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fig. S1. Evaluating the Kolmogorov-Smirnov test on differentially scaled survival curves 

using simulated data. A. By keeping the scaling parameter 𝑟 at 0.0372 corresponding to the 

wild-type distribution (table S3), five sample survival curves (representing sample outcomes 

obtained after applying the AFT model) are shown. The curves were obtained by running the 

Weibull survival function at five different 𝛼 values around the value corresponding to the wild-

type distribution (table S3). Changes in 𝛼 cause the simulated populations to deviate from the 

baseline population corresponding to the population obtained by using the best-fitting Weibull 

parameters for the wild-type population (table S3). B. Distribution of KS p-values across 24 

different 𝛼 values swept between 1.5 and 5.5. The Weibull 𝑟 parameter was fixed at 0.0372. 

Sets of death times containing 1500 samples were drawn from a Weibull distribution. Each 

population was compared to the baseline across replicate trials with a calculation of the KS p-

value to estimate the likelihood that observed differences occurred by chance. All p-values 

larger than 0.3 were cropped at 0.3. C. Power of the KS-test with simulated data for population 

sizes varying between 50 and 6776 cells. The Weibull 𝑟 is set at 0.0372. The plot indicates the 

minimum population size required to detect a given effect size (a difference in the Weibull 𝛼 to 

the reference population) at a statistical power of 0.8 (a false-negative rate of 0.2) and 

significance level (false-positive rate) of 0.0018. This number (0.0018 = 0.05/28) corresponds to 

the significance level of 0.05 for the family of 28 pairwise comparisons between the 8 strains 

using Bonferroni’s correction method for multiple hypothesis testing. The pink (blue) area 

indicates effect and population size combinations that yield a false-negative rate greater (less) 

than 0.2. D. Same as in panel (C), but for false-negative rates of 0.5, 0.2, 0.05, or 0.01. 
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fig. S2. Parameter sweeps. A-C. Parameter values were systematically sampled from large 

ranges and sum of squared errors (SSE) were examined. SSEs were calculated by summing 

the squared differences (along the survival curve) between each experimental S/S0 value and 

the theoretical one obtained from each two-parameter function (gamma (A), Gompertz (B), 

Weibull (C)) when a pair of parameter values were fed to it. One global minimum value was 

seen in each plot (dense blue region) and each of the three fits shown in figure S2 converged to 

their respective minimum value displayed in A-C here. N=200 wild type cells formed the 

experimental survival curve used in the SSE calculations. 
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fig. S3. Fit performance comparisons between one- and two-parameter Weibull survival 

functions. A-H. Experimental cell survival data (black dots) from eight different strains were 

fitted with one or two-parameter Weibull survival functions (red or blue lines, respectively) using 

the least-squares fitting approach. N=200 cells were analyzed from each strain. Strain names 

are indicated on each panel (w.t.: wild-type; : gene deletion). For one-parameter Weibull 

survival function fit, 𝛼 was set to 3.28, corresponding to the value of 𝛼 extracted from the two-

parameter Weibull survival function fit using N=200 wild type cells.  
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fig. S4. Predictive capacity characterization for the one-parameter Weibull survival 

function on 200 wild-type cells. The wild type cell survival curve (black) was split into nine 

portions covering from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. 

Each portion was separately used in the fitting process and the best-fitting value of the scaling 

parameter 𝑟 was fed into the one-parameter Weibull survival function to predict the entire cell 

survival distribution (blue). The insets show the SSE values (sum of squared errors between 

black points and blue curve) obtained after using each portion (red) of the data. The SSE values 

approximately flat line starting at 30% of the data used. N=200 wild type cells. For one-

parameter Weibull survival function fits, 𝛼 was set to 3.28, corresponding to the value of 𝛼 

extracted from the two-parameter Weibull survival function fit using N=200 wild type cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5
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fig. S5. Predictive capacity characterization for the one-parameter Weibull survival 

function on 1000 wild-type cells. The wild type cell survival curve (black) was split into nine 

portions covering from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. 

Each portion was separately used in the fitting process and the best-fitting value of the scaling 

parameter 𝑟 was fed into the one-parameter Weibull survival function to predict the entire cell 

survival distribution (blue). The insets show the SSE values (sum of squared errors between 

black points and blue curve) obtained after using each portion (red) of the data. The SSE values 

approximately flat line starting at 30% of the data used. N=1000 wild type cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S6   (sir2Δ)

A B C

D E F

G H I



 

fig. S6. Predictive capacity characterization for the one-parameter Weibull survival 

function on sir2Δ. The sir2 cell survival curve (black) was split into nine portions covering 

from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7   (rif1Δ)
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fig. S7. Predictive capacity characterization for the one-parameter Weibull survival 

function on rif1Δ. The rif1 cell survival curve (black) was split into nine portions covering from 

10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S8    (tvp15Δ) 
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fig. S8. Predictive capacity characterization for the one-parameter Weibull survival 

function on tvp15Δ. The tvp15 cell survival curve (black) was split into nine portions covering 

from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S9   (gpa2Δ)
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fig. S9. Predictive capacity characterization for the one-parameter Weibull survival 

function on gpa2Δ. The gpa2 cell survival curve (black) was split into nine portions covering 

from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S10   (tor1Δ)
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fig. S10. Predictive capacity characterization for the one-parameter Weibull survival 

function on tor1Δ. The tor1 cell survival curve (black) was split into nine portions covering 

from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S11   (fob1Δ)
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fig. S11. Predictive capacity characterization for the one-parameter Weibull survival 

function on fob1Δ. The fob1 cell survival curve (black) was split into nine portions covering 

from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 
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fig. S12. Predictive capacity characterization for the one-parameter Weibull survival 

function on sgf73Δ. The sgf73 cell survival curve (black) was split into nine portions covering 

from 10% (A) to 90% (I) of the cell survival data as indicated by the red lines. Each portion was 

separately used in the fitting process and the resulting best-fitting parameter values were used 

to predict the entire cell survival distribution (blue). N=200 cells. 

 

 

 

 

 

 

  

  



 

II. SUPPLEMENTARY TABLES 

 

Strain rif1∆ tvp15∆ w.t. gpa2∆ tor1∆ fob1∆ sgf73∆ 

sir2∆ 0.105 0.120 0.120 0.110 0.100 0.115 0.145 

rif1∆ NA 0.160 0.105 0.070 0.070 0.125 0.155 

tvp15∆ NA NA 0.110 0.155 0.105 0.080 0.080 

w.t. NA NA NA 0.135 0.100 0.095 0.135 

gpa2∆ NA NA NA NA 0.080 0.125 0.160 

tor1∆ NA NA NA NA NA 0.120 0.140 

fob1∆ NA NA NA NA NA NA 0.080 

table S1. Results from the Kolmogorov-Smirnov statistic sup|Si − Sj|, where sup is the supremum 

(maximum) function. 

 

 

 
 

Strain rif1∆ tvp15∆ w.t. gpa2∆ tor1∆ fob1∆ sgf73∆ 

sir2∆ 0.220 0.112 0.112 0.178 0.270 0.142 0.030 

rif1∆ NA 0.012 0.220 0.711 0.711 0.088 0.016 

tvp15∆ NA NA 0.178 0.016 0.220 0.544 0.544 

w.t. NA NA NA 0.052 0.270 0.327 0.052 

gpa2∆ NA NA NA NA 0.544 0.088 0.012 

tor1∆ NA NA NA NA NA 0.112 0.040 

fob1∆ NA NA NA NA NA NA 0.544 

table S2. P values computed using ks.test function of R. 

 

 

 

 
 α r SSE R-square 

Gompertz 0.0037 0.132 0.0213 0.9969 

Gamma 8.52 0.348 0.0276 0.9960 

Weibull 3.28 0.0372 0.0078 0.9989 

table S3. Fit results from the use of the two-parameter Gompertz, γ, and Weibull survival 

functions. 100% of the cell viability data was used in the fit. N=200 wild-type cells. 

  

 



 

Strain α r SSE R-square 

sir2∆ 3.31 0.0627 0.0127 0.9974 

rif1∆ 3.64 0.0571 0.0035 0.9993 

tvp15∆ 2.82 0.0455 0.0062 0.9987 

w.t. 3.28 0.0372 0.0078 0.9989 

gpa2∆ 3.75 0.0315 0.0039 0.9996 

tor1∆ 3.26 0.0296 0.0093 0.9991 

fob1∆ 2.91 0.0273 0.0120 0.9988 

sgf73∆ 2.78 0.0261 0.0089 0.9988 

table S4. Fit performance of the two-parameter Weibull survival function. 100% of the cell viability 

data was used in the fit. N=200 cells. 

 

Strain r SSE R-square 

rif1∆ 0.0627 0.0128 0.9973 

tvp15∆ 0.0569 0.0103 0.9980 

sir2∆ 0.0457 0.0261 0.9947 

w.t. 0.0372 0.0078 0.9989 

sgf73∆ 0.0313 0.0249 0.9973 

tor1∆ 0.0296 0.0094 0.9991 

gpa2∆ 0.0274 0.0338 0.9965 

fob1∆ 0.0262 0.0501 0.9931 

table S5. Fit performance of the one-parameter Weibull survival function (α is fixed at 3.28). 100% 

of the cell viability data was used in the fit. N=200 cells. 

 

% viability r SSE R-square 

10% 0.0381 0.0179 0.9975 

20% 0.0378 0.0118 0.9983 

30% 0.0374 0.0081 0.9989 

40% 0.0374 0.0085 0.9988 

50% 0.0376 0.0095 0.9987 

60% 0.0371 0.0080 0.9989 

70% 0.0370 0.0086 0.9988 

80% 0.0371 0.0083 0.9988 

90% 0.0373 0.0078 0.9989 

table S6. Fit and prediction results from the use of the one-parameter Weibull survival function. 

The indicated % of the cell viability data was used in the fit, which resulted in the specific r values shown. 

Then, the entire survival curve was predicted using each specific r value in the one-parameter Weibull 

survival function (𝛼 is fixed at 3.28), and the SSE and R-square values were calculated based on the full 

survival curve predicted. N=200 wild type cells. 



 

% viability r SSE R-square 

10% 0.0375 0.0243 0.9974 

20% 0.0368 0.0066 0.9993 

30% 0.0364 0.0028 0.9997 

40% 0.0364 0.0028 0.9997 

50% 0.0363 0.0027 0.9997 

60% 0.0363 0.0027 0.9997 

70% 0.0363 0.0027 0.9997 

80% 0.0364 0.0028 0.9997 

90% 0.0364 0.0028 0.9997 

table S7. Fit and prediction results from the use of the one-parameter Weibull survival function. 

The indicated % of the cell viability data was used in the fit, which resulted in the specific r values shown. 

Then, the entire survival curve was predicted using each specific r value in the one-parameter Weibull 

survival function (𝛼 is fixed at 3.28), and the SSE and R-square values were calculated based on the full 

survival curve predicted. N=1000 wild type cells. 

 

 

 

 

Strain Genotype 

AL001 MATa, his3Δ, leu2Δ, ura3Δ, lys2Δ 

sir2∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, sir2∆ 

rif1∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, rif1∆ 

tvp15∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, tvp15∆ 

sgf73∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, sgf73∆ 

tor1∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, tor1∆ 

gpa2∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, gpa2∆ 

fob1∆ MATa, his3Δ, leu2Δ, ura3Δ, met15∆, fob1∆ 

table S8. Yeast strains used in this study. All S. cerevisiae strains used have the BY genetic 

background. The strain AL001 has the wild type background. 

 

  



 

Supplementary Materials and Methods 

 

Accelerated Failure Time (AFT) Model 

The mathematical form 𝑆1(𝑔) = 𝑆2(𝜆
−1𝑔) indicating the invariance of a survival function with 

respect to the variable of generations is known as an Accelerated Failure Time (AFT) model. 

The generational variable 𝑔 of the first distribution 𝑆1 corresponding to the genetic background 1 

can be linearly transformed into the value 𝜆−1𝑔 of the second distribution 𝑆2 corresponding to 

the genetic background 2. An AFT regression model with a single categorical covariate can be 

formulated as 
  

𝑙𝑜𝑔 𝑔𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 
 

where 𝑔𝑖 is the lifespan of cell 𝑖; 𝑥𝑖 is a vector encoding the value of an explanatory categorical 

variable 𝑋 for cell 𝑖; 𝛽 is the parameter vector to be estimated; 𝜀𝑖 is a residual representing the 

logarithm of the lifespan of cell 𝑖 unexplained by the covariate. The relation to the scale factor 𝜆 

is given by 𝜆 = exp⁡(𝛽𝑥𝑖). The AFT model is applied here to link genetic interventions in aging to 

their quantitative impact on replicative lifespan. When the AFT model provides a fit across 

multiple lifespan distributions, then the interventions leading to the lifespan distributions result in 

generational scaling. The presence of generational scaling suggests that the genetic 

interventions change the lifespan by changing the timescale of a key aging process that 

determines the risk of cell death. In addition to the accelerated failure time model, a second 

formalism (proportional hazards) also exists. However, if the cell survival statistics follow a 

Weibull distribution (which is the case for the replicative aging of yeast cells, as shown in this 

study), the two formalisms are mathematically equivalent. We estimated the parameters from 

the AFT model by performing regression analysis using MATLAB. Each time the AFT regression 

was run, the intercept determining the reference replicative lifespan (in relation to which the 

parameter vector 𝛽 was scaled) was set at 3.09 which was computed based on the data from 

200 wild type cells. 

 

Quantifying generational scaling 

We quantified deviations from generational scaling by applying a Kolmogorov-Smirnov (KS) test 

(3, 18) to the residuals of the AFT regression model. The KS test tested whether the AFT 

residuals came from the same distribution, which would correspond to that all statistical 

differences between two sets of lifespan data could indeed be accounted for by a scale factor, 

leading to the conclusion that the two distributions were related by generational scaling. The KS 

test also served as a distance metric between two survival curves. 



 

 

fig. S13. Quantifying deviations from perfect scaling. a. Sample survival curves for two yeast strains 

before applying the Accelerated Failure Time (AFT) model. b. After the AFT model has been applied 

using the red survival curve (a) as the reference, maximum difference (arrow) between the two resulting 

scaled curves is quantified using KS test to evaluate deviation from perfect scaling.  

 

Using the survival data for a pair of survival curves 𝑆1(𝑔) and 𝑆2(𝑔) to be compared for a 

potential scale invariance, we first fit the two data sets to the AFT regression model, extract the 

parameter vector 𝛽, and obtain the scaled versions of the two curves. We next quantify the 

difference between the two scaled curves 
 

𝐹1,2(𝑔) = 𝑆1(𝑔) − 𝑆2(𝑔) 
 

and calculate the KS statistic 𝐷1,2 by taking the maximum value of 𝐹1,2(𝑔) 
 

𝐷1,2 = sup |𝐹1,2(𝑔)| 
 

𝐷1,2 is used to calculate a p-value related to the null hypothesis which, after the AFT scaling, 

affirms generational scaling. Obtained using the ks.test package of R, a low p-value would 

suggest a significant deviation from perfect scaling between the two scaled survival curves 

being compared. For significance determination, we performed 28 pairwise comparisons 

between the 8 strains. All p-values resulting from the application of the KS test were higher than 

0.0018 (table S2). This pairwise p-value threshold of 0.0018 (=0.05/28) corresponds to the 

significance level of 0.05 for the family of 28 pairwise comparisons using Bonferroni’s correction 

method for multiple hypothesis testing. The 𝐷1,2 values calculated were also low across the 

board (table S1) indicating the closeness between any two scaled survival curves.  

To evaluate the sensitivity of the KS test after the application of the AFT model, we compared 

sets of simulated replicative lifespan distributions (fig. S1), each of which was obtained by using 

a specific value of the Weibull 𝛼 parameter. Using populations of 1000 cells, the KS test statistic 

reliably identified changes in the Weibull 𝛼 parameter of ~1.  



 

To assess the statistical power of the test, we generated sets of simulated lifespans as for figure 

S1B, but varied the population size between 50 and 6776 cells (fig. S1C). The Weibull 𝛼 

parameter was varied between 0.33 and 8.13. Populations corresponding to each parameter set 

were compared to a baseline population of equal size with a Weibull 𝛼 value equal to 3.28 which 

was chosen based on the Weibull 𝛼 value observed from the wild type yeast replicative lifespan 

distribution. The p-value from each comparison was collected across 1000 replicates. For each 

set of replicates and each population size, the fraction of insignificant p-values (≥ 0.0018) was 

then calculated to estimate the power of the KS test at each population size. figure S1D shows 

the 𝛼 values that can be detected at given population sizes with a given false negative rate. The 

false negative rates we included in the analysis ranged from 0.01 (1% of all true deviations from 

survival curve shape are missed) to 0.5 (half of all true deviations from survival curve shape are 

missed). Substantial increases in population size were required to achieve relatively higher 

statistical power. 

 

Parametric description of cell survival distributions 

To find out a functional form that can mathematically describe the experimental survival 

dynamics, we tested three probability distributions (gamma, Gompertz and Weibull) that have 

been historically (13-16) used to describe morbidity statistics of living systems. These 

distributions, each defined by two parameters, are described by the following survival functions  
 

Gamma (𝑟, 𝛼):        
𝑆

𝑆0
=

𝑟𝛼

Γ(𝛼)
∫ 𝑡𝛼−1𝑒−𝑟𝑡𝑑𝑡
∞

𝑔
   

Gompertz (𝑟, 𝛼):     
𝑆

𝑆0
= 𝑒

𝛼

𝑟
⁡(1−𝑒𝑟𝑔)

   

Weibull (𝑟, 𝛼):         
𝑆

𝑆0
= 𝑒−(𝑟𝑔)

𝛼
       

 

In these equations, 𝑔 describes the dimensionless replicative age of a cell (𝑔 = 𝐺/𝐺0, where 𝐺 

is the actual replicative age of a cell and 𝐺0 is the scaling constant which has the fixed value of 

1 generation), 𝑆 is the number of cells that are alive at generation 𝐺, and 𝑆0 is the initial number 

of cells to be followed during their aging process. Here we experimentally and computationally 

analyze the generation-specific cell survival values (𝑆/𝑆0).  

Using the survival models described above, we performed three separate least-squares fits 

between each model and the experimental survival profile of the wild type yeast cells (Fig. 1D). 

The choices for the initial values of the two parameters were made based on values used in 

literature (13). The reliability of the fits was further confirmed by systematically sampling 

different values of the two parameters from large ranges (fig. S2). The two-parameter Weibull 

distribution emerged as the distribution providing the best fit to the data (Fig. 3, table S3). 

Another layer of support for identifying the Weibull distribution as a precise parametric form to 

use to describe the experimental survival dynamics of yeast cells comes from a comparative 



 

inspection of the forms of the two-parameter gamma, Gompertz, and Weibull survival functions. 

In order for a function to fulfill the experimentally observed generational scalability requirement, 

the parameter next to the generational variable 𝑔 should always occur next to the variable 𝑔 

whenever it is present in the functional form. The parameter 𝑟 of the two-parameter Weibull 

survival function satisfies this requirement while the forms of the gamma and Gompertz survival 

functions do not. 

We next wanted to see how the one-parameter version of the Weibull survival function (with 𝑟 

being the only parameter) would perform in comparison to its two-parameter version. For this, 

we fixed the value of 𝛼 to 3.28 which corresponds to the value obtained from fitting the wild type 

survival data to the two-parameter Weibull survival function (table S3). Then, using custom-

written MATLAB scripts for least-squares fitting and generating fit statistics, we performed 

separate fits between: (i) the two-parameter Weibull survival function and the survival 

distribution of each of the 8 strains including the wild type (table S4), and (ii) the one-parameter 

Weibull survival function and the survival distribution of each of the 8 strains including the wild 

type (table S5). The cost function was obtained by summing the squared differences between 

the function-produced cell survival values and the experimentally-obtained ones and it was 

minimized (separately for each strain) by using the fit parameter(s). Supplementary Tables S4-

S5 provide the best-fitting parameter values as well as other fit statistics. As can be seen from 

the resulting parameter values, the strain-specific values of the scaling parameter 𝑟 were very 

similar between the two-parameter and one-parameter Weibull fitting, validating fixing the value 

of 𝛼 at 3.28. This analysis shows that the one-parameter Weibull survival function 

𝑆 𝑆0⁄ = 𝑒−(𝑟𝑔)
3.28

 can be used as a scalable precise parametric form to describe the 

experimental survival dynamics of yeast cells. 

 

IV. Investigation of stochastic models describing aging at the microscopic level  

In this section, we evaluate multiple specific stochastic processes that are often used (3, 19) to 

study aging at microscopic level: semi-infinite random walk, drift-diffusion process with drift 

heterogeneity, and Strehler-Mildvan model with vitality drift-diffusion. Importantly, the survival 

functions corresponding to these models satisfy the scalability requirement (3). We tested the 

suitability of these models for describing our data by exploring a wide range of parameter space 

for each individual model and then by comparing the simulated survival curves to the one we 

obtained experimentally from the wild type yeast cells.  

 

i. Semi-infinite random walk 

A stochastic variable X(t) continuous in time t is used to track the aging of a single cell 

microscopically. Before the random walk process starts, the variable is assigned a random 

discrete state i: X(0) = i, with i = 0, 1, 2… The random walker then moves 1 step upward or 

downward depending on the governing rate constants β+ and β-. Whenever the random walker 

reaches the boundary at 0, the process stops and the random walker is considered dead. The 



 

elapsed time is then recorded as the replicative lifespan of the simulated cell. The 

corresponding survival function S(t) is given (3) by  

  𝑆(𝑡) ⁡= ⁡1 − 𝑖 (
𝛽−

𝛽+
)

𝑖

2
∫

1

𝜏
exp⁡(−(𝛽− + 𝛽+)𝜏)𝐼𝑖(2√𝛽

−𝛽+𝜏)⁡𝑑𝜏,
𝑡

0
  (1) 

 

where 𝐼𝑖(x) is the modified Bessel function (of the first kind) of order⁡𝑖.      

 

ii. Drift-diffusion process with drift heterogeneity 

In this case, the stochastic variable X(t) moves in continuous state space following a drift-

diffusion process with initial state c 

 

    𝑋(𝑡) = ⁡𝑐 − µ𝑡 + ⁡𝜎𝑊(𝑡)    (2) 

 

where µ and σ2 represent the drift and diffusion coefficients respectively. Drift µ is constrained to 

have a positive value here to reflect the fact that the vitality state has a general decreasing 

trend. W(t) denotes a Wiener process, with W(0) = 0. The Wiener process has independent 

increments, W(t+u)-W(t) is independent of W(s) for all s ≤ t and u ≥ 0. The increments are 

normally distributed, W(t+u)-W(t)~N(0,u). Lastly, the Wiener process is continuous in time. To 

introduce more flexibility, we allow the drift coefficient to have heterogeneity and to be chosen 

from a normal distribution with mean µ𝑚𝑒𝑎𝑛and standard deviation µ𝑠𝑑. For this drift-diffusion 

process with drift heterogeneity and initial condition X(0) = c, its corresponding survival function 

S(t) is given (3) by  

𝑆(𝑡) = ⁡𝜙 (
𝑐−⁡𝜇𝑚𝑒𝑎𝑛𝑡

√𝑡(𝜎2+𝑡µ𝑠𝑑
2 )

) − 𝜙(−
𝑐𝜎2+𝑡⁡𝜇𝑚𝑒𝑎𝑛𝜎

2+2𝑐𝑡µ𝑠𝑑
2 ⁡

𝜎2√𝑡(𝜎2+𝑡µ𝑠𝑑
2 )

) × 𝑒𝑥𝑝 (−
𝜎4(𝑐−𝜇𝑚𝑒𝑎𝑛𝑡)

2+(𝑐𝜎2+⁡𝑡⁡𝜇𝑚𝑒𝑎𝑛𝜎
2+2𝑐𝑡µ𝑠𝑑

2 )
2
⁡

𝑡𝜎4(𝜎2+𝑡µ𝑠𝑑
2 )

)

 (3) 

where ϕ(𝑥) is the CDF of the standard normal distribution, ϕ(𝑥) = ⁡
1

√2𝜋
∫ exp (−

𝑡2

2
) 𝑑𝑡

𝑥

−∞
. Since ⁡𝜇𝑚𝑒𝑎𝑛, 𝜎, 

𝜇𝑠𝑑 can be scaled proportionally to the magnitude of 𝑐 keeping 𝑆(𝑡) the same, the value of the initial 

condition parameter 𝑐 has been fixed to be 1.  

 

iii. Strehler-Mildvan model with vitality drift-diffusion 

The Strehler-Mildvan model separates the aging process into two parts. The first part 

corresponds to the linear loss of vitality, represented by the decaying process of the above 

stochastic variable X(t). The second part mimics age-independent internal or external 

challenges. If the magnitude of the challenge exceeds the value of the state variable variable 

X(t), the cell is considered dead. 

In this exploration, the loss of vitality process is assumed to follow the standard drift-diffusion 

process, Eq. [2], without introducing drift heterogeneity. The waiting/arrival time 𝜏 of the age 



 

independent challenge follows exponential distribution with p(𝜏) = 𝛾 exp(−𝛾𝜏) and P(𝜏 ≥ 𝑡) =

exp(−𝛾𝑡) , 𝑡 ≥ 0. The magnitude of a challenge 𝑚 also follows an exponential distribution with  

p(𝑚) = ν⁡exp(−ν𝑚) and P(𝑚 ≥ 𝑀) = exp(−ν𝑀).  

The survival function 𝑆𝐿(𝑡) for the drift-diffusion based loss of vitality part of the Strehler-Mildvan 

model is given (3) by 

 

   𝑆𝐿(𝑡) = ⁡𝜙 (
𝑐−⁡µ𝑡

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝑐µ

𝜎2
)𝜙 (−

𝑐+µ𝑡⁡

𝜎√𝑡
)   (4) 

 

On the other hand, the survival function 𝑆𝑐(𝑡) for the age-independent challenge arrival part of 

the Strehler-Mildvan model can be derived from the corresponding hazard function h(t) using 

 

𝑆𝑐(𝑡) = exp (−∫ h(𝜏)𝑑𝜏
𝑡

0
) (5) 

 

The hazard function is given by 

    h(t) = ⁡𝛾 ∫
P(𝑚≥𝑥|𝑋(𝑡)=𝑥)𝑝(𝑋(𝑡)=𝑥)

𝑆𝐿(𝑡)
𝑑𝑥

∞

0
   (6) 

 

Here, the hazard function is the product of the challenge arrival rate 𝛾 and the probability that 

the challenge kills (represented by the integral). The term inside the integral consists of two 

parts. The first part P(𝑚 ≥ 𝑥|𝑋(𝑡) = 𝑥) = exp⁡(−ν𝑥) denotes the probability that the arrived 

challenge is greater than the vitality state value 𝑥; while the second part 
𝑝(𝑋(𝑡)=𝑥)

𝑆𝐿(𝑡)
 represents the 

conditional probability that a cell is alive at time t and its vitality state has a positive value 𝑥. The 

probability density for a drift-diffusion process, which started at location 𝑐 at t = 0 and is at 

location 𝑥 > 0 at time t, is given (3) by 

 

𝑝(𝑋(𝑡) = 𝑥) = ⁡
1

𝜎√2𝜋𝑡
{𝑒𝑥𝑝 (−

(𝑥−𝑐+µ𝑡)2

2𝜎2𝑡
) − 𝑒𝑥𝑝 (−

2𝑐µ⁡

𝜎2
) 𝑒𝑥𝑝 (−

(𝑥+𝑐+µ𝑡)2

2𝜎2𝑡
) ⁡}  (7) 

 

Substituting Eq. [7] and Eq. [4] into Eq. [6], the hazard function for the age-independent 

challenge arrival part of the Strehler-Mildvan model can then be expressed in terms of 

cumulative standard normal distribution as follows 

 

h(t) = ⁡⁡𝛾 ∫
P(𝑚 ≥ 𝑥|𝑋(𝑡) = 𝑥)𝑝(𝑋(𝑡) = 𝑥)

𝑆𝐿(𝑡)
𝑑𝑥

⁡

∞

0

 

= 𝛾 [𝑒𝑥𝑝 (
1

2
ν(−2𝑐 + 2𝜇𝑡 + 𝜇𝜎2𝑡))

× {𝜙 (
𝑐 −⁡(𝜇 + ν𝜎2)𝑡

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝑐(𝜇 + ν𝜎2)

𝜎2
)𝜙 (−

𝑐 +⁡(𝜇 + ν𝜎2)𝑡

𝜎√𝑡
)}] 



 

 

/ [𝜙 (
𝑐−⁡µ𝑡

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝑐µ

𝜎2
)𝜙 (−

𝑐+µ𝑡⁡

𝜎√𝑡
)]⁡  (8) 

 

As a result, the overall survival function 𝑆(𝑡) of the Strehler-Mildvan model is given by 
 

𝑆(𝑡) = 𝑆𝐿(𝑡)⁡𝑆𝑐(𝑡) = [𝜙 (
𝑐−⁡µ𝑡

𝜎√𝑡
) − 𝑒𝑥𝑝 (

2𝑐µ

𝜎2
)𝜙 (−

𝑐+µ𝑡⁡

𝜎√𝑡
)] ⁡exp (−∫ h(𝜏)𝑑𝜏

𝑡

0
) = [𝜙 (

𝑐−⁡µ𝑡

𝜎√𝑡
) −

𝑒𝑥𝑝 (
2𝑐µ

𝜎2
)𝜙 (−

𝑐+µ𝑡⁡

𝜎√𝑡
)] ⁡exp (−∫ ⁡𝛾 [𝑒𝑥𝑝 (

1

2
ν(−2𝑐 + 2𝜇𝜏 + 𝜇𝜎2𝜏)) × {𝜙 (

𝑐−⁡(𝜇+ν𝜎2)𝜏

𝜎√𝜏
) −

𝑡

0

𝑒𝑥𝑝 (
2𝑐(𝜇+ν𝜎2)

𝜎2
)𝜙 (−

𝑐+⁡(𝜇+ν𝜎2)𝜏

𝜎√𝜏
)}] / [𝜙 (

𝑐−⁡𝜇𝜏

𝜎√𝜏
) − 𝑒𝑥𝑝 (

2𝑐𝜇

𝜎2
)𝜙 (−

𝑐+⁡𝜇𝜏

𝜎√𝜏
)] 𝑑𝜏) (9) 

 

Since ⁡µ, 𝜎, ν−1 can be scaled proportionally to the magnitude of 𝑐 (keeping 𝑆(𝑡) to be the 

same), the value of the initial condition parameter 𝑐 has been fixed to be 1. 

 

Exponentially-distributed challenge arrival process: 

To investigate whether the second module (internal/external challenges) of the Strehler-Mildvan 

model could be the sole driver of the aging process, we decoupled the Strehler-Mildvan model 

with drift-diffusion into two modules: (1) the linear loss of vitality and (2) age-independent 

internal or external challenges. The linear loss of vitality by itself has been separately studied in 

section ii above. In this section, we focus on the second module.  

Here, the death event is considered to be only caused by internal/external challenges, with the 

assumption that there is no linear loss of vitality. Therefore, the vitality state variable X(t) is fixed 

at state 1 all the time until death occurs (as in the sample trajectory of a cell in the inset of fig. 

S15). Similar to the formulations given in section iii above, the waiting/arrival time 𝜏 of the age 

independent challenge follows an exponential distribution with p(𝜏) = 𝛾 exp(−𝛾𝜏) and P(𝜏 ≥ 𝑡) =

exp(−𝛾𝑡) , 𝑡 ≥ 0. The magnitude of a challenge m also follows an exponential distribution with 

p(𝑚) = ν⁡exp(−ν𝑚) and P(𝑚 ≥ 𝑀) = exp(−ν𝑀). With X(t) = 1, the hazard function and its 

corresponding survival function 𝑆(𝑡) take the following forms 

 

h(t) = γ𝑃(𝑚 ≥ 𝑋(𝑡)) = 𝛾 exp(−ν𝑋(𝑡)) = ⁡𝛾 exp(−ν)  (10) 

 

𝑆(𝑡) = exp (−∫ h(𝜏)𝑑𝜏
𝑡

0
) = exp (−∫ ⁡𝛾 exp(−ν) 𝑑𝜏

𝑡

0
) = exp(−𝛾 exp(−ν) 𝑡) (11) 

 

Performance comparisons among the different stochastic models 

To investigate which of the above microscopic processes can lead to the survival dynamics 

measured from the wild type yeast cells, separately for each process we randomly sampled 

parameters from wide ranges (table S9), fed these parameters into the survival function 



 

describing each process, and compared the simulated survival curves to the one obtained 

experimentally from the analysis of 1000 mother cells of the wild-type background.  

 

 

Semi-infinite      

random walk 

Random Walk 

 

Lower 

bound 

bound 

Upper 

bound 

Bound 

Scale of 

range 

Initial parameter 

values for fitting 

 

Fitted parameter 

values 

 
I 5 30 linear 10 10 

𝛽− 0.05 2 linear 0.4306 0.4288 

𝛽+ 0.01 𝛽− − 0.01 linear 0.0346 0.0319 
Drift-diffusion with drift 

heterogeneity 

 

     

µmean 0.005 0.1 linear 0.0418 0.0418 

σ 0.05 0.15 linear 0.0705 0.0707 

µsd 0.00001 0.01 log 0.0001 0.0001 

Strehler-Mildvan with 

vitality drift-diffusion 
     

µ 0.001 0.06 log 0.0313 0.0291 

0.09690.0969 
σ 0.01 0.2 linear 0.0464 0.0422 

𝛾 0.05 10 log 0.1950 0.2942 

ν 1 20 linear 4.7391 5.0132 

 
Exponential    

challenge arrival 
     

 

 

𝛾 0.01 10 log 0.0525 0.0526 

ν 0.1 20 log 0.3658 0.3677 
 

table S9. For each microscopic process, parameter ranges used during the sampling process and 

the fitted parameter values. Parameter values corresponding to the smallest SSE (against the wild-type 

survival data) were used as the initial values for the fitting performed by calling MATLAB’s fminsearch 

function. 

 

 

The difference between the simulation results and the experimental data was quantified by 

calculating the sum of squared errors (SSE). For each microscopic process, we explored a wide 

range of parameter space (table S9), randomly sampled 200000 parameter sets, generated the 

corresponding survival curves using the analytical equations described in section IV (i-iii) above, 

and quantified the differences with the experimental survival curve. The parameter values 

corresponding to the least SSE after the sampling process (table S9, fig. S14) were then used 

as the initial values to input into MATLAB’s fminsearch function for the final fitting. 

Using the best-fitting parameter values, survival curves for the different microscopic processes 

were plotted against the experimentally-obtained survival data (Fig. 4 of main text; fig. S15 of 

this section). The Strehler-Mildvan model with vitality drift-diffusion displayed the highest degree 



 

of similarity (the smallest SSE of 0.0032) to the experimental survival curve. Neither the 

deterministic vitality decay modeled by drift-diffusion process (Fig. 4B) nor the exponential 

challenge arrival process alone (fig. S15) could describe the yeast aging process well.  

 

 

 

 

fig. S14. Simulation results for the Strehler-Mildvan model with vitality drift diffusion. a-d. By 

randomly sampling N=200000 parameter sets from the ranges described in table S9, survival distributions 

were simulated and then the SSE values were calculated against the experimental wild type survival data 

obtained from tracking 1000 yeast cells. Distributions of µ, σ, 𝛾, 𝜐 corresponding to low deviations 

(0<SSE<0.1) from the wild type survival data are shown here, leading to N=1186 parameter values 

plotted in each histogram above. Red dashed lines indicate the parameter values corresponding to the 

smallest SSE.  

 

 

                           



 

 

fig. S15. Performance of the exponential challenge arrival process. N = 200000 parameter sets were 

sampled from the parameter ranges described in table S9 and fed into the analytical survival function (Eq. 

[7]). For each parameter set, the SSE between the simulated survival curve and the experimental survival 

curve (obtained from the tracking of 1000 wild type cells) was computed. The parameter sets 

corresponding to the smallest SSE values were then used as initial values for the final optimization 

process using MATLAB’s fminsearch function. The red curve was generated by using the optimized/fitted 

parameter values in the analytical survival function. The experimental survival curve is denoted by the 

blue dots. The inset shows a schematic trajectory reflecting the nature of the microscopic process.  

 

Since the different stochastic models we tested had different number of parameters, we further 

applied quantitative tests on the models to see if the Strehler-Mildvan model was indeed the 

best-performing model. For this goal, we applied the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) to the survival data obtained from 1000 wild-type cells. AIC 

and BIC are similar criteria for model selection among a finite set of models. The model with the 

lowest AIC or BIC value is preferred. AIC/BIC offers a relative estimate of information lost when 

a given model is used to represent the process that generates the data. It deals with the trade-

off between the goodness of fit of the model and the complexity of the model. 

For each stochastic model we tested, the “fitted parameter values” shown in table S9 were used 

to compute the corresponding log-likelihood values for each model first. These log-likelihood 

values together with the corresponding number of parameters involved (ranging from 2 to 4 for 

the different stochastic models) and the number of observations (1000 for each model due to 

using survival data from 1000 wild-type cells for the fitting process) were then entered into 

MATLAB’s aicbic function to compute the corresponding AIC and BIC values for each stochastic 

model. As shown in figure S16 below, the Strehler-Mildvan model produced the lowest AIC and 

BIC values, confirming its best-performing status among the different stochastic models tested 

even when parameter number differences were taken into account. 



 

 

fig. S16. Results from the application of AIC and BIC tests on the stochastic models tested. The 

Strehler-Mildvan model produced the lowest AIC and BIC values, confirming its best-performing status 

among the different stochastic models we tested. 

 

We next studied the effect of the parameters used in the Strehler-Mildvan model in addressing 

the survival dynamics differences between short- and long-living yeast strains. For this 

characterization, we picked the sir2∆ and fob1∆ strains. To predict the Strehler-Mildvan 

parameters for sir2∆ and fob1∆, we applied scaling (µ, σ2, 𝛾, each multiplied by 𝜆-1) to the best-

fitting parameter values obtained from the wild-type strain. The scaling factor 𝜆 for sir2∆ and 

fob1∆ was found to be 0.5883 and 1.316 respectively after applying the AFT model to the 

experimental survival curves of each of these strains together with the wild-type curve. The 

specific values of the predicted Strehler-Mildvan parameters after applying scaling for sir2∆ and 

fob1∆ are provided in table S10. The corresponding survival curves obtained by inputting the 

predicted parameter values in the Strehler-Mildvan function are shown in fig. S17a. We saw a 

high degree of similarity between the predicted survival curves and the experimental curves 

measured from sir2∆ and fob1∆, validating the scaled values of the Strehler-Mildvan parameters 

across these strains (table S10). The relatively higher values of the µ, σ, 𝛾 parameters in the 

sir2∆ background indicate that, compared to the wild-type background, there is higher levels of 

drift and diffusion in the sir2∆ background, together with increased frequency for the age-

independent random challenge. The opposite holds for the fob1∆ background.  



 

To see if scaling all three of these parameters were needed for predicting the cell survival 

distributions for sir2∆ and fob1∆, we scaled only two of the three parameters while keeping the 

third one to be identical to the value corresponding to the fitted wild-type (fig. S17b-d). We saw 

that scaling only two of the three parameters (𝜇 and 𝛾) was sufficient for a reasonably good 

match to the experimental survival curves. The diffusion parameter σ, despite having a similar 

magnitude as the drift parameter 𝜇, does not play an important role in contributing to the 

differential nature of the aging process among these strains. This suggests that the noise 

associated with the gradual vitality decay process does not play an important role in affecting 

the replicative lifespan distribution of yeast cells. In this analysis, the value of ν was fixed at the 

fitted value of 5.0132 (table S10), as generational scaling does not apply to this parameter. 

 

 

 

Strehler-Mildvan with 

vitality drift-diffusion 

w.t. (fitted) sir2∆ (predicted) fob1∆ (predicted) 

µ 0.0291 

0.09690.0969 

0.0495 0.0221 

σ 0.0422 0.0550 0.0368 

𝛾 0.2942 0.5001 0.2236 

ν 5.0132 

5.0d 

132 

 

5.0132 5.0132 
 

table S10. Predicted parameter values for sir2Δ and fob1Δ strains, obtained after applying scaling. 

Generational scaling (µ, σ2, 𝛾, each multiplied by 𝜆-1) was applied to the fitted parameter values of the 

wild-type strain (N=1000 cells) to obtain the corresponding parameter sets for sir2∆ and fob1∆. The 

scaling factor 𝜆 for sir2∆ and fob1∆ were 0.5883 and 1.316 respectively, obtained after applying the AFT 

model. 

                



 

 

fig. S17. Sensitivity characterization for the Strehler-Mildvan model parameters. The solid dots 

represent the experimental cell survival data obtained from the wild-type (black, N=1000), sir2∆ (orange, 

N=200), and fob1∆ (blue, N=200) strains. The black solid curve is the survival curve generated using the 

fitted parameter values for the wild-type strain (table S10). a. Based on the fitted parameter values for the 

wild-type strain (table S10), generational scaling was applied to compute the predicted parameter values 

for the sir2∆ and fob1∆ strains (table S10). The predicted survival curves for sir2∆ and fob1∆ are shown in 

solid orange and solid blue, respectively. b. µ was fixed at the same value as the wild-type strain while 

generational scaling was applied to predict σ and⁡𝛾. The predicted survival curves for sir2∆ and fob1∆ are 

shown in solid orange and solid blue, respectively. c. σ was fixed at the same value as the wild-type 

strain while generational scaling was applied to predict µ and 𝛾. The predicted survival curves for sir2∆ 

and fob1∆ are shown in solid orange and solid blue, respectively. d. 𝛾 was fixed at the same value as the 

wild-type strain while generational scaling was applied to predict µ and σ. The predicted survival curves 

for sir2∆ and fob1∆ are shown in solid orange and solid blue, respectively. In all panels, the value of ν 

was fixed at the fitted value of 5.0132 as generational scaling does not apply to this parameter. 

 

 

  



 

 

fig. S18. The generation-dependent dynamics of the aging or viability state X. Using the strain-

specific parameter values displayed in table S10, 10000 stochastic simulations of the Strehler-Mildvan 

model were ran for each strain. The single cell simulation results for X were aligned based on the death 

event at generation 0 and then averaged at each time point prior to death. The small deviations from 

smoothness at the left of each line is an indication of relatively low cell numbers (due to lifespan 

variations in each population) included in the averaging process. The threshold cell number used was 100 

(at least 100 cells were included for each averaging).  

 

 

 
 

fig. S19. Numerical connection between the Strehler-Mildvan and Weibull survival functions. 

Colored dots show the data while the solid lines indicate the fit (green and red lines on black dots) or 

simulation results (green and red lines on orange and blue dots). As described above, for temporal 

scaling to occur for the Strehler-Mildvan function, the parameters µ, σ2, and 𝛾 need to be multiplied by 𝜆-1. 

On the other hand, for temporal scaling to occur for the Weibull survival function, the parameter r needs 



 

to be multiplied by 𝜆-1. These suggest the existence of a link between the two functions in terms of µ, σ2, 

𝛾’s collectively playing the same role as the parameter r. This figure provides a numerical demonstration 

of that link. Starting from the parameter values fitted to the data obtained from 1000 WT cells, µ, σ2, 𝛾 of 

the Strehler-Mildvan function and r of the Weibull survival function were rescaled using the same 𝜆 

corresponding to either the sir2Δ (0.5883) or the fob1Δ strain (1.316). The resulting curves from the two 

functions matched well with each other for both cases. The parameter values used in this analysis for the 

Strehler-Mildvan function are listed in table S10. For the Weibull survival function, the value of parameter 

α is fixed at 3.28, while the value (0.0363) of the parameter r representing the WT cells was obtained from 

fitting the one-parameter Weibull survival function to the data obtained from the 1000 WT cells’ survival 

curve (black dots). Then, we rescaled the value (0.0363) of the parameter r using the 𝜆 values (0.5883 

and 1.316) corresponding to sir2Δ and fob1Δ strains, respectively. The scaled parameter values were 

entered into the Weibull survival function to obtain the green lines on the orange and blue dots shown in 

this figure. 
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