what the authors 
mean by 'de-correlating'. In fact, usually ~10 components still capture some 
correlation with Y. Removing the first component that was computed to 
maximise covariance with e.g. EDV will remove some amount of EDV-related 
shape, but not ALL of it, which is what seems to be implied from the phrasing 
used in the manuscript. Therefore, despite the fact that the model with 10 
latent variables yielded lower performance, it seems more "de-correlating" 
than the model with 1 latent variable, because the shape features related to 
the first variable have been more "completely" removed. However, my 
intuition is that removing the first 10 EDV-related shapes probably removes 
most of the variability of the shape from the population, since within those 
shapes there are some features that are also related to the other variables. 
So, I would think that a 1-component method is more suitable with this 
approach. 
 
We have revised the terminology to clarify that our orthogonalization method 



using one-factor PLS regression gives “less correlated” remodelling scores 
than using multi-factor PLS (new Tables 6 and 7). Also it leads to “less 
correlation” between the remodelling scores and their associated remodelling 
indices (Tables 2 and 3), and “zero correlation” between the scores and the 
indices associated with previously removed remodelling components. Initially, 
it was not obvious to us that a single latent factor would lead to less correlated 
remodelling scores, but we have tested this behavior in several datasets and 
it appears to be a fundamental result, due to the fact that one-factor PLS is 
closer to PCA. The deJong paper also mentions a result linking one-factor 
PLS with ridge regression (included in the Appendix). 
 
We have added a section in the motivation on why it is sometimes desirable 
to have less correlated remodelling scores, for example if the scores relate to 
underlying processes, then low correlation between scores implies that the 
processes have different effects within the population.   
 
R1.3 

Regarding the comparison of methods and results, I don't find a convincing 
improvement of using PLS as opposed to PCA, in terms of accuracy or 
prediction. I do, however, agree that for interpretability of the results there is 
added gain of using this method. Therefore, I believe the idea of using PLS is 
valid, but the motivation for using it needs to be shifted in the paper. 
 
Yes, it is the clinical interpretation of the components that is the main 
advantage of our method. We have now emphasized this in the Discussion. 
However, both PLS regression and PCA regression can be used to derive 
remodelling components. If sufficient principal components are used in PCA 
regression, and sufficient latent factors in PLS regression, they will give 
similar accuracy of prediction (and usually similar regression coefficients and 
therefore remodelling components). However this results in remodelling 
scores which are more highly correlated. In the logistic regression 
experiments, we show that one-factor PLS derived remodelling scores are as 
effective as PCA shape scores in characterizing remodelling in patients, but 
the advantage of the PLS remodelling components is the interpretation of 
each component corresponding with its clinical index.  
 
Detailed comments: 
Abstract: 
 
R1.4 

I am not convinced that a "novel method" is proposed, as stated in the 
abstract. Perhaps I have misunderstood the methods but they seem to be the 
same as previously proposed methods using the method described in [24] 
and applying to the data described and previously analysed in [13]. In my 
opinion, this work is the application of existing methods to a data-set and 
should be stated as such. 
 
 
The method described in [24] used a different method to derive remodelling 
components. For each clinical index, this previous paper defined a subset of 



cases outside two standard deviations of the mean, i.e. those that display very 
high and very low values of the clinical index. The remodelling mode was then 
derived from these cases, ignoring the majority of cases between two 
standard deviations of the mean. The problem with this method is that it relied 
on extremes of the distribution of the clinical index. This may lead to 
difficulties in the interpretation of the remodelling component. The novel 
contributions of the current paper are i) calculation of remodelling components 
directly from regression coefficients, ii) use of the entire distribution of the 
clinical index to formulate the remodelling component, and iii) reduction of 
correlation among resulting remodelling scores, using PLS regressions with a 
single latent factor. These points have been added to the motivation section. 
 
The dataset used in this work is available from the Cardiac Atlas Project, and 
has been used in a number of studies including [13] (now ref 12). This is the 
advantage of having widely-available datasets for algorithm development.  
 
 
 
R1.5 

What is meant by "a single PLS hidden variable"? I'm perhaps not familiar 
with this terminology, but is this referring to a single PLS latent variable or 
single PLS component? 
 
We have changed this to “latent factor” throughout. This refers to the number 
of components in the PLS decompositions, i.e. the NCOMP parameter of 
plsregress function for the Matlab version and plsr function for the R version. 
There are several names for this in the literature, e.g. latent component, latent 
factor, latent variable, and hidden variable, etc. We chose latent factor to 
distinguish these from shape components or remodelling components, etc. 
 
 
R1.6 

I also didn't exactly understand what is meant by a "decorrelation between 
scores".  Is this referring to the orthogonalisation of the scores or reduction in 
the correlation of scores? 
 
See R1.2 
 
 
Introduction: 

R1.7 

Is there a difference between "LV volume index" and "LV volume", or is this 
referring to indexed LV volume? (line 55). 
 
End-diastolic volume index (EDVI) is the EDV divided by body surface area, 
defined in the Data Description section on Clinical Remodelling Indices. 
 
 
R1.8 

It could be useful for the reader to define what is an orthogonal decomposition 



of shape (line 64). 
 
This is now defined in the Appendix. Also we have added more motivation of 
the usefulness of an orthogonal decomposition in the Background section, 
which includes the definition of orthogonality. 
 
 
R1.9 

Line 79 - I think it may be more correct to state that PCA components are not 
designed to be related to clinical factors (though this can be the case). Clinical 
interpretation is not so much difficult, as it is suboptimal (in fact it is easy using 
PCR). 
 
We have changed this to read: “However, PCA shape components are not 
designed to be related to any particular clinical remodelling index, and the 
clinical interpretation of PCA shape components is often difficult. Previous 
work showed that, LV PCA shape components did not have clear clinical 
interpretation beyond the first two [12]. This is a common problem with PCA 
shape components, since they are designed to efficiently characterize shape 
variation without regard to possible underlying mechanisms of disease 
processes.” 
 
 
R1.10 

Line 91 - as mentioned above, the term "PLS hidden variable" is unclear to 
me, could the authors clarify what exactly is meant by this (i.e. what is 
"hidden")? 
 
Changed to “latent factor”, see R1.5. 
 
 
R1.11 

Last sentence page 4 - is this to say that there is no possible relationship 
between a clinical index and a previous shape? This phrasing "complete 
decorrelation" seems a bit strong to me. 
 
See R1.2 
 
 
Methods: 
R1.12 

General question: I'm curious to know why the authors didn't use the PLS 
regression coefficients directly since that is what PLS was mainly developed 
for (e.g. following the tutorial in Matlab on PLSR and PCR). Can the authors 
mention why they chose logistic regression instead? Was a comparison 
performed? Did it improve the results? Would we expect a logistic relationship 
over a linear one? Please clarify. 
 
The logistic regression was used to evaluate the ability of the remodelling 
components to characterize shape changes due to myocardial infarction. PLS 



could be used for this task (and was used for this purpose by Lekadir et al in 
[28]). However we decided to use the more common logistic regression since 
it is the standard method used in many previous clinical research studies and 
is it simple to calculate relative strengths of associations using odds ratios. 
These comments have been added to the Characterization of myocardial 
infarction section. 
 
 
R1.13 

General comment: It would be useful to clarify for the reader (especially those 
not familiar with latent variable models), what the component, loading, and 
scores are (i.e. component = loading x score) 
 
These are explained in the Appendix. 
 
 
 
R1.14 

Line 103 - typo? should it be "heart failure or atrial fibrillation"? 
 
Thanks, fixed. 
 
 
R1.15 

Line 112 - presumably Simpson's rule was applied? A citation here for clarity 
would be useful. 
 
Actually numerical integration of the polygon formed by the surface points. 
Citation added. 
 
 
R1.16 

Line 154 - perhaps deflation could be defined here. Deflation is typically used 
in original PLS algorithms but not SIMPLS, thus it could be nice to 
differentiate between standard 'deflation' and the orthogonalisation process 
used here. 
 
We have avoided use of deflation in this context. We have used “residual data 
matrix” instead. 
 
 
R1.17 

 N_latent was described before being introduced (page 6). 

 I think the equation for maximising the covariance between T and U 
should be added here, and it should be mentioned that this constraint 
is what distinguishes PLS from, for example, PCA (i.e. this is how the 
shape modes are computed to maximise the variance in Y). 

 The formula for B should be provided. 

 Y_residuals is not defined. 



 
These concepts are now explained in the Appendix. The relationships 
between T, U and B are not easy to write in closed form and actually change 
with particular implementations of PLS, so we have simplified this section. 
 
 
R1.18 

Line 153 - "this step ensures orthogonality" with respect to what? 
Presumably with respect to B but this is not explicitly stated. 
 
This is now explained in the section next to equation 3. 
  
 
 
R1.19 

Line 162 - the term "PLS component" is introduced here to refer to the 
normalised regression coefficients B_i. Please consider another term to avoid 
confusion e.g. with 'component' as is used in PCA. 
 
See R1.1. 
 
 
 
R1.20 

Page 8 - why was 10 chosen as the upper limit for the number of latent 
variables? 
 
We have included a plot of the mean squared prediction error with a 10-fold 
cross validation (Figure 2). We have added the following to the “Number of 
latent factors” section: “Standard 10-fold cross-validation was performed to 
test estimation error for multi-factor PLS, showing that 10 latent factors 
accounted for most of the mean squared error in estimating Y (Figure 2).” 
 
 
R1.21 

Page 8 - The authors claim that there is no standard method to choose the 
number of latent variables. Cross-validation could typically be used for this, as 
mentioned in the Matlab tutorial for PLSR and PCR. For such an investigation 
it would be nice to compute and plot the leave-one-out or split-half errors for 
the number of latent variables = 1:299 (number of subjects - 1), and then just 
the optimal errors could be reported. 
 
See R1.20 
 
 
R1.22 

Line 172 - it could be useful to mention why X^k+1 is orthogonal to B^k. 
 
This has been made more explicit next to equation 3. 
 



 
R1.23 

Line 183 - details on the logistic regression technique and how this was 
performed could be added (stepwise forward logistic regression? SPSS?). 
 
This is described in the new section about Statistical Analysis. 
 
 
R1.24 

Line 186 - BMI and SBP should be defined here. 
 
Thanks. We have made an explicit definition of these terms, including in each 
table caption. 
 
 
R1.25 

Line 187 - it would be nice to mention why these were chosen as the baseline 
variables and why baseline variables were included. 
 
In the original paper, we used covariates commonly used in the literature as 
baseline variables in the logistic regression models. However, we have now 
rationalized the choice of baseline variables to those in Table 1 with 
significant differences between asymptomatic and MI groups. Smoking was 
also included since this is known to have a significant effect on the heart. The 
logistic regression experiments were updated accordingly.  
 
 
R1.26 

Line 188 - Why was a 6 component PCA model used? According to [13] this 
model only represents ~75% of the shape variance in the population. 
 
We used six PCA components in the logistic regression analysis because we 
only used six remodelling components. Incorporating more components is 
expected to give better results. However, these results show that with the 
same number of components, orthogonal remodelling components perform as 
well as PCA (and the original indices), but with the advantage that the 
remodelling components have clear clinical interpretation, while maintaining 
the property of orthogonality. 
 
 
R1.27 

Line 202 - is ESV used without indexing? If not, LVESVi should be used. If 
yes, why was EDV indexed and not ESV? 
 
We have deleted this, since ESV was not included in Table 1, or in the clinical 
remodelling indices. This is because ESVI can be inferred from EDVI and EF.  
 
Analyses 
R1.28 



Line 199 - Please add the statistical significance threshold (p < 0.05), or to 
avoid repetition, just state once at the beginning of this section that statistical 
significance was set at p<0.05. 
 
This has been included in the section about Statistical Analysis. 
 
 
R1.29 

For reproducibility purposes it could help the reader to mention which 
software (if any) was used to perform the statistical analyses 
 
This has been included in the sections on Implementation and Statistical 
Analysis. 
 
 
R1.30 

Line 222 - could the authors elaborate on this sentence, I didn't get what is 
meant by 'retaining correlation with the index', and why this would be a bad 
thing 
 
This sentence has been removed for to avoid confusion.  
 
 
R1.31 

Line 226 - I am very surprised to see that only 15% of the shape variance in 
the population was captured by 6 components from the N=10 model. Again, 
perhaps I have misunderstood, but my understanding based on the 
description of the methods is that the 10-component model should have 10-
components for EDV, 10 for sphericity, and so on, so there should actually be 
10 x 6 = 60 components for this model, and therefore I would expect a much 
larger amount of the variance to be captured in such a model. Could the 
authors clarify why this is not the case, or please correct me if I am wrong 
about the methods.  
 
Figure 4 in the previous manuscript version was calculated as the variance of 
the remodelling scores, divided by the total variance in the data matrix 
(trace(XTX)/(N-1)). This was done because we are using the regression 
coefficients as the remodelling component, not the PLS components 
themselves. This result follows from the fact that a single latent factor results 
in a remodelling component that is influenced by variance in X as well as Y. 
However this is peripheral result and, for clarity, we have removed this figure 
in the revised manuscript to avoid confusion with variance explained returned 
from PLS regression algorithm which can be either for predictor or response 
variables. 
 
 
R1.32 

Line 246 - presumably 'LR' stands for logistic regression? Could you add this 
to the text and figures 
 



We have removed the acronym for logistic regression for clarity. 
 
 
R1.33 

Line 246 - why was the median chosen? Please mention briefly here. 
 
Median shapes were estimated since this is more robust to outliers in general. 
However in this case mean shapes give similar results. 
 
 
R1.34 

Line 250 - how are the baseline variables adjusted? Does this significant 
change the shapes? (This question is more out of curiosity than actually 
needing clarification) 
 
This means that the baseline variables were included in the logistic regression 
models as covariates. LR models are often termed “adjusted” by these 
covariates.  
 
 
Discussion 

R1.35 

Line 266 - as mentioned previously, I would rather state that an orthogonal 
PLS framework was applied, without implying that there are new methods 
proposed in the present work. Again, if this is not the case, please clearly 
describe the contributions of the present work and distinguish how this 
method differs from other orthogonal PLS methods. 
 
See R1.4 for an explanation of the novel contributions of the paper.  
 
 
R1.36 

Line 273 - orthogonality was described here, but should also be mentioned at 
the beginning of the methods section. 
 
This is now defined in the second paragraph of the Background section. 
 
 
R1.37 

Line 274 - I got a bit lost here with the terminology, are the "PLS shape 
components" referring to loading x score or are you referring to the loading 
(which I guess is the case because PLS loadings are orthogonal)? And 
presumably "PLS shape component score" is referring just to the scores 
(which are not necessarily orthogonal for PLS)? Here there is also the 
mention of the term 'decorrelated', should that be 'orthogonal'? 
 
We have rationalized the terminology- see R1.1 and R1.2. 
 
 
 



R1.38 

Line 284 - there is again the use of 'decorrelation' and I just now think I 
understand what is meant by this. Perhaps "reduction/decrease in correlation" 
is clearer? 
 
See R1.2. 
 
 
R1.39 

Line 285 - I'm honestly very surprised to see "total decorrelation" (and again, I 
would suggest using "zero correlation" rather than "decorrelation") between 
the PLS scores and clinical indices. Indeed this suggests that the 1-
component model is able to remove any relationship with EDVi (for the 
second component), and so on. 
 
We have changed this to zero correlation as suggested. 
 
 
 
Results 

R1.40 

In all results (and tables, figures) it would be useful to clarify when 
experiments are including both populations and when it is MI only, sometimes 
I got confused by that. 
 
All experiments and Tables show results including all cases (both 
asymptomatic and MI patients), unless explicitly stated.  
 
 
R1.41 

I'm not sure how to interpret the results. Are the authors looking for the most 
predictive model? In that case I would expect to see a more thorough analysis 
of the number of latent variables (using cross-validation). 
 
The logistic regression experiments were performed to examine the ability of 
the orthogonal remodelling components to characterize shape changes 
between patients with MI and asymptomatic volunteers, compared with the 
same number of PCA components, or the original clinical indices themselves. 
The interpretation of the results is that orthogonal remodelling components 
are able to  characterize differences between groups with similar metrics to 
PCA or the original indices, but with the added advantage of having a clear 
clinical interpretation and maintaining orthogonality. We use the AIC etc as 
metrics of “goodness” in this context with respect to traditional PCA shape 
components. The question of how many latent factors is a separate issue, and 
we show that one-factor PLS remodelling components perform better than 
multi-factor PLS in the logistic regression experiments in all metrics (Table 9). 
We have also included a cross-validation to show that 10 factors is a 
reasonable choice for the multi-factor case, in terms of prediction of the 
response variables, but this is another issue again.    
 



 
R1.42 

Do the authors have some reasoning for why LS score was significant with 
the 1-component model and not the 10-component model, and vice versa for 
conicity? 
 
This was a typo, thanks. The results have changed somewhat with the revised 
logistic regression analyses (DBP was include as a covariate rather than 
SBP). The one-factor model shows different significant scores from the multi-
component model. We believe this is due to the increased multi-colinearity in 
the multi-factor model.  
 
 
Tables 

R1.43 

In all tables it would be useful to include the abbreviations 
 
We have included all abbreviations in all table captions. 
 
R1.44 

The tables are in general very content-heavy, and it's not easy to see what 
the take-home message is from each table. Some additional annotations or 
descriptions in the legend would help guide the reader to interpret these 
results. For example, the statistically significant components in Table 8 could 
be highlighted for easy readability, rather than using an asterix. 
 
Comments on the interpretation of results have been added to the Results 
text where the Tables are cited. We have used bold in Table 8 as suggested. 
 
 
R1.45 

Are Tables 2-7 showing results for the MI population only or are these 
combined results for both populations (please specify in the legends). 
 
Unless otherwise specified all Tables show results including all cases 
combined. This is now made explicit at the beginning of the Results section.  
 
 
R1.46 

In Table 8 it would be useful to include some descriptions of what are "good" 
values in terms of the coefficient, error, OR and CI. 
 
These have standard interpretation in the clinical literature, and depend on the 
units of measurement. In general, higher means more influence on the 
dependent variable. 
 
 
R1.47 

Table 9 is a nice summary of the results and easy to interpret. Line 195 could 



be repeated here to remind the reader what is preferred for each measure 
(e.g. >AIC = better) 
 
Done. 
 
 
R1.48 

Table 5 and 6 - it is not clear what is meant by 'PLS clinical mode scores' and 
how this is different from 'PLS component scores'. 
 
This has been rationalized, see R 1.1 
 
R1.49 

Table 7 should be moved to follow Tables 2,3 for easier readability. 
 
Table 7 has been shifted to become Table 4.  
 
 
Figures 

R1.50 

In all figures it would be helpful to include the abbreviations 
 
Done. 
 
R1.51 

Figure 1 is nice and clear. If possible, it could be useful to include on the left-
hand side an image depicting each measure or the formula for computing 
each measure, and on the right-hand side the corresponding modes at +1SD. 
X6 could be pointing downwards for consistency 
 
We thought this would clutter the figure and make it less readable. This 
information is repeated in Figure 3 and in the text. 
 
 
R1.52 

I don't find Figure 2 and Figure 3 very informative in the sense that I don't 
know what I should conclude from these images. Perhaps some annotation 
could help as guidance. It would be nice to have some interpretation and 
comparison of the modes in Figure 2 and 3 to the modes in Figure 14 of [13] 
in terms of highlighting for the reader regions of interest or interesting 
behavior that is visible from these modes (i.e. what should we, as readers, 
take from these Figures?) 
 
These figures visualize the remodelling components associated with the 
clinical indices. These visualizations are useful in understanding the effect of 
each component on shape. This explanation has been added to the text near 
first mention of the figures. Animations of these remodelling components from 
the smallest and to the highest percentiles can clearly visualize how these 
components are associated with the clinical indices. The animations for the 
single latent factor are shown interactively on the Cardiac Atlas Project 



website: http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-
modes/. We added this link to the figure caption. 
 
 
R1.53 

The labels on the x-axis of Fig. 4 are a bit misleading. I would rather put 'PC1' 
directly below the blue column, and EDVI PC below the red/green columns 
(since PC1 in PCA is not related to EDVI, or am I mistaken?). 
 
This figure has been removed. See R1.31.  
 
 
R1.54 

Figure 4 - I am very confused by these results, especially for the first 
component. To my understanding, in both the 1-component and 10-
component models, PLS was performed with the same X shape features and 
EDVI as the Y variable. There is no tuning of SIMPLS to force all of the 
variance to be in the N-components, therefore the variance of the first 
component should be equal, regardless of the number of components that 
was chosen. The number of chosen components changes the accuracy of the 
regression, but not the components themselves. Therefore, the variance of 
the first component should be much higher than what is reported for the 10-
component model. While there would be large differences in the subsequent 
components (because there is much fewer variance in the other components 
for the 10-component model because so much of the shape has already been 
removed from X^k), the first component should be identical to the 1-
component model (i.e. 50%). Please clarify why this is not the case. 
 
Hopefully, this it should now be clear that Fig 4 was plotting variance in 
remodelling scores. However, to avoid confusion, we have removed this 
Figure (see R1.31). 
 
 
R1.55 

Figure 5 - The improvement from baseline alone is clear (and expected) but I 
don't see a dramatic improvement based on the figures for the shape-based 
models and using clinical indices alone. Moreover, there isn't a clear 
improvement above PCA. Figure 5- could the authors add AUC (as reported 
on line 239) to the figure? 
 
The ROC curves are now in Figure 6. We have added the AUC values in the 
legend. We tested whether the AUC values of single and multi latent factor 
PLS models are significantly different from the PCA and clinical index models. 
The test showed that AUC of the single latent factor PLS model is significantly 
greater than using clinical indices alone, but not different to the PCA model. 
However, the multi latent factor PLS was significantly smaller than PCA, but it 
was not significantly different than clinical index model.  The interpretation of 
this Figure is that the single latent factor (M=1) orthogonal remodelling 
components give similar performance to PCA, but with the added advantage 
of clear clinical interpretation of the components. These observations have 

http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/
http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/


been added to the Discussion section. 
 
R1.56 

Figure 6 is interesting. Perhaps the author could consider adding some 
annotation to guide the reader about the shape differences (e.g. there seems 
to be less systolic contraction in the MI patients) and a summary of what to 
conclude in the legend (even a repetition of line 249 would be helpful here). 
 
Done. 
 
Tools: 
R1.57 

For the sake of this journal (being focused towards open-source tools),I would 
suggest that the authors use R  
(https://cran.r-project.org/web/packages/pls/index.html) instead of Mxatlab, to 
avoid the need for users to purchase a Matlab license. Using the plsregress 
function also requires a license for the Statistics and Machine Learning 
Toolbox. 
 
I am not familiar with Giga science, but based on the website it is stated that 
all research objects are published (data, software tools, and workflows). In 
order to reproduce the results from this study (or indeed to apply the methods 
to new data), the community would need to have access to the image 
processing tools that were used to extract the models. PCA (or similarly PLS) 
applied to data that has already been extracted and parameterised is 
straightforward using existing software (or indeed using built-in Matlab, 
python, or R functions).  While it is a useful resource to have access to the 
images and the models extracted from these images, the biggest challenge 
we face in the field is in creating the models to be able to perform the 
analysis. 
 
We have included code in R in the GitHub repository, which is linked from 
http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/ 
webpage.  
 
Code for creating the shape models is provided at 
http://www.cardiacatlas.org/tools/. This code is offered as is where is, and we 
have not been able to ensure that the dependencies are available.   
 
 
Novelty: 

R1.58 

As mentioned previously, to my knowledge this technique has already been 
described in [24] and there is inadequate referencing to previous techniques. 
Orthogonalisation using the Gram-Schmidt method has been discussed 
earlier, for example Izenman, A.J., 2008. Modern multivariate statistical 
techniques (Vol. 1). New York: Springer, page 570), and for PLS specifically: 
de Jong, S., Wise, B.M. and Ricker, N.L., 2001. Canonical partial least 
squares and continuum power regression. Journal of Chemometrics, 15(2), 
pp.85-100. Moreover, the Matlab code for canonical (i.e. orthogonal) SIMPLS 

https://cran.r-project.org/web/packages/pls/index.html
http://www.cardiacatlas.org/tools/lv-shape-orthogonal-clinical-modes/
http://www.cardiacatlas.org/tools/


is provided in this paper. 
 
See R1.4. The De Jong 2001 paper shows how to derive PLS regression from 
a canonical decomposition, which is not the same as the orthogonal 
remodelling components derived in our paper. 
 
Code: 
R1.59 

It isn't clear to me why the regression coefficients ('Beta') are normalised in 
'GenerateOrthogonalModes' and subsequently why the scores and loadings 
from the plsregress function are not used directly. Could the authors explicitly 
mention why this normalisation is important. 
 
See R1.2. Normalized regression coefficients (without the intercept) give rise 
to a unit vector in shape space which can be used as a component similar to 
shape components in PCA.  
 
R1.60 

As mentioned previously, from what I understand from the code, the 
'pc_scores' are computed as X*B (data matrix X times the regression 
coefficients). However, this is the model of Y, not the computation of the 
scores. The scores T would usually be computed by projecting X onto the 
loadings P. 
 
See R1.2. Remodelling scores can be used to calculate estimates of Y but are 
also scores associated with remodelling components. 
 
Reviewer #2:  
 

R2.1 

General: The strength of this paper is the novel mathematical process of 
making decoupled geometrical modes, while still correlating with clinical 
indices, and the main limitations is that the study is cross sectional and as 
such limited understanding can be gained on what really drives the 
remodeling. The paper is missing a limitation section where the lack of cross 
sectional data is highlighted and the need for such future research is 
discussed. 
 
We have included a Limitations section which includes the cross-sectional 
nature of the dataset, and applications to other datasets.  
 
R2.2 

Abstract: A novel method for deriving orthogonal shape components directly 
from any set of clinical indices. The word any is a strong word given the 
mathematical depth of the paper. For instance, the clinical indices need to be 
reasonably well uncorrelated for the operation to be meaningful and produce 
shape components that do correlate with the chosen clinical indices. 
 
We agree, although what constitutes “reasonably uncorrelated” is difficult to 
define and is beyond the scope of the current paper. This is likely to depend 



on the application and might be a matter of trial and error. We have chosen 
remodelling indices which are common and moderately independent (e.g. we 
did not include ESV since EDV and EF had larger variance). The abstract has 
been revised to read “We developed a novel method for deriving orthogonal 
remodelling components directly from any (moderately independent) set of 
clinical remodelling indices.” 
 
R2.3 

Abstract. Why is not infarct size one of the clinical indices? Likely, it must be 
stronger than for instance longitudinal shortening to determine remodeling? 
 
We did not include structural indices such as % infarct mass or infarct 
transmurality or age in this work, since we wanted to focus on geometric 
remodelling indices which have been well established in the clinical literature. 
These indices are also available from several imaging modalities such as 3D 
echo and CT. While more information is becoming available on the interesting 
effects of infarct size and transmurality, this requires explanation of specific 
methodological techniques and is left for future work. We have included these 
comments in the Limitations section. 
 
 
R2.4 

Page 3, Line 67. In this section you may lose some of the potential readers of 
the paper. I do understand and acknowledge that it greatly simplifies that any 
given metric tensor does not have off diagonal elements and is orthonormal 
ideally. However, is this really a practical limitation as in order to compute 
measures such as arc lengths and areas it simple to reconstruct the original 
shape of the patient and compute them directly in the Euclidean space? Well 
it is more computationally intensive, but it is more convenience rather than 
anything else? 
 
We have removed this sentence for simplicity. We have also included more 
motivation of the utility of orthogonal components (see R1.2; R3.5). 
 
R2.5 

Page 5, line 114. The definition of relative wall thickness is rather strange, I 
presume that this is the form where previous researchers got significant 
correlations for prognostics for this parameter, but it would be good to have 
some more rationale on why this rather bizarre formulation, and why not for 
instance absolute mean wall thickness in mm (or even minimal wall thickness 
from thinned after myocardial infarction etc). 
 
The echo community has used this definition for many years since it is easy to 
measure from an M-mode parasternal view. Many papers have used this as a 
prognostic measure, and to quantify concentric vs eccentric remodelling. All 
the remodelling indices in this paper were defined as ratios to correct for scale 
in some sense. We have included more rationale for the selection of clinical 
remodelling indices in the Data Description section. 
 
R2.6 



Page 6, line 119. Some more details would be good here. Is it the basal AV 
plane movement divided by the straight distance to apex or is it divided by the 
curve length? Central basal point is this the middle point of the mitral valve? 
 
This sentence has been modified to: “Longitudinal shortening was calculated 
as the difference of the distance between the centroid of the most basal ring 
of points to the most apical point at end-systole divided by the distance at 
end-diastole.” 
 
R2.7 

Page 7, Line 156. How was the next component to be removed from the 
shape space determined? Greatest variance in what respect? 
 
Remodelling components were removed in order of variance of the 
remodelling scores. This is a measure of the shape variance explained by 
each index. There could be several methods for determining the order of the 
indices, and this requires further research. This has been added to the 
Orthogonal Remodelling Components section and the Limitations section.  
 
R2.8 

Page 11, line 252. This paragraph is somewhat important as I understand it in 
terms of possible application of the technology. This section could perhaps be 
better explained and expanded as it deals with how the shape decomposition 
can be used to derive new knowledge. 
 
We have added the following to the Potential Implications section: “Although 
the remodelling components were generated from a largely asymptomatic 
population in this work, we showed how they describe the shape changes 
undergone in myocardial infarction relatively well. We also showed how the 
amount of each remodelling component could be quantified in association 
with the presence of clinical disease, highlighting significant contributions of 
ventricular size, sphericity and relative wall thickness. These methods enable 
new knowledge to be derived from medical imaging examinations on the 
underlying mechanisms driving the adaptation of the heart in response to 
disease.”  
 
R2.9 

Please when introducing new abbreviations such as LR help write them out in 
the text. Is it correct that LR in this context it is logistic regression? 
 
We have removed this abbreviation for clarity. 
 
R2.10 

Page 14, line 306. The concept of tracking patients over time with shape 
decompositions should be highlighted better as this is a rather new concept at 
least to clinicians and how then such changes can be better understood given 
orthogonal bases. Please expand somewhat if possible. 
 
We have added the following to the Potential implications section: “The 
resulting remodelling scores can be used to track the progression of 



remodelling over time, against reference populations. This would enable 
automatic computation of z-scores giving precise information on how the 
patient’s heart compares against the reference population (in this case the 
MESA cohort).” 
 
R2.11 

Page 14, potential implications. Myocardial infarction is a rather broad 
category in terms of location, and transmurality of the infarct. Furthermore, 
nowhere throughout the paper it is discussed other causes of remodeling 
such as valvular disease. As I understood from the description of the normals 
they did not have valvular disease, but it is rather likely that the infarct patients 
had such comorbidities. 
 
We have added the following to the Limitations section: “While more 
information is becoming available on the interesting effects of infarct size and 
transmurality, this is left for future work. Also, many patients have 
comorbidities such as valvular disease, which was not examined in the 
current study.” 

 
R2.12 

Page 21. Table 1. What is the "old" of the myocardial infarction, i.e how long 
was it between myocardial infarction and imaging. This may be highly 
important since that if all are fresh infarctions (< months), then rather little 
remodeling may have occurred such as limited wall thinning in the infarcted 
area etc. It is very acute then you have myocardial edema etc as well. 
 
Most patients had stable long term myocardial infarction (none of the patients 
were acute). We have added this to the Patient Data section.  
 
R2.13 

Page 22, Table 2, it is maybe worth commenting on in the text that LS and 
RWT achieves rather low correlations compared to their clinical indices. This 
is even visible in Figure 2, where the 90th percentile of LS does not really 
show much influence on longitudinal shortening. In fact, as I understand it as 
the correlation is about 0.5, then this shape mode do only explain 25% 
(0.5*0.5=0.25) of longitudinal shortening is this correct? How meaningful are 
really correlations below say 0.7(=> 50% explaining power)? 
 
Yes, the Pearson correlation coefficients can be low and still be significant 
due to the large numbers of cases. The question of clinical meaning is an 
open area of research. Treatments that give a small improvement in 
remodelling may lead to large cost savings. 
 
R2.14 

Page 25, Table 8. What is meant with the baseline model? I find the baseline 
model poorly described in the paper, please provide more details. 
 
For clarity these have been changed to “baseline variables” throughout. In the 
original paper, we used covariates commonly used in the literature as 
baseline variables in the logistic regression models. However, we have now 



rationalized the choice of baseline variables to those in Table 1 with 
significant differences between asymptomatic and MI groups. Smoking was 
also included since this has a significant effect on the heart. The logistic 
regression experiments were updated accordingly. The baseline variables are 
listed in the Characterization of Myocardial Infarction section. These are age, 
sex, body mass index, diastolic blood pressure, smoking status and diabetes 
history. 
 
 
R2.15 

Figure 1. Is the order of the indices a design choice or is it based on data? 
Please expand the legend. See also comment 6. 
 
The order of the indices is important, and we chose the order of the amount of 
shape variance explained by each remodelling component. This was 
calculated from the variance of the remodelling scores.  See R2.7 
 
R2.16 

Is it not strange that given the order EDVI, Sphericity, EF, RWT, Conicity, LS 
index that the correlations in Table 2 are not dropping in that order, or is this 
not necessary and rather reflects underlying correlation (or lack thereof) of the 
clinical indices. If possible, please expand on this. 
 
We believe that the interdependence between clinical indices is a determinant 
of the decreasing diagonal correlations in Table 2. Thus, RWT and LS are 
related to indices previously removed by the orthogonalization process (RWT 
is related to EDVI and sphericity, LS is related to EF). They generally 
decrease with more components, but they don’t need to be monotonic. This 
has been added to the Results section.  
 
R2.17 

Figure 4, is it possible to choice grayscale or colors that works when printed 
on a grey scale printer. 
 
This figure has been removed, since it was secondary to the main message of 
the paper (see R1.31). 
 
R2.18 

Figure 5, the legend does not describe what is really tested (the 
decompositions) power to tell if a given patient has in infarction or not? 
Correct? What is here meant with baseline? 
 
The ROC curves (now shown in Figure 6) measure the ability of the logistic 
regression model to characterize presence of disease, based on the 
remodelling components and the baseline variables. Significance tests have 
now been added. The baseline variables were included because they were 
different between cohorts and may act as covariates. This is now explained in 
the Characterization of myocardial infarction section. 
 
R2.19 



What is the stability of the suggest method? You used the SIMPLS algorithm 
as implemented by Mathworks, would this change with another algorithm? Are 
there fundamental differences in possible solutions? Either perform some 
experiments or discuss this theoretically. 
 
We implemented the computations in R and compared the remodelling 
components obtained with SIMPLS with kernel, wide kernel and classical 
orthogonal scores algorithms, and the results were very similar in the 
regression coefficients obtained. 
 
R2.20 

The other factor that would influence the choice of subject population. Here 
you have 300 infarct patients and some 2000 "normals". Would you get to the 
same decomposition if you used another set of infarct patients and normal as 
well as another ratio between normals and patients? This could be tested by 
taking a sub-population of the input data and perform the computations and 
compare how these two decompositions coincide in some suitable measure. 
This would significantly strengthen the paper as the paper describes a rather 
generic approach to shape decompositions. 
 
We ran a series of experiments with 300 patients and 300 asymptomatic 
volunteers, with 50 random samples (trials). The root mean squared errors 
(RMSE) between the resulting remodelling components and those found 
using all cases (expressed as an angle in degrees calculated from the dot 
product between the vectors) are shown in Figure 5a. Although the first 
remodelling component is similar, increasing differences can be seen in the 
other components. This was expected since the characteristics of the cases 
included in the training set have an influence on the results. We also looked at 
the remodelling components generated from the asymptomatic cases alone, 
increasing the size in the sample from 100 to 1900 (50 trials each). The 
RMSE with respect to the full 1991 asymptomatic dataset are shown in Figure 
5b. This graph shows that we need about 1100 cases to get below 10 
degrees in all components. The choice of training data depends on the 
application. In this paper we used all the available data to generate the 
remodelling components, since we were primarily interested in the proof of 
concept. In future work a balanced dataset of more than 1000 cases in each 
group would be ideal. This would enable calculation of the differences 
between “asymptomatic remodelling” and “symptomatic remodelling”, which 
would be of considerable interest in terms of physiological driving factors. 
These results and comments have been added to the Results and Discussion 
sections. 
 
  



Reviewer #3: This paper presents an approach to extract new shape indices 
from asymptomatic and infarcted ventricles such that they are orthogonal and 
have high prediction capability. The paper is well written and can be of 
interest to the statistical cardiac modeling community. 
 
Comments/Questions: 
 
R3.1 

PLS has already been used for myocardial infarction classification by Lekadir 
et al. in STACOM 2015. The authors should cite this paper and describe the 
differences between the two works. 
 
We have added the following to the Discussion: “Previous studies have also 
used PLS to derive information on cardiac remodelling [28]. Lekadir et al [28] 
used PLS to characterize myocardial infarction using class labels as the 
response variable and the data matrix as the predictor variables. They found 
that running the regression with a range of latent factors and combining the 
estimations with a median operator could obtain better performance. In the 
current paper, logistic regression was used (instead of PLS in [28]) with the 
class labels as the response variable, because this is a commonly used 
clinical tool to examine associations with disease, and it is simple to calculate 
relative effects of the components on the response variable as odds ratios. 
The current paper also differs from [28] in the use of PLS to derive orthogonal 
remodelling components and the finding that a single latent factor reduces 
correlations in the resulting remodelling scores.” 
 
 
R3.2 

What is the difference between calculating the PLS indices based on the 
clinical indices (EDVI, sphericity, etc) instead of directly using the class labels 
(asymptomatic vs. Infarcted) as in Lekadir et al. STACOM 2015? The authors 
should compare the extracted PLS scores through the two methods and see if 
there are indeed differences. 
 
See 3.1. The focus of the current paper was to derive orthogonal remodelling 
components based on clinical remodelling indices. We found PLS to be useful 
in this goal. For the examination of relative effects of these remodelling 
components on the presence of disease we preferred to use the more 
common logistic regression analysis. 
 
R3.3 

The authors used an imbalance dataset to train the PLS models (300 
abnormal vs. about 2000 healthy cases), which may affect the significance of 
the new shape indices. It would be good to verify if data imbalance affects or 
not the extraction of the new shape indices. I suggest that the authors run the 
same experiments with the 300 infarcted cases and 300 randomly selected 
asymptomatic cases and compare the results. 
 
See R2.20. The choice of training data depends on the application. In this 
paper we used all the available data to generate the remodelling components. 



We have included experiments showing that different components are 
generated using different training data.  
 
R3.4 

It would have been interesting to have a method that finds automatically the 
best order in the calculation of the PLS score, may be using some statistical 
criteria, instead of the ad hoc order used in the manuscript (i.e. EDVI, 
sphericity, EF, etc). What happens if you start with wall thickness for example, 
which is more directly linked to myocardial infarction? 
 
Yes, this would be a useful area of future research. We have included this in 
the Limitations section.  
 
R3.5 

What is the clinical meaning of the extracted PLS indices? How can they be 
used by clinicians? Can you show some figures illustrating the variation 
induced by these indices and their clinical meaning? How do these indices 
describe better remodeling or infarction than standard clinical indices? 
 
We have included more motivation in the Background section and also 
expanded the Potential implications section. The main advantage of the 
remodelling scores generated by the proposed method is that they have clear 
clinical interpretation with respect to their corresponding clinical indices, as 
well as being an orthogonal decomposition of shape space. 


