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1. DISCONTINUOUS TRANSITIONS IN THE LEADING EIGENSPACE OF i

Discontinuous changes in the leading eigenspace of i(a) are a major concern when deter-
mining an optimal « value since they have a large effect on the clustering results. They can be
studied algebraically by expressing L(c) in terms of the eigenvectors of L, L, and X X This
approach is motivated by Brand (2006).

Let L. L, = VAV and P be the orthogonal basis of the column space of (I — VVT)X X7,
the component of X X7 orthogonal to V. Let X X7 = VAVT and X; = 5\3/2%, so XXT =
X XT . Then, L can be written as follows.

L=L,L,+aXxX"
=L, L. +aXXT

=V P [é PT(IKT;ZVT)X} [1(} O?I] [Xi—i vV XT(1 —OVVT)P} v P

_ (v Pl A+aVTXXTV VTXXT(1-VvVT)P v P’
- aPT(I —VVTXXTV aPT(I-VVHXXT(I-VVTP
—[vP]s[vP"

— (v PV )n(vT v e
Note that

(A +aVIXXTV)j; = Nidij +a Y (VI X)) (X[V))
k
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2 N. BINKIEWICZ, J. T. VOGELSTEIN AND K. ROHE
and
PI(I - vVDXXTV = {PT(1 - VVT)X}(X]V))is).

Hence, for any j such that X ZT V; = 0, for all 7, the jth row and column of S will be zero except
for the diagonal element. This means that U; will not be rotated by V'’ and will be an eigenvector
of L for all values of cv. The eigenvalue \; will not change either, but its position relative to the
other eigenvalues will change with . The change in the relative position of A; will result in a
discontinuous transition in the leading eigenspace of Lifj> K.

For any ¢ such that X TV = 0 for all 3, V; is a column in P by construction. Row ¢ in the
lower left block of S is

VI = VvV XX V)i = [0, A2,0, . JI(XF Vi)

~100,...,1,0,. ]dlag(A1/2 .A1/2>[(XTV)U]
—0,...,0],

and, since .S is symmetric, this is also column ¢ in the upper right block of S. The lower right
block of S has row ¢, and by symmetry column ¢, given by

VII-vvDHXXT1-vvhp =/ (XXT - XXTvvT)p
= \VIP
=10,..., X,0,...].

Thus, for any ¢ such that X ZT V; = 0, for all j the ith row and column of S will be zero except for
the diagonal element. This means that V; and ); will be an eigenvector and eigenvalue of L for
all values of «, but will occupy different relative positions in the eigendecomposition based on
the value of a. The change in the relative position of \; will result in a discontinuous transition
in the leading eigenspace of Lifi> K.

Knowing the interval on which such discontinuous transitions are possible can reduce the
computational burden of choosing an optimal a. The values of « for which transitions occur
can be identified as points at which the eigengap equals zero, Mg (L) — Ag11(L) = 0. First,
consider the lowest possible value of o for which such a transition can occur, o = argmin,, {c :
Ak (L) — Mg11(L) = 0}. Note that Mg (L) > A\ (L,L), where the equality holds when Vi
is orthogonal to X and « is sufficiently small, and Ag41(L) < Ag41(LrLy) + ar (X XT),
where the equality holds when Vi1 is identical to V1. Hence, the earliest possible transition
occurs when

A (LrLr) = {Ak11(LrLy) + amin A (X XT)} = 0,

P Ak (LrL7) = Ax41(LrLr)

For the highest value of « for which such a transition is possible, consider o L. Following the
above argument for a~! with X X7 and L, L, interchanged, a symmetric result is obtained with
the additional dependence on the number of covariates, R. This result yields,
o _ )\1 (LTLT)
T ARX X)L ey + AR (XXT) = A (1l (XXT) I ok

Therefore, discontinuous transitions in the leading eigenspace of f/(a) can only occur in the
interval [min, max]-



Within cluster sum of squares

Mis—clustering rate

Covariate-Assisted Spectral Clustering 3

2. EMPIRICAL RESULTS FOR CHOOSING «

Figure 1 presents some empirical details to demonstrate how the within cluster sum of squares
and the mis-clustering rate vary with the tuning parameter «. The simulations shown in the figure
use the same model structure described in §4 of the paper. The results show the minimum of the
within cluster sum of squares falls within the prescribed range of «, [amin, max]. Furthermore,
the minimum of the within cluster sum of squares tends to align with the minimum of the mis-
clustering rate. Similar results were observed for other parameter settings.

(a) Clustering results for g = 0.015 (b) Clustering results for g = 0.02
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(c) Clustering results for g = 0.025
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Fig. 1. The results of assortative covariate-assisted spectral clustering for a range of « values. The solid line in bottom graphs
indicates the o value chosen by the optimization procedure and the dased lines indicate the interval [min, @max]. The fixed

parameters are N = 1500, p = 0.03, m1 = 0.8, and mo = 0.2.

3. PROOF OF LEMMA 1

This proof follows the approach used in Rohe et al. (2011) to establish the equivalence be-
tween block membership and a subset of the population eigenvectors. Note that £ = (D +
I)V2ZBZT(D + 1) \ZBZT(D + 71)7'/? 4+ aE(XXT). Define ¢; = 3, var(X;|Z; =
1), a diagonal matrix C such that C’u = ¢y, and a diagonal matrix C' such that CZ = Z C.

If we let Dp=diag(BZ71, +7), then £ = Z{D,/*BZT(D +I)"'ZBD;"” +
aMM7T}ZT 4+ aC. Recall that B is symmetric and full rank by assumption. Let B =
D, *BZT(D + 1)~ ZBD""* + aM MY, which is positive definite for all @ > 0. Assume
« is chosen such that B is full rank, which is true for all o with the possible exception of a set
of values of measure zero. Let P = Z7 Z and note that det(BP) = det(B) det(P) > 0. Hence,
BP + oC is symmetric and has real eigenvalues. By spectral decomposition, let

BP + aC = puAuT.
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4 N. BINKIEWICZ, J. T. VOGELSTEIN AND K. ROHE
Then,

LZpn=(ZBZT + aC)Zu

(ZBZTZ + aCZ)p
(Z(BP) + aZC)u
ZuA.

Therefore, Z i is the matrix of K eigenvectors of L, but not necessarily the top K. Also,
det(p) > 0 so u~! exists and Z;pu = Zjp < Z; = Z;. This establishes the equivalence be-
tween block membership and a subset of the population eigenvectors. A condition will now be
derived for which this equivalence holds for the top K population eigenvectors. Let  be a nor-
malized eigenvector orthogonal to the span of Z . Because p has orthogonal columns, it is full
rank. As such, z7'Z = 0.

Define ¢ = S2X ¢/ K, C = &I, and 5 = max; |¢; — ¢, then

2T Le = 2T (ZBZT + a0)z
= az’Cx
=az’(C+ (C - O))x
= azlelz + azx (C - C)x
=ac+ax? (C - C)x
<ac+allC-C|
= a(¢+ ).

The kth eigenvalue of BP + aC'is given by

Ak (BP + aC) = Hnr|1|i]r11 T (BP + oC)x

=minz! [(BP + o@l) + (aC — o@l))z
> minz! (BP + aél)z 4+ aminz? (C — &)z
= minz” BPz + o — amaxz” (eI — C)x
> A\g(BP) + aé — amax|c, — ¢
u
= A\ (BP) + a(C — ).
Hence, a positive eigengap exists between the eigenvectors in Zy and x if

0 < Ag(BP + aC) —maxz? (ZBZT + aC)zx
x
< Ak (BP) + a(C — ») — a(C + »)
= \g (BP) — 2as.
Assume (i) A (BP) > 2, then the top K eigenvectors of £ are given by Z i, where Z; =

Zjp <= Z; = Z;. Hence, there is an equivalence between block membership and the top K
population eigenvectors.
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4. PROOF OF THEOREM 1

41,

Triangle inequality bound

The spectral norm of the difference between the sample and population covariate-assisted
Laplacians is bounded by first applying the triangle inequality and bounding the resulting terms

individually.

IL =L < [lax X"
+ ||D;1/2AD;1AD;1/2 o

E(aXpX]).

laXp XT — E(aXp XP)|| = of| Xp X} — XX

Next, find a bound on the spectral norm of the variance of a X X7 . Let X, i

+|D;?AD; AD Y - Df

— E(aXx X" (1)
D-YV2ADZ ADS V| 2)
V2AD-tAD2. 3)

4-2.  Bound for Equation (1)

For equation (1), use the matrix Bernstein inequality (Tropp, 2012). Note that a X X7 =
Yo aX kX,F;F, where X, is the kth column of X. Now bound the spectral norm of a.X kaT —

— diag(X” — X2)]|

< a(||Xe X7 || + | XX | + max |42 — x2))
<a(NJ*+NJ*+ J?)
< 3aNJ?

=6S.

(@)

be the 7th moment

of X}. Note that vector products are element-wise where dictated by vector dimensions.

B(X,XT) =l — diag(x2 — &%),
B XD EXXT) ={ 0.7 — diag(x2 — )
=X X 0,40 — A& diag(

— diag(X? —

E(Xp XF X XF) =FE

HAXT — diag(A2 — x)}
X - 27)

20 + ding{(AF — XP)?)

=(S- )l — xR - D)

— { X (X -

(Sx)r)

{ kzl#] XD+ X XY XD i

2)
‘)(( Zl;ﬁz

(Z X 2’)2(ka — X (A X7

+ diag{ )((2

—I—X

(4)

+a® X,;f

(X ar) -

Xl + diag{(x2 — x)2}.

1=7

- (XkX]EQ))Xg
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var(X, XT) =2, &7 Z ) + X { X (A2 — 2X7) + XPNT 4 {xa? —2x)) + P al

+ diag {(X,f’ —a) (Y xP) - ol —2xx - al) - () - X,3)2} .

HZvar X, X7 H <ZZ‘ —x2)| +2xh —2a2 x4 x, x )

+ ma (X (Z ) = x84 224 + 280 - (X - %)

2) 2 2 3
<3 kZ (A = ) + A XX — ) + 20 — XX

+ max{ (Z Xlk ) + |2XikXi(]§) - Xi(;j) - Xl + 2(Xi(k:2) - XiQk)Q}
<223x Zx@ — X2 + 2248 — x,x80)
160 + max {3 (Z-X(Q ) + ‘2‘)(119')(;(]3) - XZ(,:) - Xz%c’}

<8Z{2Xm > XZk)JFXi(:)}'

Thus,

| S| 0t { S Sl -y 20} =
k k i

l

Letb = {3wlog(8N/e)}'/? and assume (iii) w/S? > 3log(8N/e), then b < w/S. Note that
s assumption (7i7) requires that R > O(log N). Applying the matrix Bernstein inequality gives,

b2
P(llaXXT - B(axxT b) < 2N S —
(lo (@XX") > 1) < 2V ewp (- oo )

3Swlog(8N/e)
2w 4 25b/3 }
3w log(8N/e) }

3w

< 2N exp {—

< 2N exp {—
=¢/4.
7 Hence, with with probability 1 — €/4,

laXXT — E(aXXT)|| <b.
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4.3, Bound for Equation (2)
Equation (2) can be decomposed into three terms using properties of the spectral norm.

||D;1/2AD;1AD;1/2 o D;I/QAD;IAD;I/QH
< |D7V2ADS ADS Y — E(DVPADI V) E(D; 2 AD )|
< || D7YPADSY? — E(D7YVPADY)||DYRADY? + E(DSY2ADSY?)).

The first term above can be bounded following the proof in the Supplement of Qin & Rohe
(2013). Under the assumption that (i) d+ 7 > 3log(8N/e), where d = minDy;, let a =
[{31og(8N/€)}/(d 4 7)]'/2, so a < 1. Then, with probability at least 1 — ¢/4,

|D7Y2AD Y2 — B(D7Y2ADV?)|| < a.

Using the fact that ||£,]| < 1, |L,|| < 1, and | D5 /2D7Y2|| < a + 1, with probability 1 —
€/4, as shown in the Supplement of Qin & Rohe (2013), the second term can be bounded with
probability 1 — €/4 as follows.

D72 ADSY? + E(D7 V2 ADS )|

<||D7 V2D AL DI VAR o+ L |
< |[D7 V2D 2| Lo ||| D7 V2D A + 1
<(a+1)*+1.

Hence, with with probability 1 — €/4,
|D7Y2AD ADZY? — B(DZV2AD ADV?)| < ala+ 1)% + a.
4-4.  Bound for Equation (3) 190

Note that || D, Y prl? g || < a, with probability 1 — €/4, as shown in the Supplement of

Qin & Rohe (2013), and || Dy /*D-1D;* — I|| < a, which can be derived by the same ap-
proach. Using these results, equation (3) can be bounded with probability 1 — €/2 as follows.

HDT—1/2ADT—1ADT—1/2 _ DT—1/2ADT—1ADT—1/2H

= ||L-L, — D;'/*DY*L, DY*D; ' D}* L, DD 12|
= |L,L, — L, DY?*D-'DY2L, DY?D-V2 (1 — DIY2DY?) L, DY*DADY2 L, DY D A2
< ||Lr(Ly = DY?*D7'DY2L DYDY + afa + 1)

< ||DY2D DML (DY?DY? — 1) — (DY?DIDY? — L. || + ala + 1)
<ala+1)+a+ala+1)>

Consequently, joining the results for the five terms, gives the desired bound. With probability 20
atleast 1 — e,

|L — L] <2a®+ 50> +5a + b
<12a+b
= {@"/? + 12(d + 7)"/?}{310g(8N/e) }\/2.
Let 6 = w'/? + 12(d 4 7)~ /2, then the bound becomes 205
IL = || < 5{3log(8N/e)}/*.



210

215

220

225

230
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5. PROOF OF THEOREM 2

Using Lemma 9 from McSherry (2001), let P; be the projection onto the span of the first K
left singular eigenvectors of L. Then, P; is the optimal rank K approximation to L and

1Py — L1 < 8K||L — L|J*.

Next, apply the Davis—Kahan Theorem to L (Davis & Kahan, 1970). Let W C R be an interval
and define the distance between W and the spectrum of £ outside of W as

A = min{|\ — 7; A eigenvalue of £, \ ¢ W,r € W}.

Choose W = (A /2,00), where \x is the Kth eigenvalue of L. Then, A = \g /2. Let wk be
the K'th largest eigenvalue of £, then under the assumption that 6{3log(8N/e)}/2 < A\ /2,

Mg — wi| < 6{3log(8N/e)}/? < Ak /2.
Hence, wx € W, and U has the same dimension as I/. The Davis-Kahan Theorem implies,

2V2||P; L~ L
< 8Y2||PyL — L|r
< e
SK'/2||L - L|
P L —_
< e
_ 80{3K log(8N/e)}1/2
< e

with probability at least 1 — e.

6. PROOF OF THEOREM 3
This proof follows the arguments given in Qin & Rohe (2013). Let P = max;(Z* Z);; and

HCz - CjH2 > HZZ(ZTZ)_l/2V _ Zj(ZTZ)_1/2VH2
> 212|127 7||,
9\ 1/2
>(2) .
()

For all Z; # Z;, a sufficient condition for one observed centroid to be closest to the population
centroid is

1
1C;0T = ¢il|, < T 1G0T —Cill2 < [|C:OT = Cjla,

since

1
1G0T = Cilly < =575 = 1G0T = Cjlla > [IC; — Cjll2 — |C;0T = Cill

(2P)1/2
9\ /2 1\ /2 1
> | = — | — > -
=) () e
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LetG = {i: ||C;OT — Cj||2 > W}, so M C G. Define Q € RV*E where the ith row is C;.
< ||U — UO]|2. Applying the triangle inequality gives
1Q = ZuOl2 = [|Q —UO||2 < ||[U = Qll2 + |[|U —=UO|[2 < 2[|[U = UO>.

So,

M _ liel
=52
zeg

2P
~ > lIGoT —cill3

i€

2P
=~ > G = ZipO| |3
i€g

2P
< =|1Q — Zpo||?
< 1@~ Zr0Ollr

8P
< U - U0l

IN

Thus, using the result from Theorem 2, with probability at least 1 — e,

[|M]] < co K P52 log (8N /e)
N ~ N ’

where ¢y = 3 x 26.

7. PROOF OF COROLLARY 1

In order to investigate the mis-clustering bound and the accompanying conditions, we make
some simplifying assumptions. Assume B; ; = p, for all i and B; ; = ¢, for all i # j; in addi-
tion, M; ; = my, for all i; M; ; = mo, for all i # j; and R > 1. For computational convenience,
assume that each block has the same number of nodes N/K and R is a multiple of K. Recall,

,C Z( ]./QBZTD IZBD 1/2+QMMT)ZT ZBZT Therefore

B [N{p+ (K = 1q}/K J (%
+af{(my —mg)I +mglrli},

) (0~ 0T + {2pg + (K — Dg}1x1 %]

where m, = R{m? + (K — 1)m3}/K and m, = R{2mi1ms + (K — 2)m3}/K. For matrices
of the form al + blKlﬂ, Ar = a. Note that m, — my = R(mj — ms)? /K. Thus,

Mk (B) =

e ] (i) oo = ot

Recall  that L has the _ same  eigenvalues  as (ZTZ2)'\2B(zT 2)Y/? =
(N/K)Y2IB(N/K)'Y?I = (N/K)B. Hence, the population eigengap is

A(£) = { =g }2 AN R(my — ma)?

p+ (K —1)g+ K7/N K?

Hence, the mis-clustering bound for a growing number of covariates is given by
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10 N. BINKIEWICZ, J. T. VOGELSTEIN AND K. ROHE

|IM| < {(d+7)"'+ a(d+ 7)"2O(NR?) + o?O(N2R)}O(log N)
N — a®(N?R?) + a®(NR) + 6(1) '

Two conditions in Theorem 3 depend on R. Condition (i7i) becomes R > O(log N) and con-
dition (iv) becomes {aNRY? + (d + 7)~'/?}(log N)*/? < aNR + ¢y, which is satisfied for
R > O(log N).

Let R = ©{(log N)**'}, d + 7 = ©{(log N)**'}, and o = O{N~*(log N)~17¢}, where
a,b,c > 0, then the mis-clustering rate becomes

|IM| <. (log N)®=2¢ + (log N)(“_b)/Q_C + (log N)~°
N — 7 (log N)2a=<) 4 (log N)a—c + O(1)

If ¢ is chosen such that a > ¢, then (log N)2(¢~¢) is the dominant term in the denomina-
tor and |M|/N = O{(log N)~¢} + O{(log N)~(e+b)/2=3¢1 1 O{(log N)*¢~®)~b} The mis-
clustering rate is minimized when ¢ = 0, so the rate becomes |[M|/N = O{(log N)~“}.

If ¢ is chosen such that a <¢, |[M|/N = O{(log N)* ¢} + O{(log N){e=0)/2=¢c} 4

O{(log N)~*}. The mis-clustering rate is minimized when ¢ = “TH’, so the rate becomes % =
O{(log N)~*}.
Hence, to minimize the mis-clustering rate when a < b choose ¢ = “TH’ which yields a mis-

clustering rate of O{(log N)~*}, and when a > b choose ¢ = 0, which gives a mis-clustering
rate of O{(log V)~*}. If we consider the special case where = 0 or R = ©(log N) and b = 0
or d + 7 = ©(log N). The theoretical results above suggest o = O{(N log N)~1}. This result
agrees with the value suggested by the empirical procedure in §2-3, which yields apin = Gtmax =
©{(Nlog N)~'} when R = O(log N) based on the population eigenvalues.

8. PROOF OF COROLLARY 2

Perfect clustering requires that | M| < 1. Based on the bound in Theorem 3, this corresponds
to {co K Plog(8N/e)}*/? < \g. Under the same simplifying assumptions as above, this be-
comes

{aNRY? 4+ (d+ 7)"?}(Nlog N)'/? < aNR + ©(1),

"aNRY?(Nlog N)'/? < aNR,
R>0O(NlogN).

9. PROOF OF THEOREM 4

This proof uses Fano’s inequality to derive the lower bound following an approach similar to
Chaudhuri et al. (2012). Let Gg be a partition given by a specific S, the set of all nodes in the
first block, and let F’ be the family of all such partitions. Fano’s inequality states

B+ log 2
sup P, (P #Gg)>1— ———
GSGPF S( ?é ) lOgT

where K L(Gs,Gg/) < B, =|F| —1, and ¥ is the estimated node partition based on the ob-
served edges and node covariates.
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First, by independence the KL-divergence can be written as follows,

KL(Gs,Gs) =Y KL(pe,p.) + > KL(7,7))
ecl veV

Let p. and p., be the distribution for edge e and ~, and +,, be the covariate distribution for node
vin Gg and Gy, respectively. Recall By 1 > By > Bigandletb; € {By 1, B2, B12}. Fora
single edge when p. # pl,

1—b,
=5,

b;
K L(pe,pl.) € {b;log b + (1 —b;)log
j

1 1— B Bio 1—- B
< Biqlog —= 1-B log ———= 4+ B9 log —= 1-B 1 :
1,1log 7+( 1,1) Ogl—Bl,g—i_ 1,2 OgB1,1+( 12) Ogl—BLlO
Bi1— B2
= (Bi1 — Bio)log {1 1 DL,
(B11 1.2) Og{ +Bl72(1—Bl,1)}
(B11 — Bi2)?
= Bi2(1—By,)

Now find the KL-divergence of the covariates on a single node. For v, # 7.,

R
KL(v,7,) = Y KL(,,7,) =T
j

For the case of Bernoulli random variables where the jth covariate has probability M ; in block s
1 and M5 ; in block 2, this is

M, jlog %;j + (1 — M, ;)log }:%;j v € block 1
M, jlog %ﬁj + (1= My )log t%ﬁj v" € block 1
My ;(1 — My,;)
My ;(1 = M ;)

KL(Yo;5%,) = {
< (My,; — My ;) log

Therefore, the KL-divergence is bounded by

310

N\ (B11 — Bi)? N2 (By1 — Bi2)?
KL(Gs,Gg) < — = 4+ N < ——————=_ + NT.
(Gs, Gs') (2)3172(1—3171) 2 Bio(l— Biy)

The number of partitions can be bounded as follows,

1/ N N!
713 (w2) = 5T
(27 N) /2 (N/e)N

 [e(N/2)2{N/ (2e)}N2)?
2N—2.1

= e
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12 N. BINKIEWICZ, J. T. VOGELSTEIN AND K. ROHE

where the first inequality uses (2rN)Y2(N/e)¥ < N! < eNY2(N/e)N. Now the log term is
bounded by

N-2.1
log(|F| —1) > log{(QN/W — 1}

> (N —3)log2 — % log(N/2)

S log 2

N for N > 8.

Thus, by Fano’s inequality, in order to correctly determine the block assignments with probability
at least 1 — € requires

NQ(BLl — B172)2/{23%’2(1 — B171)2} + NT' +log2

>1-
€= (Nlog2)/2 ’
2 [log2 log2 .19
Bi1i— Bia > Bia(l — Bi1)[— 1—¢)—I— —=2=3)1/2
1,1 1,2 2 1,2( 1,1)[N { 5 ( €) N }]
Fix B;1 and let A = By 1 — By 2, then rewrite this bound as
A Bi1(1— B11)

F{m0-o-r-w)] ea-ny

10. COMPARISON OF THE GENERAL LOWER BOUND TO THEOREM 3

First, simplify the general lower bound given in Theorem 4 to make the comparison with
Theorem 3 easier.

A Bi1(1—Bi,)
= 12
[%{%(1—6)—’C—IO%H + (1= Bua)
S Bi11(1—Bia)

- 3/2 [% {1052(1 —e)—K - 1052}]—1/2

2\ [2 (log2 log2)1Y?
om0 (5) [ {500 - 52

C4
Z N
According to Theorem 3 to achieve perfect clustering with probability 1 — €, requires
5{co K Plog(8N/e)}'/? < . As shown in §8, this requires R > O (N log N).
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