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SUMMARY

This supplementary material contains the proof of the main results in Section 1, additional
simulation studies in Sections 2 and 3, the complete results of the real data analysis in Section 4,
and example R code for simulations in Section 5.

1. PROOF OF MAIN RESULTS 20

The proofs in the supplementary material assume that the covariance matrices for the two
groups of sample are Σ1 and Σ2 respectively; it is easy to simplify the results under the common
covariance matrix Σ = (σij)p×p assumption as presented in the main section. We write Σk =

(σk,ij)p×p for k = 1 and 2.
We need the following assumptions, which extend conditions C1–C3 in Section 3.2 of the 25

main file to the case when Σ1 and Σ2 are different.
C1 Covariance assumption. There exists some constant B such that

B−1 ≤ λmin(Σ1), λmin(Σ2), λmax(Σ1), and λmax(Σ2) ≤ B,

where λmin (A) and λmax (A) denote the minimum and maximum eigenvalues of a matrix A. In
addition, the correlations are bounded away from −1 and 1, i.e.,

max
k=1,2;1≤i 6=j≤p

|σk,ij | /(σk,iiσk,jj)1/2 < 1− η

for some η > 0.
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C2 Mixing assumption. For a set of multivariate random vectors Z = {Z(j) : j ≥ 1} and inte-
gers a < b, letZba be the σ-algebra generated by {Z(j) : j ∈ [a, b]}. For each s ≥ 1, define the α-
mixing coefficient αZ(s) = supt≥1{|pr(A ∩B)− pr(A)pr(B)| : A ∈ Zt1, B ∈ Z∞t+s}. We as-30

sume {(X(j)
ki , i = 1, . . . , nk) : j ≥ 1} is α-mixing for k = 1, 2, and αX(s) ≤Mδs, where δ ∈

(0, 1) and M is some constant.
C3 Moment assumption. We assume log p/n1/4 = o(1). In addition, there exists a positive

constant M and h ∈ [−M,M ],

max
k=1,2;1≤i≤p

E
{
eh(X

(i)
k1
−µ(i)

k
)2
}
<∞.

Remark 1. The covariance assumption C1 and the moment assumption C3 follow from Cai35

et al. (2014) and they are needed to establish the weak convergence of the supremum type test
statistic, L(∞). When γ <∞, the asymptotic normality can be established under weaker as-
sumptions on the eigenvalues and correlations. However, in order to establish weak convergence
of L(γ) for γ > 2, stronger moment assumptions may still be needed than those in Chen & Qin
(2010), whose test statistic is similar to L(2). Condition C2 follows from Chen et al. (2014) and40

the mixing assumption imposes the weak dependence structure of the data. Such condition is
commonly used in time series and spatial statistics. A similar mixing assumption has also been
adopted in Zhong et al. (2013). Alternatively, we may consider the weak dependence structure
introduced in Bai & Saranadasa (1996) and Chen & Qin (2010), where a factor type model forX
is assumed. Similar asymptotic behavior is expected for the proposed adaptive test with certain45

regularity conditions and we will pursue this in our future research. Since the variables (i.e. sin-
gle nucleotide polymorphisms) in the motivating genome-wide association studies have a local
dependency structure with their correlations often decaying to zero as their physical distances
(on chromosomes) increase, we focus on the mixing type weak dependence in this paper.

We need the following lemmas to calculate the mean and variance functions in the proposi-50

tions.

LEMMA 1. For k ∈ {1, 2} and 1 ≤ i ≤ p, we have:

(i) if a is even and a = 2d,

E
{(
X̄

(i)
k − µ

(i)
k

)a}
=

a!

d!2d
n−dk σdk,ii + o

(
n−dk

)
(ii) if a ≥ 3 is odd and a = 2d+ 1

E
{(
X̄

(i)
k − µ

(i)
k

)a}
=

a!

(d− 1)!3!2d−1
n
−(d+1)
i mkiσ

d−1
k,ii + o

(
n
−(d+1)
k

)
,

where mki is the third central moment of ith marginal random variable from group k, i.e.,55

mki = E
{

(X
(i)
k − µ

(i)
k )3

}
. Note that in this case, E

{
(X̄

(i)
k − µ

(i)
k )a

}
= o(n

−a/2
k ).

LEMMA 2. For k ∈ {1, 2} and 1 ≤ i, j ≤ p, consider integers h, l ≥ 1. If h+ l is an even
number with h+ l = 2c,

E

{(
X̄

(i)
k − µ

(i)
k

)h (
X̄

(j)
k − µ

(j)
k

)l}
=

1

nck

∑
2c1+c3=h
2c2+c3=l

h!l!

c1!c2!c3!2c1+c2
σc1k,iiσ

c2
k,jjσ

c3
k,ij + o

(
n−ck

)
;
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if h+ l is an odd number with h+ l = 2c+ 1 60

E

{(
X̄

(i)
k − µ

(i)
k

)h (
X̄

(j)
k − µ

(j)
k

)l}
=

1

nc+1
k

∑
a+b=3

2c1+c3=h−a
2c2+c3=l−b

h!l!

c1!c2!a!b!c3!2c1+c2
mk,iajbσ

c1
k,iiσ

c2
k,jjσ

c3
k,ij + o

(
n−c−1
k

)
,

where mk,iajb = E
{

(X
(i)
k − µ

(i)
k )a(X

(j)
k − µ

(j)
k )b

}
for a+ b = 3.

Proof of Lemma 1. For even a with a = 2d and k = 1, 2,

E

{(
X̄

(i)
k − µ

(i)
k

)a}
=

1

nak
E

[{ nk∑
j=1

(
X

(i)
kj − µ

(i)
k

)}a]

=
1

nak

∑
t≥1;l1,...,lt>0
l1+...+lt=a

(
nk
t

)
a!

l1! . . . lt!

t∏
s=1

E

{(
X

(i)
k1 − µ

(i)
k

)ls}

∼ 1

nak

∑
t≥1;l1,...,lt>0
l1+...+lt=a

ntka!

t!l1! . . . lt!

t∏
s=1

E

{(
X

(i)
k1 − µ

(i)
k

)ls}

=
∑

t≥1;l1,...,lt>0
l1+...+lt=a

a!

na−tk t!l1! . . . lt!

t∏
s=1

E

{(
X

(i)
k1 − µ

(i)
k

)ls}

=
∑
t=d

l1=...=lt=2

a!

na−tk t!l1! . . . lt!
σdk,ii + o

(
n−dk

)

=
a!

d!2d
n−dk σdk,ii + o

(
n−dk

)
.

For odd a with a = 2d+ 1 and k = 1, 2, we can obtain the conclusion from a similar argument: 65

E
{(
X̄

(i)
k − µ

(i)
k

)a}
∼

∑
t≥1;l1,...,lt>0
l1+...+lt=a

a!

na−tk t!l1! . . . lt!

t∏
s=1

E

{(
X

(i)
k1 − µ

(i)
k

)ls}

=
∑
t=d

one ls is 3
others are 2

a!

na−tk t!l1! . . . lt!
mkiσ

d−1
k,ii + o

(
n−d−1
k

)

= d× a!

d!3!2d−1
n
−(d+1)
k mkiσ

d−1
k,ii + o

(
n−d−1
k

)
=

a!

(d− 1)!3!2d−1
n
−(d+1)
k mkiσ

d−1
k,ii + o

(
n−d−1
k

)
.

This completes the proof of Lemma 1. �



4 G. XU, L. LIN, P. WEI AND W. PAN

Proof of Lemma 2. The proof is similar to that of Lemma 1. In particular, if h+ l is an even
number with h+ l = 2c

E

{(
X̄

(i)
k − µ

(i)
k

)h (
X̄

(j)
k − µ

(j)
k

)l}

= E

 1

nh+l
k

{
nk∑
s=1

(X
(i)
ks − µ

(i)
k )

}h{ nk∑
t=1

(X
(j)
kt − µ

(j)
k )

}l
=

1

nh+l
k

∑
2c1+c3=h
2c2+c3=l

(
h

c3

)(
l

c3

)
nc1+c2+c3
k (2c1)!(2c2)!c3!

c1!c2!2c1+c2

×
{
E(X

(i)
k1 − µ

(i)
k )2

}c1 {
E(X

(j)
k1 − µ

(j)
k )2

}c2 {
E(X

(i)
k1 − µ

(i)
k )(X

(j)
k1 − µ

(j)
k )
}c3

+o

(
1

nck

)
=

1

nck

∑
2c1+c3=h
2c2+c3=l

(
h

c3

)(
l

c3

)
(2c1)!(2c2)!c3!

c1!c2!2c1+c2
σc1k,iiσ

c2
k,jjσ

c3
k,ij + o

(
1

nck

)

=
1

nck

∑
2c1+c3=h
2c2+c3=l

h!l!

c1!c2!c3!2c1+c2
σc1k,iiσ

c2
k,jjσ

c3
k,ij + o

(
1

nck

)
.

If h+ l is an odd number with h+ l = 2c+ 1, similarly, we have70

E

{(
X̄

(i)
k − µ

(i)
k

)h (
X̄

(j)
k − µ

(j)
k

)l}

= E

 1

nh+l
k

{
nk∑
s=1

(X
(i)
ks − µ

(i)
k )

}h{ nk∑
t=1

(X
(j)
kt − µ

(j)
k )

}l
=

1

nc+1
k

∑
a+b=3

2c1+c3=h−a
2c2+c3=l−b

(
h

a

)(
l

b

)(
h− a
c3

)(
l − b
c3

)

×(2c1)!(2c2)!c3!

c1!c2!2c1+c2
mk,iajbσ

c1
k,iiσ

c2
k,jjσ

c3
k,ij + o

(
1

nc+1
k

)

=
1

nc+1
k

∑
a+b=3

2c1+c3=h−a
2c2+c3=l−b

h!l!

c1!c2!a!b!c3!2c1+c2
mk,iajbσ

c1
k,iiσ

c2
k,jjσ

c3
k,ij + o

(
1

nc+1
k

)
.

This completes the proof. �
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1·1. Approximations of the mean, variance, and covariance for
the sum-of-powers tests under H0 : µ1 = µ2

75

In this section, we prove Propositions 1, 2 and 3 in the main file.

Proof of Proposition 1. It is trivial to find µ(1) = 0. We focus on γ ≥ 2. Under the null hy-
pothesis,

µ(γ) = E

[
p∑
i=1

{(
X̄

(i)
1 − µ

(i)
1

)
−
(
X̄

(i)
2 − µ

(i)
2

)}γ]

=

p∑
i=1

γ∑
a=0

(
γ

a

)
(−1)γ−a E

{(
X̄

(i)
1 − µ

(i)
1

)a}
E

{(
X̄

(i)
2 − µ

(i)
2

)γ−a}
.

For even γ ≥ 2, by Lemma 1, 80

µ(γ) =

p∑
i=1

γ∑
a=0

(
γ

a

)
(−1)γ−a E

{(
X̄

(i)
1 − µ

(i)
1

)a}
E

{(
X̄

(i)
2 − µ

(i)
2

)γ−a}

=

p∑
i=1

γ/2∑
d=0

(
γ

2d

)
E

{(
X̄

(i)
1 − µ

(i)
1

)2d
}
E

{(
X̄

(i)
2 − µ

(i)
2

)γ−2d
}

−
p∑
i=1

γ/2−1∑
d=0

(
γ

2d+ 1

)
E

{(
X̄

(i)
1 − µ

(i)
1

)2d+1
}
E

{(
X̄

(i)
2 − µ

(i)
2

)γ−2d−1
}

=

p∑
i=1


γ/2∑
d=0

(
γ

2d

)
(2d)!σd1,ii

d!2dnd1

(γ − 2d)!σ
γ/2−d
2,ii

(γ/2− d)!2γ/2−dn
(γ/2−d)
2

+ o

(
1

nγ/2

)
−

p∑
i=1


γ/2−1∑
d=0

(
γ

2d+ 1

)
(2d+ 1)!m1iσ

d−1
1,ii

(d− 1)!3!2d−1nd+1
1

(γ − 2d− 1)!m2iσ
γ/2−d
2,ii

(γ/2− d− 2)!3!2γ/2−d−2n
(γ/2−d)
2

+ o

(
1

nγ/2+1

)
=

γ!

2γ/2

γ/2∑
d=0

∑p
i=1 σ

d
1,iiσ

γ/2−d
2,ii

d!(γ/2− d)!nd1n
γ/2−d
2

+ o(pn−γ/2).
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For odd γ ≥ 3, let c = bγ/2c, and we have from Lemma 1,

µ(γ) =

p∑
i=1

γ∑
a=0

(
γ

a

)
(−1)γ−a E

{(
X̄

(i)
1 − µ

(i)
1

)a}
E

{(
X̄

(i)
2 − µ

(i)
2

)γ−a}

=

p∑
i=1

[ c∑
d=1

(
γ

2d+ 1

)
E

{(
X̄

(i)
1 − µ

(i)
1

)2d+1
}

E

{(
X̄

(i)
2 − µ

(i)
2

)γ−1−2d
}

−
c∑

d=1

(
γ

2d+ 1

)
E

{(
X̄

(i)
1 − µ

(i)
1

)γ−1−2d
}

E

{(
X̄

(i)
2 − µ

(i)
2

)2d+1
}]

=

p∑
i=1

c∑
d=1

(
γ

2d+ 1

)
(2d+ 1)!(γ − 1− 2d)!

(d− 1)!(c− d)!3!2c−1

(
m1iσ

d−1
1,ii σ

c−d
2,ii

nd+1
1 nc−d2

−
σc−d1,ii m2iσ

d−1
2,ii

nc−d1 nd+1
2

)
+ o(pn−c−1)

=

p∑
i=1

c∑
d=1

γ!

(d− 1)!(c− d)!3!2c−1

(
m1iσ

d−1
1,ii σ

c−d
2,ii

nd+1
1 nc−d2

−
σc−d1,ii m2iσ

d−1
2,ii

nc−d1 nd+1
2

)
+ o(pn−c−1).

The approximation for µ(i)(γ) = E
(
X̄

(i)
1 − X̄

(i)
2

)γ
can be directly obtained from the above

derivations. When Σ1 = Σ2, the results become those in Proposition 1. This completes the85

proof. �

Proof of Proposition 2. It is trivial to find σ2(1) as

σ2(1) =
1

n1
1p

TΣ11p +
1

n2
1p

TΣ21p.

For γ ≥ 2, we write

σ2(γ) = E

[{ p∑
i=1

(
X̄

(i)
1 − X̄

(i)
2

)γ}2]
− [E {L(γ)}]2

= µ(2γ)−
p∑
i=1

{µ(i)(γ)}2 + E

{∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
90

−
∑
i 6=j

µ(i)(γ)µ(j)(γ). (1)
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The first two terms in equation (1), µ(2γ) and
∑p

i=1{µ(i)(γ)}2, can be obtained from Proposition
1. We next focus on the last two terms. Under the null hypothesis, we have

∑
i 6=j

E
{(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
=
∑
i 6=j

E

{ γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
(−1)h+l

(
X̄

(i)
1 − µ

(i)
1

)h (
X̄

(i)
2 − µ

(i)
2

)γ−h
×
(
X̄

(j)
1 − µ(j)

1

)l (
X̄

(j)
2 − µ(j)

2

)γ−l}
=
∑
i 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
(−1)h+l E

{(
X̄

(i)
1 − µ

(i)
1

)h (
X̄

(j)
1 − µ(j)

1

)l}

× E

{(
X̄

(i)
2 − µ

(i)
2

)γ−h (
X̄

(j)
2 − µ(j)

2

)γ−l}

and similarly 95

∑
i 6=j

µ(i)(γ)µ(j)(γ)

=
∑
i 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
(−1)h+l E

{(
X̄

(i)
1 − µ

(i)
1

)h}
E

{(
X̄

(j)
1 − µ(j)

1

)l}

× E

{(
X̄

(i)
2 − µ

(i)
2

)γ−h}
E

{(
X̄

(j)
2 − µ(j)

2

)γ−l}
.

We write

∑
i 6=j

E
{(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
−
∑
i 6=j

µ(i)(γ)µ(j)(γ)

=
∑
i 6=j

∑
h+l is even

(
γ

h

)(
γ

l

)
(−1)h+l

×
[

E

{(
X̄

(i)
1 − µ

(i)
1

)h (
X̄

(j)
1 − µ(j)

1

)l}
E

{(
X̄

(i)
2 − µ

(i)
2

)γ−h (
X̄

(j)
2 − µ(j)

2

)γ−l}
− E

{(
X̄

(i)
1 − µ

(i)
1

)h}
E

{(
X̄

(j)
1 − µ(j)

1

)l}
× E

{(
X̄

(i)
2 − µ

(i)
2

)γ−h}
E

{(
X̄

(j)
2 − µ(j)

2

)γ−l}]
+
∑
i 6=j

∑
h+l is odd

· · · .
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Under the proposed conditions C1–C3, by Lemma 2, the above display can be further ex-
pressed as100 ∑

i 6=j
E
{(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
−
∑
i 6=j

µ(i)(γ)µ(j)(γ)

=
∑
i 6=j

∑
2c1+c3+2d1+d3=γ
2c2+c3+2d2+d3=γ
c1,c2,c3,d1,d2,d3≥0

(
γ

2c1 + c3

)(
γ

2c2 + c3

)

×
{

1

nc1+c2+c3
1

(2c1 + c3)!(2c2 + c3)!

c1!c2!c3!2c1+c2
σc11,iiσ

c2
1,jjσ

c3
1,ij + o

(
n
−(c1+c2+c3)
1

)}
×

{
1

nd1+d2+d3
2

(2d1 + d3)!(2d2 + d3)!

d1!d2!d3!2d1+d2
σd12,iiσ

d2
2,jjσ

d3
2,ij + o

(
n
−(d1+d2+d3)
2

)}

−
∑
i 6=j

∑
2c1+2d1=γ
2c2+2d2=γ
c1,c2,d1,d2≥0

(
γ

2c1

)(
γ

2c2

){
1

nc1+c2
1

(2c1)!(2c2)!

c1!c2!2c1+c2
σc11,iiσ

c2
1,jj + o

(
n
−(c1+c2)
1

)}

×

{
1

nd1+d2
2

(2d1)!(2d2)!

d1!d2!2d1+d2
σd12,iiσ

d2
2,jj + o

(
n
−(d1+d2)
2

)}
+ o(pn−γ)

=
∑

2c1+c3+2d1+d3=γ
2c2+c3+2d2+d3=γ

c1,c2,c3,d1,d2,d3≥0,c3+d3>0

(γ!)2
∑

i 6=j σ
c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3

2 c1!c2!c3!d1!d2!d3!2c1+c2+d1+d2

+ o(pn−γ),

where the terms with h+ l odd is ignorable under the assumed strong mixing conditions.
Consequently, from equation (1), we have

σ2(γ) = µ(2γ)−
p∑
i=1

{µ(i)(γ)}2

+
∑

2c1+c3+2d1+d3=γ
2c2+c3+2d2+d3=γ

c1,c2,c3,d1,d2,d3≥0,c3+d3>0

(γ!)2
∑

i 6=j σ
c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3

2 c1!c2!c3!d1!d2!d3!2c1+c2+d1+d2

+ o(pn−γ).

For the first two terms, from the proof of Proposition 1, we have if γ is even,105

µ(2γ)−
p∑
i=1

{µ(i)(γ)}2

∼ (2γ)!

2γ

p∑
i=1

γ∑
d=0

σd1,iiσ
γ−d
2,ii

d!(γ − d)!nd1n
γ−d
2

− (γ!)2

2γ

p∑
i=1


γ/2∑
d=0

σd1,iiσ
γ/2−d
2,ii

d!(γ/2− d)!nd1n
γ/2−d
2


2

;
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on the other hand, if γ is odd, we have

µ(2γ)−
p∑
i=1

{µ(i)(γ)}2 ∼ (2γ)!

2γ

p∑
i=1

γ∑
d=0

σd1,iiσ
γ−d
2,ii

d!(γ − d)!nd1n
γ−d
2

.

When Σ1 = Σ2, we have the results in Proposition 2. � 110

Proof of Proposition 3. We study the covariance between L(s) and L(t) for finite integers
s, t ∈ Γ. Similar to the proof of Proposition 2, under the null hypothesis, we have

cov {L(t), L(s)}
= E {L(t)L(s)} − E {L(t)}E {L(s)}

= E

{ p∑
i=1

(
X̄

(i)
1 − X̄

(i)
2

)t+s}
+ E

{∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s}
− µ(t)µ(s)

= µ(t+ s)−
p∑
i=1

µ(i)(t)µ(i)(s) +
∑
i 6=j

E

{(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s}
−
∑
i 6=j

µ(i)(t)µ(j)(s)

We focus on the last two terms and have

E

∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s−∑
i 6=j

µ(i)(t)µ(j)(s)

=
∑
i 6=j

t∑
h=0

s∑
l=0

(
t

h

)(
s

l

)
(−1)t−h+s−l

×
[

E

{(
X̄

(i)
1 − µ

(i)
1

)h (
X̄

(j)
1 − µ(j)

1

)l}
E

{(
X̄

(i)
2 − µ

(i)
2

)t−h (
X̄

(j)
2 − µ(j)

2

)s−l}
− E

{(
X̄

(i)
1 − µ

(i)
1

)h}
E

{(
X̄

(j)
1 − µ(j)

1

)l}
× E

{(
X̄

(i)
2 − µ

(i)
2

)t−h}
E

{(
X̄

(j)
2 − µ(j)

2

)s−l}]
=
∑
i 6=j

∑
h+l is even

· · ·+
∑
i 6=j

∑
h+l is odd

· · ·

115
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If s+ t is even, from a similar argument as in the proof of Proposition 2, we have

E

∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s−∑
i 6=j

µ(i)(t)µ(j)(s)

=
∑
i 6=j

∑
2c1+c3+2d1+d3=t
2c2+c3+2d2+d3=s

c1,c2,c3,d1,d2,d3≥0,c3+d3>0

(
t

2c1 + c3

)(
s

2c2 + c3

)(
2c1 + c3

c3

)(
2c2 + c3

c3

)

×
(
t− 2c1 − c3

d3

)(
s− 2c2 − c3

d3

)
(2c1)!(2c2)!c3!

c1!c2!2c1+c2

(2d1)!(2d2)!d3!

c1!c2!2d1+d2

× 1

nc1+c2+c3
1 nd1+d2+d3

2

σc11,iiσ
c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

+ o(pn−(s+t)/2)

=
∑

2c1+c3+2d1+d3=t
2c2+c3+2d2+d3=s

c1,c2,c3,d1,d2,d3≥0,c3+d3>0

t!s!
∑

i 6=j σ
c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3

2 c1!c2!c3!d1!d2!d3!2c1+c2+d1+d2

+ o(pn−(s+t)/2)

Therefore, we obtain the expression for cov {L(t), L(t)} in Proposition 3 in the case of even
s+ t. If s+ t is odd, by Lemma 2, similarly we have

E

∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s−∑
i 6=j

µ(i)(t)µ(j)(s)

=
∑
i 6=j

∑
a+b=3

2c1+c3+2d1+d3=t−a
2c2+c3+2d2+d3=s−b
a,b>0 or c3+d3>0

(
t

a

)(
s

b

)(
t− a

2c1 + c3

)(
2c1 + c3

c3

)(
s− b

2c2 + c3

)(
2c2 + c3

c3

)

×
(
t− a− 2c1 − c3

d3

)(
s− b− 2c2 − c3

d3

)
(2c1)!(2c2)!c3!

c1!c2!2c1+c2

(2d1)!(2d2)!d3!

d1!d2!2d1+d2

×

(
m1,iajbσ

c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3+2
1 nd1+d2+d3

2

−
m2,iajbσ

c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3+2

2

)
+ o(pn−(s+t+1)/2)

=
∑
a+b=3

2c1+c3+2d1+d3=t−a
2c2+c3+2d2+d3=s−b
a,b>0 or c3+d3>0

t!s!

a!b!c1!c2!c3!d1!d2!d3!2c1+c2+d1+d2

×
∑
i 6=j

(
m1,iajbσ

c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3+2
1 nd1+d2+d3

2

−
m2,iajbσ

c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3+2

2

)
+ o(pn−(s+t+1)/2).

120
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Under the mixing condition, note that the first term is O
{
p(n1 + n2)−(t+s+1)/2

}
. Since t+ s is

odd, by Proposition 1,

µ(t+ s) = O
{
p(n1 + n2)−(s+t+1)/2

}
.

Also,
∑
µ(i)(t)µ(i)(s) = O

{
p(n1 + n2)−(s+t+1)/2

}
. These results imply

cov {L(t), L(s)} = O
{
p(n1 + n2)−(s+t+1)/2

}
= o

{
pn−(s+t)/2

}
.

Take Σ1 = Σ2 and we have the same asymptotic approximations in Proposition 3. This completes
the proof. �

1·2. Approximations of the mean, variance, and covariance for 125

sum-of-powers tests under H1 : µ1 6= µ2

Proof of Proposition 4. We denote δi = µ
(i)
1 − µ

(i)
2 for i = 1, . . . , p. Under the alternative, it

is trivial to find µA(1) =
∑p

i=1 δi. We focus on γ ≥ 2. The mean function of L(γ) under H1

equals

µA(γ) = E

[
p∑
i=1

{(
X̄

(i)
1 − µ

(i)
1

)
−
(
X̄

(i)
2 − µ

(i)
2

)
+ δi

}γ]

=

p∑
i=1

∑
0≤a≤γ

0≤b≤γ−a

(
γ

a

)(
γ − a
b

)
(−1)bδγ−a−bi E

{(
X̄

(i)
1 − µ

(i)
1

)a}
E

{(
X̄

(i)
2 − µ

(i)
2

)b}
.

130

By Lemma 1 and the proof of Proposition 1,

µA(γ) =

p∑
i=1

∑
a+b+c=γ
0≤a≤γ−c

(
γ

c

)(
γ − c
a

)
(−1)bδci E

{(
X̄

(i)
1 − µ

(i)
1

)a}
E

{(
X̄

(i)
2 − µ

(i)
2

)b}

=

p∑
i=1

γ∑
c=0

(
γ

c

)
(−1)bδci

∑
a+b+c=γ
0≤a≤γ−c

(
γ − c
a

)
E
{(
X̄

(i)
1 − µ

(i)
1

)a}
E

{(
X̄

(i)
2 − µ

(i)
2

)b}

= µ(γ) +

p∑
i=1

γ∑
c=1

(
γ

c

)
δciµ

(i)(γ − c),

where approximations for µ(i)(γ − c) are given in Proposition 1.
In particular, when γ = 2, since µ(i)(0) = 1 and µ(i)(1) = 0, we obtain

µA(2) = µ(2) +

p∑
i=1

δ2
i ;

when γ = 3, note that µ(i)(2) = σ1,ii/n1 + σ2,ii/n2 and then

µA(3) = µ(3) +

p∑
i=1

δ3
i + 3

p∑
i=1

δiµ
(i)(2) 135
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= µ(3) +

p∑
i=1

δ3
i + 3

p∑
i=1

δi

(
σ1,ii

n1
+
σ2,ii

n2

)
;

when γ = 4, similarly

µA(4) = µ(4) +

p∑
i=1

δ4
i + 4

p∑
i=1

δ3
i µ

(i)(1) + 6

p∑
i=1

δ2
i µ

(i)(2) + 4

p∑
i=1

δiµ
(i)(3)

= µ(4) +

p∑
i=1

δ4
i + 6

p∑
i=1

δ2
i

(
σ1,ii

n1
+
σ2,ii

n2

)
+ 4

p∑
i=1

δi

(
m1i

n2
1

− m2i

n2
2

)
.

In particular, for Xs’ following normal distribution, m1i = m2i = 0 and

µA(4) = µ(4) +

p∑
i=1

δ4
i + 6

p∑
i=1

δ2
i

(
σ1,ii

n1
+
σ2,ii

n2

)
.

Take Σ1 = Σ2 and we have the conclusion in Proposition 4. �140

Proof of Proposition 5. We write µ(i)
A (γ) = E

(
X̄

(i)
1 − X̄

(i)
2

)γ
under H1. We have

σ2
A(γ) = E

[{ p∑
i=1

(
X̄

(i)
1 − X̄

(i)
2

)γ}2]
− [E {L(γ)}]2

= µA(2γ)−
p∑
i=1

{µ(i)
A (γ)}2 + E

{∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
−
∑
i 6=j

µ
(i)
A (γ)µ

(j)
A (γ). (2)

When γ = 1,145

σ2
A(1) = µA(2)−

p∑
i=1

{µ(i)
A (1)}2 +

∑
i 6=j

E

{(
X̄

(i)
1 − X̄

(i)
2

)(
X̄

(j)
1 − X̄(j)

2

)
− µ(i)

A (1)µ
(j)
A (1)

}
=

1

n1
1p

TΣ11p +
1

n2
1p

TΣ21p.

where the last equation follows from µ
(i)
A (1) = δi,

µA(2) = µ(2) +

p∑
i=1

δ2
i =

p∑
i=1

(σ1,ii

n1
+
σ2,ii

n2

)
+

p∑
i=1

δ2
i

and

E

{(
X̄

(i)
1 − X̄

(i)
2

)(
X̄

(j)
1 − X̄(j)

2

)
− µ(i)

A (1)µ
(j)
A (1)

}
=
σ1,ij

n1
+
σ2,ij

n2
.
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For γ ≥ 2, we focus on the last two terms in (2), and under the alternative hypothesis, we have∑
i 6=j

E
{(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
=
∑
i 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
δhi δ

l
j

× E

{(
X̄

(i)
1 − µ

(i)
1 + µ

(i)
2 − X̄

(i)
2

)γ−h (
X̄

(j)
1 − µ(j)

1 + µ
(j)
2 − X̄

(j)
2

)γ−l}
Then from the proof of Proposition 2, we have 150∑

i 6=j
E
{(
X̄

(i)
1 − X̄

(i)
2

)γ (
X̄

(j)
1 − X̄(j)

2

)γ}
−
∑
i 6=j

µ
(i)
A (γ)µ

(j)
A (γ)

∼
∑
i 6=j

γ∑
h=0

γ∑
l=0

(
γ

h

)(
γ

l

)
δhi δ

l
jrij(γ − h, γ − l),

where rij(·, ·) is defined as: if s+ t is even

rij(s, t) =
∑

2c1+c3+2d1+d3=t
2c2+c3+2d2+d3=s

c1,c2,c3,d1,d2,d3≥0,c3+d3>0

t!s!σc11,iiσ
c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3

2 c1!c2!c3!d1!d2!d3!2c1+c2+d1+d2
;

if s+ t is odd

rij(s, t) =
∑
a+b=3

2c1+c3+2d1+d3=t−a
2c2+c3+2d2+d3=s−b
a,b>0 or c3+d3>0

t!s!

a!b!c1!c2!c3!d1!d2!d3!2c1+c2+d1+d2
155

×

(
m1,iajbσ

c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3+2
1 nd1+d2+d3

2

−
m2,iajbσ

c1
1,iiσ

c2
1,jjσ

c3
1,ijσ

d1
2,iiσ

d2
2,jjσ

d3
2,ij

nc1+c2+c3
1 nd1+d2+d3+2

2

)
.

Note that when Σ1 = Σ2, rij(s, t) becomes that defined in Proposition 5.
In particular, when γ = 2, we have

σ2
A(2) = µA(4)−

p∑
i=1

{µ(i)
A (2)}2 +

∑
i 6=j

E

{(
X̄

(i)
1 − X̄

(i)
2

)2 (
X̄

(j)
1 − X̄(j)

2

)2
− µ(i)

A (2)µ
(j)
A (2)

}

= µA(4)−
p∑
i=1

{µ(i)
A (2)}2 +

∑
i 6=j

{
δ2
i δ

2
j rij(0, 0) + rij(2, 2) + δ2

i µ
(j)(2)rij(2, 0) 160

+ δ2
jµ

(i)(2)rij(0, 2) + 2δirij(1, 2) + 2δjrij(2, 1) + 4δiδjrij(1, 1)

}
∼ µA(4)−

p∑
i=1

{µ(i)
A (2)}2 +

∑
i 6=j

{
rij(2, 2) + 4δiδjrij(1, 1)

}
.

Note that

rij(1, 1) =
σ1,ij

n1
+
σ2,ij

n2
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and

σ2(2) ∼ µ(4)−
p∑
i=1

{µ(i)(2)}2 +
∑
i 6=j

rij(2, 2).

Thus, from the approximations for µA(4), µ(i)
A (2), and rij(1, 1), we have

σ2
A(2) ∼ µ(4) +

p∑
i=1

δ4
i + 6

p∑
i=1

δ2
i (
σ1,ii

n1
+
σ2,ii

n2
) + 4

p∑
i=1

δi
(m1i

n2
1

− m2i

n2
2

)
−

p∑
i=1

{µ(i)(2) + δ2
i }2 +

∑
i 6=j

{
rij(2, 2) + 4δiδjrij(1, 1)

}
.165

∼ σ2(2) + 4
∑
i,j

δiδj

(σ1,ij

n1
+
σ2,ij

n2

)
.

When Σ1 = Σ2, we have

σ2
A(2) ∼ σ2(2) + 4

( 1

n1
+

1

n2

)∑
i,j

δiδjσij .

Similarly to the derivation for the asymptotic variance, under the alternative hypothesis, we
have

covA {L(t), L(s)}
= E {L(t)L(s)} − E {L(t)}E {L(s)}

= E

{ p∑
i=1

(
X̄

(i)
1 − X̄

(i)
2

)t+s}
+ E

{∑
i 6=j

(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s}
− µA(t)µA(s)

= µA(t+ s)−
p∑
i=1

µ
(i)
A (t)µ

(i)
A (s) +

∑
i 6=j

E

{(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s}
−
∑
i 6=j

µ
(i)
A (t)µ

(j)
A (s)

and from the proof of Proposition 2, we have170 ∑
i 6=j

E

{(
X̄

(i)
1 − X̄

(i)
2

)t (
X̄

(j)
1 − X̄(j)

2

)s}
−
∑
i 6=j

µ
(i)
A (t)µ

(j)
A (s)

∼
∑
i 6=j

t∑
h=0

s∑
l=0

(
t

h

)(
s

l

)
δhi δ

l
jrij(t− h, s− l).

1·3. Proof of Theorems
We focus on the proof of Theorem 1. The proof of Theorem 2 follows from the same argument

as part (i) and therefore is omitted.

Proof of Theorem 1.(i) For finite γ ∈ Γ, we first show the limiting distribution for each L(γ).175

The Cramér-Wold Theorem can be used to show the joint distribution. For notational conve-
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nience, we write

L(i)(γ) =
(
X̄

(i)
1 − X̄

(i)
2

)γ
and µ(i)(γ) = E

{
L(i)(γ)

}
,

for 1 ≤ i ≤ p. Note that µ(γ) =
∑p

i=1 µ
(i)(γ). We use Bernstein’s block method on page 316

in Ibragimov & Linnik (1971); see also Chen et al. (2014). Partition the sequence

σ−1(γ)
{
L(i)(γ)− µ(i)(γ)

}
, 1 ≤ i ≤ p,

into r blocks, where each block contains b variables such that rb ≤ p < (r + 1)b. Further, for 180

each 1 ≤ j ≤ r, we partition the jth block into two sub-blocks with a larger one Aj1 and a
smaller one Aj2. Suppose each Aj1 has b1 variables and each Aj2 has b2 = b− b1 variables.
We require r →∞, b1 →∞, b2 →∞, rb1/p→ 1 and rb2/p→ 0 as p→∞. We write

Aj1(γ) =

b1∑
i=1

[
L{(j−1)b+i}(γ)− µ{(j−1)b+i}(γ)

]
;

Aj2(γ) =

b2∑
i=1

[
L{(j−1)b+b1+i}(γ)− µ{(j−1)b+b1+i}(γ)

]
.

Further define

L1 = σ−1(γ)
r∑
j=1

Aj1(γ);

L2 = σ−1(γ)
r∑
j=1

Aj2(γ);

L3 = σ−1(γ)

p∑
i=rb+1

{
L(i)(γ)− µ(i)(γ)

}
.

We have decomposition 185

σ−1(γ) {L(γ)− µ(γ)} = L1 + L2 + L3.

The Bernstein’s block method makes Ai1’s “almost” independent, thus the study of L1 may
be related to the well-studied cases of sums of independent random variables. Also, since b2
is small compared with b1, the sum L2 and L3 will be small compared with the total sum of
variables in the sequence, i.e., σ−1(γ) {L(γ)− µ(γ)}. We next show

σ−1(γ) {L(γ)− µ(γ)} = L1 + op(1).

As E (L2) = E (L3) = 0, it is sufficient to prove that var (L2) = var (L3) = o(1). Consider 190

var [L2] and we have

var (L2) = σ−2(γ) var


r∑
j=1

Aj2(γ)


≤ σ−2(γ)

r∑
j1=1

r∑
j2=1

b2∑
i1=1

b2∑
i2=1

∣∣∣cov
{
L(j1b+b1+i1)(γ), L(j2b+b1+i2)(γ)

}∣∣∣ .
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We have the following α-mixing inequality (see, e.g., Guyon, 1995) that for any ε > 0

cov{nγ/2L(i)(γ), nγ/2L(j)(γ)} ≤ 8αX(|i− j|)
ε

2+ε max
i

[E{nγ/2L(i)(γ)}2+ε]
2

2+ε .

Then take ε = 1 and from Proposition 1 we have∣∣∣cov
{
L(j1b+b1+i1)(γ), L(j2b+b1+i2)(γ)

}∣∣∣
= n−γ

∣∣∣cov
{
nγ/2L(j1b+b1+i1)(γ), nγ/2L(j2b+b1+i2)(γ)

}∣∣∣195

≤ Bn−γαX{|(j1b+ b1 + i1)− (j2b+ b1 + i2)|}
1
3

≤ Bn−γMδ|j1b+i1−j2b−i2|/3

where B is some big constant. The above result implies that

var (L2) ≤ σ−2(γ)
r∑

j1=1

r∑
j2=1

b2∑
i1=1

b2∑
i2=1

∣∣∣cov
{
L(j1b+b1+i1)(γ), L(j2b+b1+i2)(γ)

}∣∣∣
≤ σ−2(γ)

r∑
j1=1

r∑
j2=1

b2∑
i1=1

b2∑
i2=1

n−γBMδ|j1b+i1−j2b−i2|/3

= O(1)
nγ

p
rb2n

−γ = O(1)
rb2
p
,

which goes to 0 as p→∞. This implies L2 = op(1). Similarly, we can show that L3 = op(1)200

under the strong mixing assumption. Therefore, we only need to focus on L1. Based on the
similar arguments on page 338 in Ibragimov & Linnik (1971), we have for properly chosen r
and b2 ∣∣E {exp (itL1)} − Er

[
exp

{
itσ(γ)−1A1,1(γ)

}]∣∣ ≤ 16rαX(b2)→ 0.

This implies that there exist independent random variables {ξj ; j = 1, · · · , r} such that
ξj and Aj1(γ) are identically distributed and L1 has the same asymptotic distribution as205

σ−1(γ)
∑r

j=1 ξj . Then, we only need to show that the central limit theorem holds for
σ−1(γ)

∑r
j=1 ξj . This can be done by checking the Lyapunov condition. In particular, from

the moment bounds in Theorem 1 in Kim (1994), the strong mixing assumption implies

E
{
σ−1(γ)A1,1(γ)

}4
= σ−4(γ)n−2γ E

[ b1∑
i=1

nγ/2
{
L(i)(γ)− µ(i)(γ)

}]4

= O(1)σ−4(γ)n−2γb21

{
B1 +B2

b1∑
i=1

il−1α(i)ε/(4+ε)

}

= O(1)
n2γ

p2
n−2γb21 = O

(
b21
p2

)
,

where B1 and B2 are constants. Thus we have
∑r

j=1 σ
−4(γ) E ξ4

j = O
(
rb21p

−2
)

= o(1) and210

the Lyapunov condition holds.
Thus, for any finite γ ∈ Γ, we have proved the asymptotic normal distribution of L(γ). For
any linear combination of L(γ)’s with respect to different γ, a similar argument as above gives
the asymptotic normal distribution. Then the Cramér-Wold Theorem implies the asymptotic
joint distribution of {L(γ); γ ∈ Γ}.215



An adaptive two-sample test for high-dimensional means 17

(ii) The conclusion follows directly from the proof of Theorem 6 in Cai et al. (2014). In particular,
let n = n1n2

n1+n2
and ζn = 2h−1/2

√
log(p+ n), where h is defined in the moment assumption

to ensure max k=1,2
1≤j≤p

E{eh(X
(j)
k1
−µ(j)

k
)2} <∞. We write

Z
(j)
k,i =

X
(j)
k,i√
σk,jj

I


∣∣∣X(j)

k,i

∣∣∣
√
σk,ii

≤ ζnk


for k = 1, 2 and 1 ≤ i ≤ nk. Let

L̄(j) =
1

n1

n1∑
i=1

Z
(j)
1i −

1

n2

n2∑
i=1

Z
(j)
2i , 1 ≤ j ≤ p.

From the proof of Theorem 6 in Cai et al. (2014), 220

pr
{

n1n2

n1 + n2
max

1≤j≤p

(
L̄(j)

)2
− ap ≤ x

}
→ exp

{
− 1√

π
exp

(
−x

2

)}
, (3)

where ap = 2 log p− log(log p).
We write L(j) = (X̄

(j)
1 /
√
σ1,jj − X̄(j)

2 /
√
σ2,jj). Note that L(∞) = max1≤j≤p

(
L(j)

)2
. Next

we show that

pr
{
n max

1≤j≤p

(
L̄(j)

)2
− ap > x

}
∼ pr {nL(∞)− ap > x} .

We have under the null hypothesis

pr
{

max
1≤j≤p

√
n
∣∣∣L̄(j) − L(j)

∣∣∣ > (log p)−1

}
≤ pr

{
max

1≤j≤p
max
k=1,2

1≤i≤nk

(X
(j)
k,i − µ

(j)
k )/
√
σk,jj > ζn

}

≤ np max
1≤j≤p

pr

{
e
h

(
X

(j)
k,1
−µ(j)

k

)2

/σk,jj
> ehζ

2
n

}
= O

(
p−1 + n−1

)
.

225

This implies that

pr
{
n max

1≤j≤p

(
L̄(j)

)2
− ap > x

}
= pr

[
nL(∞) + n

{
max

1≤j≤p

(
L̄(j)

)2
− max

1≤j≤p

(
L(j)

)2
}
− ap > x

]
= pr

[
nL(∞) + n

{
max

1≤j≤p

(
L̄(j)

)2
− max

1≤j≤p

(
L(j)

)2
}
− ap > x;

max
1≤j≤p

√
n
∣∣∣L̄(j) − L(j)

∣∣∣ < (log p)−1

]
+ o(1).
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The above probability is bounded above/below by

pr
{
nL(∞)±

( 2

log p

√
n max

1≤j≤p

∣∣∣L(j)
∣∣∣+

1

(log p)2

)
− ap > x

}
.

Note that pr
{

max1≤j≤p
√
nL(j) > (log p)1/2+ε

}
= o(1). Then we have

pr
{
n max

1≤j≤p

(
L̄(j)

)2
− ap > x

}
∼ pr {nL(∞)− ap > x+ o(1)} ,

which completes the proof for asymptotic distribution of L(∞).230

(iii) The proof of the asymptotic independence follows from a similar argument as that in Hsing
(1995). Consider the sequence of random variables L̃(j)(γ) defined on the conditional proba-
bility measure p̃r, given the event nL(∞) < ap + y such that

p̃r
{
L̃(j)(γ) ≤ xj , 1 ≤ j ≤ p

}
= pr

{
L(j)(γ) ≤ xj , 1 ≤ j ≤ p

∣∣∣ n1n2

n1 + n2
L(∞) < ap + y

}
.

To show the asymptotic independence, we only need prove the asymptotic normality of
σ−1(γ){L̃(γ)− µ(γ)} = σ−1(γ)

∑p
i=1{L̃(j)(γ)− µ(i)} as in proof (i).235

As the proof in (i), partition the sequence

σ−1(γ)
{
L̃(i)(γ)− µ(i)(γ)

}
, for 1 ≤ i ≤ p,

into r blocks, where each block contains b variables such that rb ≤ p < (r + 1)b. For each of
the r blocks, we consider dividing it into two sub-blocks; a larger sub-block Ãj1 with the first
b1 variables and a smaller sub-block Ãj2 with the last b2 = b− b1 variables. We write

Ãj1(γ) =

b1∑
i=1

{
L̃((j−1)b+i)(γ)− µ((j−1)b+i)(γ)

}
, 1 ≤ j ≤ r;

240

Ãj2(γ) =

b2∑
i=1

{
L̃((j−1)b+b1+i)(γ)− µ((j−1)b+b1+i)(γ)

}
, 1 ≤ j ≤ r.

Therefore, we can write

σ−1(γ)
{
L̃(γ)− µ(γ)

}
= L̃1 + L̃2 + L̃3,

where

L̃1 = σ−1(γ)
r∑
j=1

Ãj1(γ);

L̃2 = σ−1(γ)

r∑
j=1

Ãj2(γ);

L̃3 = σ−1(γ)

p∑
j=rb+1

{
L̃(j)(γ)− µ(j)(γ)

}
.
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Our goal is to show that σ(γ)−1
{
L̃(γ)− µ(γ)

}
satisfies the central limit theorem. We first

show that Ẽ
(
L̃2

2

)
= Ẽ

(
L̃2

3

)
= o(1), where Ẽ is the expectation under the conditional prob-

ability measure p̃r. In particular, 245

Ẽ
(
L̃2

2

)
= σ−2(γ)Ẽ

{( r∑
j=1

Ãj2(γ)

)2}

≤ σ−2(γ)

∑
i 6=j

[
Ẽ
{
Ã2
i2(γ)

}]1/2 [
Ẽ
{
Ã2
j2(γ)

}]1/2
+

p∑
j=1

Ẽ
{
Ã2
j2(γ)

}
≤ σ−2(γ)

[
pr
{

n1n2

n1 + n2
L(∞) < ap + y

}]−1

×

∑
i 6=j

[
E
{
A2
i2(γ)

}]1/2 [
E
{
A2
j2(γ)

}]1/2
+

p∑
j=1

E
{
A2
j2(γ)

} ,

where in the last step we use the fact that 250

Ẽ
{
Ã2
j2(γ)

}
=

E
{
A2
j2(γ) | n1n2

n1+n2
L(∞) < ap + y

}
pr
{

n1n2
n1+n2

L(∞) < ap + y
} ≤

E
{
A2
j2(γ)

}
pr
{

n1n2
n1+n2

L(∞) < ap + y
} .

The above bound goes to 0 under the strong mixing assumption by choosing proper conver-
gence rate of b2; see Equation (18.4.8) of Ibragimov & Linnik (1971). Similarly, we can show
that Ẽ

(
L̃2

3

)
= o(1). Therefore, we only need to focus on L̃1 part.

We need the following result:

α̃X(l) ≤ 4
pr {Lb2(∞) > ap + y}+ α(l)[
P
{

n1n2
n1+n2

L(∞) < ap + y
}]3 ,

where Ll = max1≤h≤p−l;h≤k≤h+l

{
n1n2
n1+n2

L(k)(∞)
}

. The proof follows from a similar argu- 255

ment as that of Lemma 2.2 in Hsing (1995). Then from a similar argument to that on page 338
in Ibragimov & Linnik (1971), we obtain∣∣∣Ẽ{exp

(
itL̃1

)}
− Ẽr

[
exp

{
itσ−1(γ)Ãj1(γ)

}]∣∣∣
≤ 16rα̃X(b2)

≤ 64r
pr {Lb2(∞) > ap + y}+ αX(b2)[

pr
{

n1n2
n1+n2

L(∞) < ap + y
}]3 .

For the chosen r, b, we have the above quantity goes to 0. Thus σ(γ)−1{L̃(γ)− µ(γ)} has the
same limiting distribution as σ−1(γ)

∑r
i=1 ξ̃i, where ξ̃i’s are independent random variables, 260

and ξ̃i and Ãi1(γ) are identically distributed under measure p̃r. Following a similar argument
as in Hsing (1995), we can show that Ẽ{σ−1(γ)

∑r
i=1 ξ̃i} → 0 and Ẽ[{σ−1(γ)

∑r
i=1 ξ̃i}2]→
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1. Further check the Lyapunov condition that

σ−4(γ)
r∑
i=1

Ẽ
(
ξ̃4
i

)
≤ σ−4(γ)

1

pr
{

n1n2
n1+n2

L(∞) < ap + y
} r∑

i=1

E
(
ξ4
i

)
→ 0,

where ξi’s are defined as those in proof (i) and the convergence result also fol-265

lows from (i). This implies the asymptotic normality of the conditional distribu-
tion given event n1n2

n1+n2
L(∞) < ap + y. Then we have the asymptotic independence of

[{L(γ)− µ(γ)} /σ(γ)]Tγ∈Γ′ and L(∞). �

1·4. An asymptotic power study and selection of Γ

To study the power performance of different test statistic L(γ), we consider a special case270

when the signal strength is fixed at the same level, denoted by δ, and n1 = n2 = n/2. For
notational convenience, we also assume σi = 1. We study the dense and sparse signal cases
separately.

Case 1 dense signal with β < 1/2. From Theorem 2 in Section 3.3, the asymptotic power of275

L(γ) with γ <∞ is mainly determined by the term {µA(γ)− µ(γ)}/σA(γ). In addition, the
asymptotic power of L(γ) goes to 1 if nγ/2{µA(γ)− µ(γ)}/p1/2 →∞. This implies that for
any finite γ, a sufficient condition for the asymptotic power of L(γ) going to 1 is

δ

n−1/2p(2β−1)/(2γ)
→∞, as p, n→∞. (4)

Note that p(2β−1)/(2γ) → 0 as p→∞. Therefore, to compare the asymptotic powers of L(γ)’s,
we focus on the local alternative such that

n1/2δ → 0, as p, n→∞.

Equivalently, we write

δ = n−1/2r1/2, where r → 0 as p, n→∞.

Here r indicates the signal strength.
Under this alternative, when γ is odd,280

µA(γ)− µ(γ) =

p∑
i=1

γ∑
c=1

(
γ

c

)
δciµ

(i)(γ − c),

∼ γ
p∑
i=1

δiµ
(i)(γ − 1)

∼
(γ−1)/2∑
d=0

γ!

d!{(γ − 1)/2− d}!
× r1/2p1−βn−γ/2,

where an,p ∼ bn,p as n, p→∞ means that an,p = {1 + o(1)}bn,p. Similarly, when γ is even,

µA(γ)− µ(γ) ∼ o(1)r1/2p1−βn−γ/2.

Furthermore, under this local alternative,

σ2
A(γ) ∼ σ2(γ) ∼ cγpn−γ
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where cγ is some constant depending on γ and is given in Proposition 2.
From the above results, we have that as n, p→∞,

µA(γ)− µ(γ)

σA(γ)
∼
∑(γ−1)/2

d=0
γ!

d!{(γ−1)/2−d}! × r
1/2p1/2−β

c
1/2
γ

if γ is odd, (5)

µA(γ)− µ(γ)

σA(γ)
∼ o(1)r1/2p1/2−β if γ is even. (6)

The above results imply that the asymptotic test power is not going to 1 if r1/2p1/2−β <∞.
Therefore, we focus on the local alternative when

r → 0 and r1/2p1/2−β →∞.

From approximations (5) and (6), L(γ) with odd γ has asymptotic power going to 1 while that
with even γ does not, i.e., under the considered alternative, L(γ) with odd γ is more powerful
than even γ. Therefore, we only need to focus on odd γ’s and compare their power. To determine
which odd γ gives an asymptotically more powerful test, we only need to find which γ maximizes

c−1/2
γ

(γ−1)/2∑
d=0

γ!

d!{(γ − 1)/2− d}!

To simplify our discussion, we first consider the simplest case when σij = 0 for i 6= j. In this
case,

c−1/2
γ

(γ−1)/2∑
d=0

γ!

d!{(γ − 1)/2− d}!
=

∑(γ−1)/2
d=0

γ!
d!{(γ−1)/2−d}!√∑γ

d=0
(2γ)!

d!(γ−d)!

,

which has maximum when γ = 1. Therefore, L(1) is asymptotically most powerful. 285

More generally, consider the case when σij ≥ 0, a similar calculation following Proposition
2 also gives that L(1) is asymptotically more powerful under the considered alternative. On the
other hand, due to the slow convergence of the asymptotic results which depends on p1/2−β , the
finite performance of L(1) may not be as good as other L(γ)’s with γ > 1, especially when β is
close to 1/2 and p is not large enough. 290

We illustrate these results through simulations. For most of the simulation results in Section
2 of the supplementary material, we can see that L(1) is most powerful when β = 0.1, i.e., the
signals are very dense. We further study the impact of sample size and sparsity parameters in
Tables 13–15, which present results when the sample sizes n1 and n2 vary from 25 to 200 and
and the sparsity parameter is β = 0.1, 0.2, and 0.5. These results show that sample size has little 295

impact on the selection of parameter γ in the sum-of-powers tests for fixed signal sparsity β
and fixed dimension p = 200. On the other hand, when β becomes closer to 0.5, L(1) becomes
less powerful compared with other L(γ) tests, which is mainly due to the slow convergence of
the asymptotic results which depends on p1/2−β as discussed above. To validate this argument,
we conduct a new study with β = 0.2, n1 = n2 = 50, and the dimension p from 200 to 1000. 300

Table 16 presents the corresponding simulation results. We can see that when p = 200, L(1) is
not as powerful as L(2) and L(3); however, as p becomes larger, L(1) becomes more powerful.
These observations are consistent with the theoretical result that L(1) is asymptotically most
powerful when signals are dense.

Similarly, when the absolute value of the signal strength is fixed at the same level such that 305

|δi| = δ for i ∈ Sβ , and the signs are random with half positive and half negative. Then a similar
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argument as above would give L(2) is asymptotically most powerful. Therefore, motivated by
these results, we would recommend including small γ’s such as {1, 2} in Γ due to the asymptotic
optimality under the considered special case. On the other hand, we also recommend having
medium γ’s such as {3, . . . , 6} in Γ to have better finite sample performance, especially when β310

is close to 1/2.

Case 2 sparse signal with β > 1/2. Following the work in Cai et al. (2014), when the
signal strength is fixed at the same level (2r log p)1/2n−1/2 for certain constant r, the power
of L(∞) converges to 1 under certain regularity conditions. And it was also shown that315

the rate r(log p)1/2n−1/2 is minimax optimal for testing against sparse alternatives. On the
other hand, under this alternative, L(γ) with finite γ loses power since {µA(γ)− µ(γ)}/σA(γ)
is bounded. Therefore, for the sparse signal case, L(∞) is more powerful than L(γ) with γ <∞.

Combining the above results, we would recommend including small γ’s such as {1, 2} and320

medium γ’s such as {3, . . . , 6} in Γ to achieve balance between the asymptotic and finite sample
performances when the signals are dense; in addition, we also recommend including {∞} in Γ,
which is more powerful when the signals are sparse. Our extensive simulation studies in the next
section show such a choice of Γ gives stable and good performance.
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2. SIMULATIONS: MULTIVARIATE NORMAL DATA 325

We considered simulation set-ups similar to those of Chen et al. (2014) to compare the pro-
posed sum-of-powers and adaptive tests with several existing tests proposed by Bai & Saranadasa
(1996), Chen & Qin (2010), Srivastava & Du (2008), Cai et al. (2014), and Chen et al. (2014). The
candidate set of γ for the sum-of-powers tests was set as Γ = {1, . . . , 6,∞}. We generated two
groups of random samples {X1i}n1

i=1 and {X2j}n2

j=1 with sample sizes n1 = n2 = 50 from two 330

multivariate normal distributions with dimension p = 200, Xki ∼ N(µk,Σ) for k = 1, 2. With-
out loss of generality, we always set µ1 = 0. Under the null hypothesis, we had µ2 = 0;under the
alternative hypothesis, we had bp1−βc non-zero elements in µ2, where β controlled the sparsity
with its value ranging from 0 to 1. In our simulations, we used β = 0.1, 0.2, ..., 0.9, covering
very dense signals for an alternative hypothesis at β = 0.1, to dense and then to only moderately 335

dense at β = 0.2 and β = 0.5, finally to moderately sparse and very sparse signals at β = 0.7 and
0.9 respectively. Also, we assumed that the non-zero elements of µ2 were uniformly distributed
among positions {1, . . . , p}, and their values were constant {2r(1/n1 + 1/n2) log p}1/2, where
r controlled the signal strength. Denote the common covariance matrix Σ = D1/2RD1/2, where
R was the correlation matrix and the diagonal matrix D contained the variances. We considered 340

four structures for the correlation matrix R = (rij):

(a) 1-band structure; that is rii = 1 for i = 1, . . . , p, rij = 0.4 for |i− j| = 1, and rij = 0 for
|i− j| > 1.

(b) Autoregressive structure with order 1; that is, rij = 0.6|i−j| for i, j = 1, . . . , p.
(c) Overlapping block diagonal structure; as used in Rothman (2012) and Xue et al. (2012), we

partitioned the p variables into K = 20 blocks of an equal size, say Jk for k = 1, . . . , 20.
Denote ik as the maximum index in Jk and

rij = 0.6I{i=j} + 0.4
K∑
k=1

I{i∈Jk,j∈Jk} + 0.4
K−1∑
k=1

(I{i=ik,j∈Jk+1} + I{i∈Jk+1,j=ik}).

(d) Compound symmetric structure; that is, rij = 1I{i=j} + 0.4I{i 6=j}. 345

We also considered two cases for D:

(i) Equal variances; that is, D = Ip, an identity matrix;
(ii) Unequal variances; that is, D = diag(d11, . . . , dpp) with dii ∼ U(0.1, 10) independently.

By default we applied the banding estimator (Bickel & Levina, 2008) to obtain the estimates
for Σ; we also considered two other estimators, an L1-penalized estimator (Xue et al., 2012) 350

and the sample covariance estimator. Five-fold cross-validation was used to select the tuning pa-
rameters, i.e. the bandwidth k ∈ {0, 1, 2, ..., 50} for the banding estimator (unless specified oth-
erwise) and λ ∈ {0, 0.05, 0.1, ...., 1} for the L1-penalized estimator implemented in R package
hglasso. We considered p = 200 and p = 500. For each setting, we generated 1,000 replicates
to estimate the empirical type I error or power of each test. The p-values were calculated based 355

on both the asymptotics results in the theorem and the permutation method (with B = 1, 000).
The nominal significance level was set at α = 0.05.
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2·1. Results for p = 200

Tables 1–4 present the results for p = 200 using the banding covariance estimator with its
bandwidth selected by 5-fold cross validation. The main conclusions about the relative power360

performance of the various tests held as discussed in the text, regardless of what true covari-
ance matrices were used. In particular, we note that the results were not sensitive to whether
the marginal variances of the variables were the same or not; that is, whether D = Ip or
D = diag(dii) was used. It is remarkable that even if the true covariance matrix was compound
symmetric, under which the mixing condition C2 was violated, the proposed asymptotic adaptive365

sum-of-powers tests still performed quite well.

Table 1. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and

1-band covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.02 r = 0.04 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 5 (4) 81 (79) 99 (98) 18 (18) 24 (24) 6 (6) 6 (6)
SPU(2) 5 (6) 28 (28) 60 (63) 67 (65) 90 (89) 20 (20) 33 (33)
SPU(3) 4 (5) 66 (67) 95 (94) 67 (69) 93 (92) 30 (34) 58 (61)
SPU(4) 5 (6) 21 (23) 51 (53) 81 (83) 98 (98) 62 (63) 87 (86)
SPU(5) 5 (6) 34 (41) 68 (72) 79 (80) 98 (97) 64 (67) 91 (90)
SPU(6) 4 (5) 14 (18) 30 (38) 80 (82) 98 (98) 72 (74) 94 (93)
SPU(∞) 7 (5) 12 (10) 18 (16) 69 (61) 92 (88) 77 (72) 96 (92)
aSPU 5 (6) 64 (69) 94 (96) 79 (80) 98 (97) 73 (67) 94 (90)
CLZ 9 (6) 32 (21) 62 (48) 87 (78) 99 (97) 49 (35) 71 (57)
CLX 7 (5) 12 (10) 18 (16) 69 (61) 92 (88) 77 (72) 96 (92)
BZ 5 (6) 29 (28) 61 (63) 67 (65) 90 (90) 21 (20) 34 (34)
CQ 5 (6) 29 (28) 61 (63) 67 (65) 90 (90) 21 (20) 34 (34)
SD 4 (6) 25 (28) 57 (63) 64 (64) 88 (88) 17 (20) 30 (34)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.10 r = 0.15 r = 2.5 r = 4.0 r = 3.5 r = 5

SPU(1) 5 (5) 84 (84) 96 (95) 16 (16) 22 (22) 4 (6) 5 (5)
SPU(2) 5 (4) 24 (23) 40 (38) 48 (46) 79 (77) 8 (7) 10 (9)
SPU(3) 4 (4) 46 (46) 65 (64) 46 (47) 78 (78) 5 (6) 7 (7)
SPU(4) 5 (5) 13 (13) 20 (19) 50 (49) 82 (82) 8 (8) 11 (10)
SPU(5) 4 (5) 14 (16) 21 (24) 42 (45) 76 (78) 4 (6) 7 (8)
SPU(6) 5 (6) 8 (10) 10 (13) 37 (41) 72 (75) 6 (7) 8 (11)
SPU(∞) 7 (5) 34 (28) 55 (48) 79 (75) 98 (97) 86 (83) 97 (97)
aSPU 6 (5) 69 (70) 89 (90) 75 (69) 98 (97) 79 (72) 96 (93)
CLZ 9 (4) 71 (57) 92 (85) 85 (74) 99 (97) 57 (41) 75 (64)
CLX 7 (5) 34 (29) 55 (48) 79 (74) 98 (97) 86 (84) 97 (97)
BZ 5 (5) 25 (23) 40 (38) 49 (46) 80 (77) 8 (7) 11 (9)
CQ 5 (5) 25 (23) 40 (38) 49 (46) 80 (77) 8 (7) 11 (9)
SD 4 (4) 64 (66) 88 (90) 55 (56) 86 (87) 21 (22) 34 (35)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996);
CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 2. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and

AR1 covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.04 r = 0.06 r = 0.6 r = 0.9 r = 1.5 r = 2.5

SPU(1) 5 (5) 78 (76) 92 (91) 12 (12) 15 (14) 6 (5) 6 (5)
SPU(2) 5 (5) 47 (46) 69 (67) 50 (49) 76 (75) 12 (14) 20 (22)
SPU(3) 4 (4) 71 (70) 88 (89) 48 (50) 78 (76) 14 (18) 38 (40)
SPU(4) 5 (5) 38 (37) 61 (60) 71 (71) 95 (95) 40 (41) 78 (78)
SPU(5) 4 (5) 47 (49) 70 (72) 68 (70) 93 (93) 46 (48) 82 (83)
SPU(6) 4 (4) 26 (29) 42 (45) 72 (76) 95 (96) 54 (58) 89 (89)
SPU(∞) 6 (5) 18 (15) 25 (21) 67 (59) 90 (87) 63 (63) 92 (90)
aSPU 6 (5) 66 (66) 85 (85) 69 (68) 94 (93) 56 (54) 90 (87)
CLZ 12 (5) 56 (34) 77 (57) 82 (67) 98 (93) 40 (23) 65 (42)
CLX 6 (5) 18 (15) 25 (21) 67 (60) 90 (88) 63 (63) 92 (90)
BZ 6 (5) 48 (46) 70 (67) 52 (49) 77 (75) 13 (15) 21 (23)
CQ 6 (5) 48 (46) 70 (67) 52 (49) 77 (75) 13 (15) 21 (23)
SD 4 (5) 43 (45) 67 (68) 46 (49) 73 (74) 11 (14) 18 (22)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.15 r = 0.25 r = 2.5 r = 3.5 r = 3.0 r = 4.5

SPU(1) 5 (5) 71 (68) 91 (90) 11 (10) 13 (12) 5 (5) 5 (5)
SPU(2) 5 (5) 30 (28) 56 (53) 38 (35) 56 (55) 7 (6) 8 (7)
SPU(3) 4 (4) 43 (42) 67 (66) 32 (33) 53 (52) 5 (5) 5 (5)
SPU(4) 4 (4) 18 (17) 31 (29) 42 (41) 64 (63) 5 (5) 8 (6)
SPU(5) 4 (4) 17 (20) 30 (32) 35 (37) 57 (59) 4 (4) 5 (6)
SPU(6) 3 (4) 10 (12) 15 (18) 34 (37) 53 (59) 4 (5) 5 (6)
SPU(∞) 6 (5) 54 (48) 89 (86) 78 (74) 95 (93) 76 (74) 94 (93)
aSPU 6 (5) 64 (63) 91 (89) 73 (66) 92 (88) 66 (60) 91 (88)
CLZ 12 (5) 88 (72) 99 (97) 81 (63) 94 (85) 48 (26) 68 (45)
CLX 6 (5) 54 (50) 89 (86) 78 (74) 95 (93) 76 (74) 94 (93)
BZ 6 (4) 32 (28) 57 (54) 39 (35) 58 (55) 7 (6) 8 (7)
CQ 6 (4) 32 (28) 57 (54) 39 (35) 58 (55) 7 (6) 8 (7)
SD 4 (5) 71 (73) 97 (97) 40 (42) 61 (63) 12 (13) 20 (21)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 3. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and

overlapping block diagonal covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.04 r = 0.06 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 4 (5) 64 (63) 81 (80) 10 (9) 12 (12) 5 (5) 5 (5)
SPU(2) 6 (5) 40 (38) 62 (59) 42 (41) 68 (66) 13 (12) 20 (18)
SPU(3) 5 (5) 60 (60) 79 (79) 41 (42) 71 (71) 17 (18) 36 (38)
SPU(4) 6 (6) 34 (34) 54 (53) 68 (67) 93 (93) 50 (48) 80 (80)
SPU(5) 4 (5) 41 (42) 63 (64) 64 (66) 91 (92) 56 (58) 84 (85)
SPU(6) 5 (5) 25 (28) 38 (42) 71 (74) 94 (95) 67 (69) 91 (92)
SPU(∞) 7 (6) 19 (16) 26 (21) 67 (60) 91 (90) 77 (73) 95 (94)
aSPU 6 (6) 50 (52) 72 (73) 67 (65) 93 (91) 70 (64) 92 (90)
CLZ 16 (6) 56 (34) 75 (53) 82 (65) 98 (92) 48 (24) 66 (40)
CLX 7 (6) 19 (16) 26 (21) 67 (61) 91 (89) 77 (74) 95 (93)
BZ 6 (5) 42 (38) 64 (59) 45 (41) 71 (66) 15 (12) 22 (19)
CQ 6 (5) 42 (38) 64 (59) 45 (41) 71 (66) 15 (12) 22 (19)
SD 5 (5) 36 (37) 58 (59) 38 (41) 64 (66) 11 (12) 17 (18)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.15 r = 0.25 r = 2.5 r = 3.5 r = 3.0 r = 4.5

SPU(1) 4 (5) 56 (56) 78 (77) 10 (9) 11 (11) 5 (5) 4 (5)
SPU(2) 6 (5) 28 (25) 48 (46) 32 (29) 48 (47) 8 (7) 9 (8)
SPU(3) 5 (6) 34 (34) 56 (56) 28 (28) 45 (44) 6 (6) 7 (7)
SPU(4) 6 (5) 16 (16) 29 (27) 40 (39) 61 (61) 7 (6) 9 (8)
SPU(5) 5 (6) 17 (18) 27 (29) 31 (34) 54 (57) 5 (6) 6 (7)
SPU(6) 5 (6) 11 (12) 15 (18) 33 (37) 52 (58) 5 (7) 6 (8)
SPU(∞) 7 (6) 56 (50) 86 (83) 80 (74) 94 (93) 76 (73) 95 (93)
aSPU 7 (6) 55 (53) 86 (84) 72 (64) 92 (88) 66 (60) 90 (87)
CLZ 16 (6) 86 (67) 99 (95) 80 (58) 96 (83) 48 (24) 66 (40)
CLX 7 (6) 56 (51) 86 (84) 80 (74) 94 (93) 76 (73) 95 (93)
BZ 7 (5) 29 (26) 50 (46) 34 (30) 50 (47) 9 (7) 10 (8)
CQ 7 (5) 29 (26) 50 (46) 34 (30) 50 (47) 9 (7) 10 (8)
SD 5 (5) 64 (65) 93 (93) 33 (35) 51 (53) 11 (12) 17 (18)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 4. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and

compound symmetric covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.02 r = 0.04 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 6 (6) 10 (9) 11 (10) 7 (7) 7 (7) 7 (6) 7 (6)
SPU(2) 8 (6) 11 (10) 14 (12) 12 (9) 14 (11) 9 (7) 10 (8)
SPU(3) 7 (6) 10 (10) 13 (12) 13 (11) 18 (16) 9 (8) 11 (10)
SPU(4) 6 (6) 10 (9) 12 (12) 18 (18) 34 (35) 15 (14) 30 (30)
SPU(5) 5 (6) 9 (10) 11 (12) 23 (26) 42 (47) 24 (26) 48 (52)
SPU(6) 5 (6) 8 (10) 10 (13) 29 (36) 55 (64) 36 (45) 74 (81)
SPU(∞) 6 (6) 8 (8) 11 (11) 53 (55) 77 (79) 75 (77) 95 (96)
aSPU 6 (7) 8 (9) 11 (12) 41 (49) 65 (72) 68 (72) 92 (95)
CLZ 23 (6) 28 (10) 34 (12) 67 (14) 93 (30) 34 (7) 44 (8)
CLX 6 (7) 8 (9) 11 (11) 53 (56) 77 (79) 75 (77) 95 (96)
BZ 8 (6) 12 (10) 14 (12) 13 (9) 15 (11) 10 (7) 10 (8)
CQ 8 (6) 12 (10) 14 (12) 13 (9) 15 (11) 10 (7) 10 (8)
SD 3 (6) 5 (9) 7 (12) 5 (9) 6 (11) 4 (7) 4 (8)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.2 r = 0.3 r = 2.5 r = 4.0 r = 3 r = 5

SPU(1) 6 (6) 11 (11) 13 (13) 7 (7) 8 (7) 6 (6) 6 (6)
SPU(2) 8 (6) 14 (11) 17 (14) 11 (9) 13 (11) 8 (6) 8 (6)
SPU(3) 7 (6) 12 (11) 14 (13) 12 (10) 15 (14) 7 (6) 7 (6)
SPU(4) 6 (6) 11 (11) 13 (13) 13 (13) 24 (25) 6 (6) 7 (6)
SPU(5) 6 (6) 10 (10) 11 (13) 14 (16) 28 (32) 6 (6) 6 (6)
SPU(6) 5 (6) 8 (10) 10 (12) 14 (20) 32 (40) 5 (6) 5 (7)
SPU(∞) 6 (6) 55 (57) 81 (82) 69 (71) 94 (95) 75 (76) 97 (97)
aSPU 6 (7) 43 (50) 70 (76) 57 (64) 89 (92) 68 (72) 95 (96)
CLZ 22 (6) 64 (19) 86 (34) 64 (12) 91 (24) 34 (7) 47 (8)
CLX 6 (7) 55 (58) 81 (82) 69 (71) 94 (95) 75 (77) 97 (97)
BZ 8 (6) 14 (11) 17 (13) 12 (9) 14 (11) 8 (6) 9 (6)
CQ 8 (6) 14 (11) 17 (13) 12 (9) 14 (11) 8 (6) 9 (6)
SD 3 (6) 10 (17) 15 (25) 5 (9) 6 (11) 4 (7) 4 (8)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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2·2. Results for p = 500 and 1000

Tables 5–7 present the results for p = 500 using the banding estimator with its bandwidth
selected by 5-fold cross validation. The main conclusions remained the same as those for p =
200.370

Table 5. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 500, and

1-band covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.01 r = 0.02 r = 0.4 r = 0.6 r = 1.5 r = 2.1

SPU(1) 6 (6) 88 (87) 99 (99) 15 (14) 19 (18) 6 (6) 6 (6)
SPU(2) 6 (6) 24 (24) 54 (54) 48 (48) 76 (76) 14 (13) 18 (18)
SPU(3) 5 (5) 73 (74) 97 (96) 45 (47) 80 (81) 17 (18) 30 (31)
SPU(4) 5 (5) 17 (20) 41 (44) 64 (68) 94 (94) 44 (46) 68 (70)
SPU(5) 4 (6) 39 (42) 74 (77) 61 (64) 92 (93) 49 (53) 76 (78)
SPU(6) 4 (6) 11 (14) 24 (30) 61 (68) 94 (95) 60 (63) 84 (86)
SPU(∞) 9 (6) 12 (8) 15 (11) 49 (41) 80 (73) 69 (64) 88 (86)
aSPU 6 (6) 73 (76) 97 (98) 64 (63) 94 (94) 64 (58) 85 (83)
CLZ 13 (5) 31 (16) 57 (35) 78 (60) 97 (92) 46 (28) 61 (41)
CLX 9 (6) 12 (8) 15 (11) 49 (41) 80 (73) 69 (65) 88 (86)
BZ 6 (6) 25 (24) 56 (53) 49 (48) 77 (76) 14 (14) 19 (18)
CQ 6 (6) 25 (24) 56 (53) 49 (48) 77 (76) 14 (14) 19 (18)
SD 5 (6) 20 (24) 49 (53) 44 (48) 72 (75) 12 (14) 16 (19)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 6. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 500, and

the first-order autoregressive covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.01 r = 0.02 r = 0.4 r = 0.6 r = 1.5 r = 2.1

SPU(1) 7 (6) 85 (83) 98 (98) 12 (9) 13 (12) 7 (5) 7 (6)
SPU(2) 6 (6) 42 (42) 82 (82) 36 (35) 59 (58) 12 (12) 15 (15)
SPU(3) 5 (5) 78 (78) 97 (97) 30 (30) 57 (57) 12 (13) 20 (21)
SPU(4) 5 (6) 32 (33) 72 (73) 52 (54) 86 (87) 36 (38) 61 (62)
SPU(5) 4 (5) 53 (56) 86 (87) 48 (50) 85 (86) 41 (43) 71 (73)
SPU(6) 4 (6) 21 (25) 49 (56) 53 (58) 90 (92) 55 (58) 81 (83)
SPU(∞) 9 (6) 15 (11) 25 (19) 48 (40) 81 (73) 68 (64) 89 (86)
aSPU 6 (5) 72 (73) 97 (97) 54 (51) 88 (86) 62 (55) 85 (82)
CLZ 18 (6) 58 (30) 87 (68) 76 (51) 96 (86) 46 (22) 62 (34)
CLX 9 (6) 15 (11) 25 (20) 48 (40) 81 (73) 68 (64) 89 (86)
BZ 7 (6) 44 (43) 83 (81) 38 (36) 60 (59) 13 (12) 17 (14)
CQ 7 (6) 44 (43) 83 (81) 38 (36) 60 (59) 13 (12) 17 (14)
SD 6 (6) 39 (42) 78 (80) 32 (36) 55 (58) 10 (12) 13 (15)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).

Table 7. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 500, and

overlapping block diagonal covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.01 r = 0.02 r = 0.4 r = 0.6 r = 1.5 r = 2.1

SPU(1) 6 (6) 72 (71) 88 (87) 8 (7) 8 (8) 6 (6) 6 (5)
SPU(2) 5 (5) 49 (47) 76 (74) 30 (28) 45 (42) 8 (7) 9 (8)
SPU(3) 5 (5) 70 (70) 87 (87) 30 (31) 50 (51) 7 (7) 12 (12)
SPU(4) 6 (6) 44 (44) 69 (69) 64 (64) 89 (89) 23 (24) 43 (43)
SPU(5) 5 (5) 57 (59) 77 (80) 65 (68) 88 (89) 31 (33) 56 (57)
SPU(6) 5 (6) 33 (37) 57 (61) 77 (80) 95 (96) 48 (51) 73 (76)
SPU(∞) 10 (6) 23 (17) 33 (25) 78 (71) 92 (90) 69 (65) 89 (87)
aSPU 7 (6) 60 (61) 81 (82) 73 (68) 93 (91) 60 (54) 85 (79)
CLZ 23 (6) 78 (44) 91 (68) 93 (69) 99 (92) 45 (14) 56 (20)
CLX 10 (7) 23 (18) 33 (26) 78 (72) 92 (90) 69 (64) 89 (87)
BZ 7 (5) 52 (48) 78 (75) 33 (28) 48 (43) 9 (7) 10 (9)
CQ 7 (5) 52 (48) 78 (75) 33 (28) 48 (43) 9 (7) 10 (9)
SD 4 (5) 44 (47) 70 (74) 25 (28) 38 (43) 6 (7) 7 (8)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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2·3. Using other covariance estimators
Tables 8–12 present the results for p = 200 using two alternative covariance matrix estima-

tors. First, we used the sample covariance matrix. It is somewhat surprising that the asymptotic
adaptive sum-of-powers test performed well, including having well-controlled type I error rates.
Among individual sum-of-powers tests, an asymptotic sum-of-powers test with an even integer γ375

was conservative with a test size smaller than the nominal level except for the extreme case with
a compound symmetric covariance matrix, in which the asymptotic sum-of-powers tests might
have slightly inflated type I error rates. Second, we applied the L1-penalized covariance matrix
estimator. It was more time-consuming but did not outperform the banding estimator, yielding
the asymptotic adaptive sum-of-powers tests with possibly inflated type I error rates.380
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Table 8. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and
1-band covariance matrix. The covariance matrix was estimated by the sample

covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.02 r = 0.04 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 5 (4) 82 (79) 98 (98) 18 (18) 24 (24) 7 (6) 7 (6)
SPU(2) 1 (6) 8 (28) 32 (63) 35 (65) 70 (89) 5 (20) 10 (33)
SPU(3) 5 (5) 66 (67) 95 (94) 68 (69) 94 (92) 31 (34) 58 (61)
SPU(4) 2 (6) 10 (23) 30 (53) 70 (83) 96 (98) 47 (63) 80 (86)
SPU(5) 5 (6) 34 (41) 68 (72) 80 (80) 98 (97) 64 (67) 91 (90)
SPU(6) 3 (5) 9 (18) 21 (38) 73 (82) 97 (98) 68 (74) 92 (93)
SPU(∞) 7 (5) 12 (10) 18 (16) 69 (61) 92 (88) 77 (72) 96 (92)
aSPU 4 (6) 64 (69) 94 (96) 75 (80) 97 (97) 71 (67) 93 (90)
CLZ 9 (6) 32 (21) 62 (48) 87 (78) 99 (97) 49 (35) 71 (57)
CLX 7 (5) 12 (10) 18 (16) 69 (61) 92 (88) 77 (72) 96 (92)
BZ 5 (6) 29 (28) 61 (63) 67 (65) 90 (90) 21 (20) 34 (34)
CQ 5 (6) 29 (28) 61 (63) 67 (65) 90 (90) 21 (20) 34 (34)
SD 4 (6) 25 (28) 57 (63) 64 (64) 88 (88) 17 (20) 30 (34)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.10 r = 0.15 r = 2.5 r = 4.0 r = 3.5 r = 5

SPU(1) 5 (5) 84 (84) 96 (95) 17 (16) 23 (22) 6 (6) 6 (5)
SPU(2) 1 (4) 8 (23) 19 (38) 26 (46) 57 (77) 2 (7) 2 (9)
SPU(3) 4 (4) 46 (46) 65 (64) 46 (47) 78 (78) 6 (6) 7 (7)
SPU(4) 3 (5) 8 (13) 12 (19) 40 (49) 75 (82) 4 (8) 7 (10)
SPU(5) 4 (5) 14 (16) 21 (24) 42 (45) 76 (78) 4 (6) 7 (8)
SPU(6) 4 (6) 7 (10) 8 (13) 35 (41) 68 (75) 4 (7) 7 (11)
SPU(∞) 7 (5) 34 (28) 55 (48) 79 (75) 98 (97) 86 (83) 97 (97)
aSPU 5 (5) 68 (70) 88 (90) 73 (69) 97 (97) 78 (72) 95 (93)
CLZ 9 (4) 71 (57) 92 (85) 85 (74) 99 (97) 57 (41) 75 (64)
CLX 7 (5) 34 (29) 55 (48) 79 (74) 98 (97) 86 (84) 97 (97)
BZ 5 (5) 25 (23) 40 (38) 49 (46) 80 (77) 8 (7) 11 (9)
CQ 5 (5) 25 (23) 40 (38) 49 (46) 80 (77) 8 (7) 11 (9)
SD 4 (4) 64 (66) 88 (90) 55 (56) 86 (87) 21 (22) 34 (35)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996);
CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 9. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and
the first-order autoregressive covariance matrix. The covariance matrix was es-

timated by the sample covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.04 r = 0.06 r = 0.6 r = 0.9 r = 1.5 r = 2.5

SPU(1) 4 (5) 77 (76) 91 (91) 12 (12) 14 (14) 6 (5) 6 (5)
SPU(2) 2 (5) 29 (47) 54 (69) 31 (49) 58 (75) 6 (14) 9 (22)
SPU(3) 4 (5) 70 (70) 88 (87) 47 (50) 77 (76) 14 (18) 37 (40)
SPU(4) 3 (5) 27 (39) 47 (61) 61 (71) 91 (95) 29 (41) 71 (78)
SPU(5) 4 (6) 47 (51) 70 (72) 67 (70) 92 (93) 46 (48) 82 (83)
SPU(6) 3 (5) 22 (31) 35 (48) 66 (76) 93 (96) 50 (58) 87 (89)
SPU(∞) 6 (5) 18 (16) 25 (23) 67 (59) 90 (87) 63 (63) 92 (90)
aSPU 5 (6) 62 (66) 82 (84) 67 (68) 92 (93) 56 (54) 90 (87)
CLZ 12 (6) 56 (37) 77 (58) 82 (67) 98 (93) 40 (23) 65 (42)
CLX 6 (5) 18 (16) 25 (22) 67 (60) 90 (88) 63 (63) 92 (90)
BZ 6 (6) 48 (47) 70 (70) 52 (49) 77 (75) 13 (15) 21 (23)
CQ 6 (6) 48 (47) 70 (70) 52 (49) 77 (75) 13 (15) 21 (23)
SD 4 (6) 43 (46) 67 (69) 46 (49) 73 (74) 11 (14) 18 (22)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.15 r = 0.25 r = 2.5 r = 3.5 r = 3.0 r = 4.5

SPU(1) 5 (5) 69 (68) 90 (90) 10 (10) 12 (12) 5 (5) 5 (5)
SPU(2) 2 (5) 18 (28) 40 (53) 23 (35) 40 (55) 3 (6) 3 (7)
SPU(3) 4 (4) 43 (42) 66 (66) 32 (33) 52 (52) 5 (5) 5 (5)
SPU(4) 3 (4) 13 (17) 23 (29) 37 (41) 57 (63) 3 (5) 4 (6)
SPU(5) 4 (4) 17 (20) 29 (32) 35 (37) 56 (59) 4 (4) 5 (6)
SPU(6) 2 (4) 8 (12) 13 (18) 32 (37) 50 (59) 2 (5) 4 (6)
SPU(∞) 6 (5) 54 (48) 89 (86) 78 (74) 95 (93) 76 (74) 94 (93)
aSPU 4 (5) 62 (63) 90 (89) 71 (66) 91 (88) 66 (60) 91 (88)
CLZ 12 (5) 88 (72) 99 (97) 81 (63) 94 (85) 48 (26) 68 (45)
CLX 6 (5) 54 (50) 89 (86) 78 (74) 95 (93) 76 (74) 94 (93)
BZ 6 (4) 32 (28) 57 (54) 39 (35) 58 (55) 7 (6) 8 (7)
CQ 6 (4) 32 (28) 57 (54) 39 (35) 58 (55) 7 (6) 8 (7)
SD 4 (5) 71 (73) 97 (97) 40 (42) 61 (63) 12 (13) 20 (21)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 10. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and
overlapping block diagonal covariance matrix. The covariance matrix was esti-

mated by the sample covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.04 r = 0.06 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 5 (5) 64 (63) 81 (80) 10 (9) 12 (12) 5 (5) 5 (5)
SPU(2) 3 (5) 28 (38) 49 (59) 28 (41) 53 (66) 7 (12) 10 (18)
SPU(3) 5 (5) 61 (60) 79 (79) 42 (42) 70 (71) 17 (18) 37 (38)
SPU(4) 4 (6) 27 (34) 44 (53) 60 (67) 90 (93) 40 (48) 74 (80)
SPU(5) 4 (5) 40 (42) 63 (64) 64 (66) 91 (92) 56 (58) 84 (85)
SPU(6) 4 (5) 22 (28) 34 (42) 67 (74) 93 (95) 64 (69) 89 (92)
SPU(∞) 7 (6) 19 (16) 26 (21) 67 (60) 91 (90) 77 (73) 95 (94)
aSPU 6 (6) 49 (52) 71 (73) 65 (65) 92 (91) 69 (64) 91 (90)
CLZ 16 (6) 56 (34) 75 (53) 82 (65) 98 (92) 48 (24) 66 (40)
CLX 7 (6) 19 (16) 26 (21) 67 (61) 91 (89) 77 (74) 95 (93)
BZ 6 (5) 42 (38) 64 (59) 45 (41) 71 (66) 15 (12) 22 (19)
CQ 6 (5) 42 (38) 64 (59) 45 (41) 71 (66) 15 (12) 22 (19)
SD 5 (5) 36 (37) 58 (59) 38 (41) 64 (66) 11 (12) 17 (18)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.15 r = 0.25 r = 2.5 r = 3.5 r = 3.0 r = 4.5

SPU(1) 5 (5) 56 (56) 78 (77) 10 (9) 11 (11) 5 (5) 5 (5)
SPU(2) 3 (5) 19 (25) 37 (46) 21 (29) 36 (47) 4 (7) 5 (8)
SPU(3) 6 (6) 34 (34) 57 (56) 28 (28) 45 (44) 6 (6) 7 (7)
SPU(4) 5 (5) 14 (16) 23 (27) 34 (39) 56 (61) 6 (6) 7 (8)
SPU(5) 5 (6) 17 (18) 27 (29) 31 (34) 55 (57) 5 (6) 6 (7)
SPU(6) 4 (6) 9 (12) 14 (18) 32 (37) 50 (58) 5 (7) 6 (8)
SPU(∞) 7 (6) 56 (50) 86 (83) 80 (74) 94 (93) 76 (73) 95 (93)
aSPU 6 (6) 56 (53) 85 (84) 70 (64) 92 (88) 66 (60) 90 (87)
CLZ 16 (6) 86 (67) 99 (95) 80 (58) 96 (83) 48 (24) 66 (40)
CLX 7 (6) 56 (51) 86 (84) 80 (74) 94 (93) 76 (73) 95 (93)
BZ 7 (5) 29 (26) 50 (46) 34 (30) 50 (47) 9 (7) 10 (8)
CQ 7 (5) 29 (26) 50 (46) 34 (30) 50 (47) 9 (7) 10 (8)
SD 5 (5) 64 (65) 93 (93) 33 (35) 51 (53) 11 (12) 17 (18)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 11. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and
compound symmetric covariance matrix. The covariance matrix was estimated

by the sample covariance matrix.

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.02 r = 0.04 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 6 (6) 10 (9) 11 (10) 7 (7) 7 (7) 7 (6) 7 (6)
SPU(2) 8 (6) 11 (10) 14 (12) 12 (9) 14 (11) 9 (7) 10 (8)
SPU(3) 7 (6) 10 (10) 13 (12) 13 (11) 18 (16) 9 (8) 11 (10)
SPU(4) 6 (6) 10 (9) 12 (12) 18 (18) 34 (35) 15 (14) 30 (30)
SPU(5) 5 (6) 9 (10) 11 (12) 23 (26) 42 (47) 24 (26) 48 (52)
SPU(6) 5 (6) 8 (10) 10 (13) 29 (36) 55 (64) 36 (45) 74 (81)
SPU(∞) 6 (6) 8 (8) 11 (11) 53 (55) 77 (79) 75 (77) 95 (96)
aSPU 6 (7) 8 (9) 11 (12) 41 (49) 65 (72) 68 (72) 92 (95)
CLZ 23 (6) 28 (10) 34 (12) 67 (14) 93 (30) 34 (7) 44 (8)
CLX 6 (7) 8 (9) 11 (11) 53 (56) 77 (79) 75 (77) 95 (96)
BZ 8 (6) 12 (10) 14 (12) 13 (9) 15 (11) 10 (7) 10 (8)
CQ 8 (6) 12 (10) 14 (12) 13 (9) 15 (11) 10 (7) 10 (8)
SD 3 (6) 5 (9) 7 (12) 5 (9) 6 (11) 4 (7) 4 (8)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.2 r = 0.3 r = 2.5 r = 4.0 r = 3 r = 5

SPU(1) 6 (6) 11 (11) 13 (13) 7 (7) 8 (7) 6 (6) 6 (6)
SPU(2) 8 (6) 14 (11) 17 (14) 11 (9) 13 (11) 8 (6) 8 (6)
SPU(3) 7 (6) 12 (11) 14 (13) 12 (10) 15 (14) 7 (6) 7 (6)
SPU(4) 6 (6) 11 (11) 13 (13) 13 (13) 24 (25) 6 (6) 7 (6)
SPU(5) 6 (6) 10 (10) 11 (13) 14 (16) 28 (32) 6 (6) 6 (6)
SPU(6) 5 (6) 8 (10) 10 (12) 14 (20) 32 (40) 5 (6) 5 (7)
SPU(∞) 6 (6) 55 (57) 81 (82) 69 (71) 94 (95) 75 (76) 97 (97)
sSPU 6 (7) 43 (50) 70 (76) 57 (64) 89 (92) 68 (72) 95 (96)
CLZ 22 (6) 64 (19) 86 (34) 64 (12) 91 (24) 34 (7) 47 (8)
CLX 6 (7) 55 (58) 81 (82) 69 (71) 94 (95) 75 (77) 97 (97)
BZ 8 (6) 14 (11) 17 (13) 12 (9) 14 (11) 8 (6) 9 (6)
CQ 8 (6) 14 (11) 17 (13) 12 (9) 14 (11) 8 (6) 9 (6)
SD 3 (6) 10 (17) 15 (25) 5 (9) 6 (11) 4 (7) 4 (8)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 12. Empirical test sizes and powers (%) based on 1,000 replicates of
multivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200,
and 1-band covariance matrix. The covariance matrix was estimated by the L1-

penalized covariance matrix estimator of Xue et al. (2012).

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.02 r = 0.04 r = 0.6 r = 0.9 r = 1.8 r = 2.7

SPU(1) 9 (4) 87 (79) 99 (98) 25 (18) 33 (24) 10 (6) 10 (6)
SPU(2) 7 (6) 36 (28) 70 (63) 74 (65) 93 (89) 29 (20) 41 (33)
SPU(3) 7 (5) 74 (67) 96 (94) 74 (69) 95 (92) 37 (34) 65 (61)
SPU(4) 8 (6) 26 (23) 57 (53) 86 (83) 99 (98) 66 (63) 90 (86)
SPU(5) 6 (6) 41 (41) 72 (72) 83 (80) 98 (97) 67 (67) 92 (90)
SPU(6) 5 (5) 16 (18) 35 (38) 82 (82) 98 (98) 74 (74) 95 (93)
SPU(∞) 7 (5) 12 (10) 18 (16) 69 (61) 92 (88) 77 (72) 96 (92)
aSPU 7 (6) 76 (69) 97 (96) 84 (80) 98 (97) 75 (67) 94 (90)
CLZ 9 (6) 32 (21) 62 (48) 87 (78) 99 (97) 49 (35) 71 (57)
CLX 7 (5) 12 (10) 18 (16) 69 (61) 92 (88) 77 (72) 96 (92)
BZ 5 (6) 29 (28) 61 (63) 67 (65) 90 (90) 21 (20) 34 (34)
CQ 5 (6) 29 (28) 61 (63) 67 (65) 90 (90) 21 (20) 34 (34)
SD 4 (6) 25 (28) 57 (63) 64 (64) 88 (88) 17 (20) 30 (34)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and permutation-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the
adaptive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996);
CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).
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2·4. Results for various sample sizes
Tables 13–15 present results when the sample sizes n1 and n2 vary from 25 to 200 and the

sparsity parameter is β = 0.1, 0.2, and 0.5. The signal strength r was fixed at certain values.
These results show that sample size has little impact on the selection of parameter γ in the sum-
of-powers tests for fixed signal sparsity β, signal strength r, and dimension p.385

To study the impact of p, Table 16 further presents the results when β = 0.2, n1 = n2 = 50,
and the dimension p varies from 200 to 1000. We can see that when p = 200, the sum-of-powers
test with γ = 1 is not as powerful as those with γ = 2 and 3; however, as p becomes larger, the
sum-of-powers test with γ = 1 becomes more powerful. These observations are consistent with
the theoretical result that the sum-of-powers test with γ = 1 is asymptotically most powerful390

when signals are dense.

Table 13. Empirical test sizes and powers (%) based on 1,000 replicates of multivariate normal
data with sample sizes n1 = n2 = 25, 50, 100, and 200, dimension p = 200, and the first-order

autoregressive covariance matrix Σ1 = Σ2 = (0.6|i−j|). The sparsity parameter is β = 0.1.

Test
n1 = n2 = 25 n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200

Size r = 0.04 r = 0.06 Size r = 0.04 r = 0.06 Size r = 0.04 r = 0.06 Size r = 0.04 r = 0.06

SPU(1) 6 (6) 78 (76) 92 (89) 5 (5) 78 (76) 92 (91) 5 (5) 77 (76) 91 (90) 4 (5) 77 (75) 91 (91)
SPU(2) 5 (5) 45 (44) 71 (69) 5 (5) 47 (47) 69 (69) 6 (5) 46 (44) 72 (68) 7 (6) 46 (44) 71 (69)
SPU(3) 5 (5) 69 (68) 87 (86) 4 (5) 71 (70) 88 (87) 5 (4) 72 (70) 87 (87) 5 (5) 73 (71) 89 (89)
SPU(4) 4 (5) 34 (39) 58 (60) 5 (5) 38 (39) 61 (61) 6 (6) 40 (37) 63 (61) 7 (5) 43 (39) 65 (61)
SPU(5) 3 (5) 44 (49) 63 (68) 4 (6) 47 (51) 70 (72) 5 (6) 50 (50) 72 (72) 5 (5) 53 (52) 73 (73)
SPU(6) 3 (6) 20 (29) 37 (48) 4 (5) 26 (31) 42 (48) 6 (6) 29 (29) 49 (48) 6 (4) 31 (30) 51 (49)
SPU(∞) 10 (6) 27 (14) 35 (22) 6 (5) 18 (16) 25 (23) 6 (6) 18 (17) 22 (23) 4 (5) 15 (16) 21 (23)
aSPU 8 (5) 65 (65) 84 (84) 6 (6) 66 (66) 85 (84) 5 (5) 65 (66) 83 (85) 6 (5) 63 (66) 83 (85)
CLZ 18 (6) 65 (35) 83 (56) 12 (6) 56 (37) 77 (58) 11 (5) 55 (36) 76 (59) 12 (6) 53 (37) 74 (59)
CLX 10 (5) 27 (15) 35 (22) 6 (5) 18 (16) 25 (22) 6 (6) 18 (18) 22 (22) 4 (5) 15 (16) 21 (24)
BZ 7 (6) 47 (45) 73 (70) 6 (6) 48 (47) 70 (70) 6 (5) 46 (44) 72 (69) 7 (6) 47 (44) 72 (69)
CQ 7 (6) 47 (45) 73 (70) 6 (6) 48 (47) 70 (70) 6 (5) 46 (44) 72 (69) 7 (6) 47 (44) 72 (69)
SD 4 (5) 42 (44) 66 (69) 4 (6) 43 (46) 67 (69) 5 (5) 43 (44) 68 (69) 6 (6) 44 (44) 68 (69)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics- and permutation-
based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen et al. (2014);
CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).

Table 14. Empirical test sizes and powers (%) based on 1,000 replicates of multivariate normal
data with sample sizes n1 = n2 = 25, 50, 100, and 200, dimension p = 200, and the first-order

autoregressive covariance matrix Σ1 = Σ2 = (0.6|i−j|). The sparsity parameter is β = 0.2.

Test
n1 = n2 = 25 n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200

Size r = 0.10 r = 0.15 Size r = 0.10 r = 0.15 Size r = 0.10 r = 0.15 Size r = 0.10 r = 0.15

SPU(1) 6 (6) 72 (70) 88 (85) 5 (5) 74 (71) 88 (87) 5 (5) 71 (70) 86 (85) 4 (5) 69 (68) 87 (86)
SPU(2) 5 (5) 71 (70) 94 (94) 5 (5) 70 (70) 92 (92) 6 (5) 70 (68) 93 (91) 7 (6) 73 (70) 94 (93)
SPU(3) 5 (5) 75 (75) 93 (93) 4 (5) 78 (77) 94 (94) 5 (4) 77 (76) 93 (93) 5 (5) 77 (76) 95 (94)
SPU(4) 4 (5) 59 (62) 88 (90) 5 (5) 63 (63) 89 (88) 6 (6) 67 (64) 90 (88) 7 (5) 69 (66) 92 (89)
SPU(5) 3 (5) 58 (63) 84 (87) 4 (6) 65 (67) 87 (88) 5 (6) 68 (69) 88 (88) 5 (5) 68 (66) 89 (89)
SPU(6) 3 (6) 40 (51) 67 (78) 4 (5) 48 (53) 76 (79) 6 (6) 54 (54) 80 (80) 6 (4) 58 (55) 82 (81)
SPU(∞) 10 (6) 38 (25) 54 (37) 6 (5) 31 (27) 47 (41) 6 (6) 28 (27) 41 (42) 4 (5) 25 (27) 39 (42)
aSPU 8 (5) 70 (70) 93 (93) 6 (6) 72 (73) 92 (92) 5 (5) 74 (74) 92 (91) 6 (5) 73 (72) 93 (92)
CLZ 18 (6) 85 (57) 97 (87) 12 (6) 79 (60) 95 (86) 11 (5) 77 (61) 94 (87) 12 (6) 77 (63) 96 (88)
CLX 10 (5) 38 (25) 54 (37) 6 (5) 31 (27) 47 (41) 6 (6) 28 (27) 41 (42) 4 (5) 25 (26) 39 (42)
BZ 7 (6) 73 (71) 94 (94) 6 (6) 71 (70) 93 (92) 6 (5) 71 (68) 93 (92) 7 (6) 73 (71) 94 (93)
CQ 7 (6) 73 (71) 94 (94) 6 (6) 71 (70) 93 (92) 6 (5) 71 (68) 93 (92) 7 (6) 73 (71) 94 (93)
SD 4 (5) 67 (69) 92 (93) 4 (6) 67 (70) 91 (91) 5 (5) 67 (69) 91 (92) 6 (6) 69 (71) 92 (93)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics- and permutation-
based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen et al. (2014);
CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 15. Empirical test sizes and powers (%) based on 1,000 replicates of multivariate normal
data with sample sizes n1 = n2 = 25, 50, 100, and 200, dimension p = 200, and autoregressive

covariance matrix Σ1 = Σ2 = (0.6|i−j|). The sparsity parameter is β = 0.5.

Test
n1 = n2 = 25 n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200

Size r = 0.4 r = 0.6 Size r = 0.4 r = 0.6 Size r = 0.4 r = 0.6 Size r = 0.4 r = 0.6

SPU(1) 6 (6) 19 (17) 26 (23) 5 (5) 19 (17) 24 (23) 5 (5) 17 (16) 23 (22) 4 (5) 17 (16) 22 (22)
SPU(2) 5 (5) 56 (55) 84 (84) 5 (5) 58 (57) 85 (84) 6 (5) 59 (56) 86 (84) 7 (6) 62 (60) 87 (86)
SPU(3) 5 (5) 52 (52) 80 (81) 4 (5) 56 (54) 83 (82) 5 (4) 55 (55) 82 (81) 5 (5) 53 (52) 82 (82)
SPU(4) 4 (5) 65 (69) 94 (95) 5 (5) 72 (71) 95 (95) 6 (6) 73 (71) 96 (95) 7 (5) 78 (75) 96 (96)
SPU(5) 3 (5) 59 (65) 90 (93) 4 (6) 68 (68) 92 (93) 5 (6) 68 (68) 92 (92) 5 (5) 70 (70) 94 (94)
SPU(6) 3 (6) 60 (69) 91 (95) 4 (5) 69 (71) 93 (94) 6 (6) 72 (72) 95 (95) 6 (4) 75 (74) 96 (96)
SPU(∞) 10 (6) 59 (46) 84 (72) 6 (5) 57 (52) 86 (81) 6 (6) 54 (54) 82 (82) 4 (5) 55 (56) 82 (83)
aSPU 8 (5) 66 (62) 92 (93) 6 (6) 69 (66) 94 (93) 5 (5) 70 (66) 95 (92) 6 (5) 74 (68) 95 (93)
CLZ 18 (6) 86 (65) 99 (94) 12 (6) 84 (68) 98 (94) 11 (5) 82 (69) 97 (93) 12 (6) 82 (71) 98 (95)
CLX 10 (5) 59 (46) 84 (72) 6 (5) 57 (52) 86 (81) 6 (6) 54 (54) 82 (82) 4 (5) 55 (57) 82 (83)
BZ 7 (6) 58 (55) 86 (84) 6 (6) 59 (57) 86 (84) 6 (5) 60 (56) 87 (84) 7 (6) 63 (60) 87 (86)
CQ 7 (6) 58 (55) 86 (84) 6 (6) 59 (57) 86 (84) 6 (5) 60 (56) 87 (84) 7 (6) 63 (60) 87 (86)
SD 4 (5) 51 (54) 80 (82) 4 (6) 55 (58) 84 (85) 5 (5) 55 (57) 84 (84) 6 (6) 59 (59) 85 (86)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics- and permutation-
based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen et al. (2014);
CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).

Table 16. Empirical test sizes and powers (%) based on 1,000 replicates of multivariate normal
data with sample sizes n1 = n2 = 50, sparsity parameter β = 0.2, dimension p = 200, 500, and

1000, and autoregressive covariance matrix Σ1 = Σ2 = (0.6|i−j|).

Test
p = 200 p = 500 p = 1000

Size r = 0.1 r = 0.15 Size r = 0.04 r = 0.06 Size r = 0.04 r = 0.06

SPU(1) 5 (5) 74 (71) 88 (87) 7 (6) 63 (60) 80 (78) 6 (5) 85 (81) 95 (94)
SPU(2) 5 (5) 70 (70) 92 (92) 6 (6) 46 (45) 70 (69) 6 (6) 62 (61) 88 (88)
SPU(3) 4 (5) 78 (77) 94 (94) 5 (5) 60 (60) 82 (81) 5 (5) 84 (84) 96 (95)
SPU(4) 5 (5) 63 (63) 89 (88) 5 (6) 36 (38) 61 (63) 4 (5) 52 (57) 81 (84)
SPU(5) 4 (6) 65 (67) 87 (88) 4 (5) 44 (46) 65 (68) 3 (4) 65 (69) 88 (89)
SPU(6) 4 (5) 48 (53) 76 (79) 4 (6) 24 (28) 42 (48) 3 (5) 35 (42) 63 (70)
SPU(∞) 6 (5) 31 (27) 47 (41) 9 (6) 17 (13) 24 (18) 8 (4) 21 (13) 29 (20)
aSPU 6 (6) 72 (73) 92 (92) 6 (5) 56 (56) 77 (78) 6 (5) 78 (79) 95 (96)
CLZ 12 (6) 79 (60) 95 (86) 18 (6) 62 (32) 81 (57) 19 (6) 78 (45) 93 (76)
CLX 6 (5) 31 (27) 47 (41) 9 (6) 17 (14) 24 (18) 8 (4) 21 (14) 29 (21)
BZ 6 (6) 71 (70) 93 (92) 7 (6) 47 (45) 72 (69) 6 (6) 64 (62) 89 (88)
CQ 6 (6) 71 (70) 93 (92) 7 (6) 47 (45) 72 (69) 6 (6) 64 (62) 89 (88)
SD 4 (6) 67 (70) 91 (91) 6 (6) 42 (45) 65 (68) 4 (6) 56 (62) 85 (88)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics- and permutation-
based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen et al. (2014);
CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).
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2·5. Results for Σ1 6= Σ2

This section assumes that Σ1 6= Σ2. Since Bai & Saranadasa (1996) and Srivastava & Du
(2008) did not discuss the case of unequal covariance matrices for their test statistics, this section
will not consider their methods.395

The procedure introduced in the main text similarly applies to calculate the asymptotics-based
p-values of the class of sum-of-powers tests and the tests proposed by Chen & Qin (2010), Cai
et al. (2014), and Chen et al. (2014); however, the permutation method is invalid to calculate p-
values when Σ1 6= Σ2, because the two groups no longer share a common distribution under the
null hypothesis. Alternatively, we used the parametric bootstrap resampling method to calculate400

p-values, and compared these with the asymptotics-based p-values. The parametric resampling
has also been used by Chen et al. (2014) to deal with inflated type I error of their thresholding test
statistic. Specifically, the bootstrap samples under the null hypothesis were drawn fromN(0, Σ̂1)

and N(0, Σ̂2), where Σ̂1 and Σ̂2 are consistent estimates of Σ1 and Σ2, respectively. As before,
we used the banding approach (Bickel & Levina, 2008) to obtain the consistent estimates. Since405

the banding estimate is not necessarily positive-definite, we followed the suggesting in Remark 3
of Cai et al. (2010) to diagonalize the banding estimate and then replace negative eigenvalues by
a small positive constant, say 0.001.

Table 17 presents the results. The adaptive sum-of-powers test still controls type I errors well
and has high powers under most simulation settings for Σ1 6= Σ2.410
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Table 17. Empirical test sizes and powers (%) based on 1,000 replicates of mul-
tivariate normal data with sample sizes n1 = n2 = 50, dimension p = 200, and
autoregressive covariance matrix with order 1. The covariance matrices of the

two groups are Σ1 = (0.2|i−j|) and Σ2 = (0.8|i−j|).

Equal variances (D = Ip):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.04 r = 0.06 r = 0.6 r = 0.9 r = 1.5 r = 2.5

SPU(1) 5 (5) 70 (71) 86 (86) 11 (11) 12 (13) 6 (6) 6 (6)
SPU(2) 6 (3) 45 (40) 69 (63) 49 (42) 76 (69) 14 (10) 22 (16)
SPU(3) 4 (3) 67 (64) 82 (82) 46 (44) 73 (71) 14 (13) 34 (33)
SPU(4) 5 (3) 38 (32) 60 (52) 72 (66) 96 (93) 41 (33) 78 (72)
SPU(5) 4 (3) 47 (42) 68 (62) 68 (65) 92 (91) 44 (42) 81 (80)
SPU(6) 4 (3) 28 (23) 43 (38) 74 (69) 96 (95) 56 (53) 89 (88)
SPU(∞) 7 (5) 20 (15) 26 (21) 66 (60) 90 (87) 65 (60) 92 (90)
aSPU 6 (4) 55 (58) 77 (79) 70 (61) 94 (89) 57 (50) 90 (86)
CLZ 12 (4) 56 (33) 77 (54) 84 (65) 98 (93) 43 (21) 66 (43)
CLX 7 (5) 20 (15) 26 (21) 66 (60) 90 (87) 65 (60) 92 (90)
CQ 6 (4) 46 (41) 71 (64) 51 (43) 78 (71) 15 (10) 23 (18)

Unequal variances (D = diag(dii) with dii ∼ U(0.1, 10)):

Test Size
β = 0.1 β = 0.6 β = 0.9

r = 0.15 r = 0.25 r = 2.5 r = 3.5 r = 3 r = 4.5

SPU(1) 4 (5) 62 (63) 83 (83) 10 (10) 11 (11) 5 (5) 5 (5)
SPU(2) 5 (4) 32 (28) 55 (48) 37 (32) 56 (50) 8 (6) 9 (7)
SPU(3) 4 (3) 39 (37) 63 (61) 31 (29) 49 (46) 4 (3) 4 (4)
SPU(4) 5 (3) 19 (15) 31 (27) 42 (36) 66 (58) 6 (4) 8 (6)
SPU(5) 4 (4) 18 (16) 29 (28) 35 (33) 56 (55) 4 (4) 5 (5)
SPU(6) 4 (4) 10 (9) 17 (16) 33 (31) 55 (53) 4 (4) 6 (5)
SPU(∞) 7 (5) 54 (47) 88 (83) 78 (74) 95 (93) 76 (72) 95 (93)
aSPU 6 (4) 58 (58) 88 (87) 73 (62) 92 (87) 67 (59) 91 (88)
CLZ 12 (4) 87 (70) 99 (96) 81 (64) 95 (85) 51 (25) 70 (47)
CLX 7 (5) 54 (47) 88 (83) 78 (74) 95 (93) 76 (72) 95 (93)
CQ 6 (4) 33 (29) 56 (49) 38 (33) 57 (50) 8 (6) 10 (7)

The size (type I error) or power outside and inside parentheses were calculated from asymptotics-
and resampling-based p-values, respectively. SPU and aSPU: the sum-of-powers tests and the adap-
tive test; CLZ: Chen et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ: Chen
& Qin (2010); SD: Srivastava & Du (2008).
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3. SIMULATIONS: SINGLE NUCLEOTIDE POLYMORPHISMS DATA

To illustrate the performance of the proposed method and the asymptotic approximations for
non-Gaussian data, we next applied the various methods to test association between a binary
trait, such as disease status, and a set of single nucleotide polymorphisms in genome-wide as-
sociation study. Suppose there are n subjects in total. For the ith subject (i = 1, . . . , n), we as-415

signed it to two groups according to its binary trait Yi = 0 or 1. Also, a p-dimensional predictor
Xi = (Xi1, . . . , Xip)

T is available, where the genotype score Xij = 0, 1, or 2 is the count of the
minor allele at the jth single nucleotide polymorphism. We simulated genotypes for each subject
following Wang & Elston (2007). First, a latent p-dimensional vector Z = (Z1, . . . , Zp)

T was
generated from a multivariate normal distributionN(0, R), whereR = (rij) is an autoregressive420

correlation matrix with order 1 and rij = 0.2|i−j|. Second, we dichotomized the latent vector
Z to indicate a haplotype with some specified minor allele frequencies, which were uniformly
sampled between 0.05 to 0.5. Third, we used the above two steps to independently generate two
haplotypes, which were combined to form the genotype Xi for subject i.

For each set-up, we simulated 1,000 independent replicates. Each replicate consisted of 200425

cases and 200 controls; for each subject, there were p = 1, 000 single nucleotide polymorphisms,
5% of which were causal with odds ratios generated from U(1, a). Note that a = 1 indicates that
none of the single nucleotide polymorphisms was causal, which was used to estimate type I errors
for a null case. For non-null cases, we considered the values of a at 1.1, 1.2, 1.3, 1.4, and 1.5
respectively. Note that it is realistic to assume 5% associated single nucleotide polymorphisms in430

light of the current knowledge on the genetic architecture for complex diseases (The International
Schizophrenia Consortium, 2009).

Table 18 presents empirical type I errors and power calculated by both asymptotics-based and
permutation-based methods.The type I errors of the sum-of-squares tests based on asymptotics
were very close to those based on permutations.The asymptotic approximations gave a little435

inflated type I errors for the sum-of-powers test with γ = 1. This shows the good performance
of the developed theoretical results.

Since permutation-based p-values could control the type I error satisfactorily for all tests, we
used them to compare the power of the tests. Again the sum-of-squares type tests, including the
sum-of-powers test with γ = 2, performed similarly well, but not the best, while the supremum440

type test was low powered, given the non-sparse alternatives. However, since the non-zero signals
were not dense enough, if not counting the adaptive sum-of-powers test, it is notable that the
sum-of-powers tests with γ = 3, 4, and 5 were often more powerful than the sum-of-squares
type tests. For example, at a = 1.4, the power of the sum-of-powers test with γ = 4 was 0.619,
much higher than about 0.57 of the sum-of-squares type tests, 0.555 of the thresholding test445

and 0.275 of the supremum type test. Note that, presumably due to weak signals, thresholding
adopted in Chen et al. (2014) was not as effective as weighting used in the sum-of-powers test
with γ = 4. Most importantly, the adaptive sum-of-powers test could retain the highest power
across all the settings. We have also used simple covariance matrix to estimate Σ and similar
performance as in Section 2·3 can be observed; Table 19 presents the results.450
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Table 18. Empirical test sizes and powers (%) based on
1,000 replicates of simulated single nucleotide polymor-
phisms data. There were n1 = n2 = 200 cases and controls
with p = 1, 000 single nucleotide polymorphisms; 5% of the
single nucleotide polymorphisms were causal. The associa-
tion odds ratios were randomly drawn from U(1, a), where a

varied from 1 to 1.5.

Test a = 1 (Size) a = 1.2 a = 1.3 a = 1.4 a = 1.5

SPU(1) 9 (5) 23 (13) 31 (26) 45 (36) 58 (51)
SPU(2) 6 (5) 16 (15) 34 (32) 59 (57) 82 (83)
SPU(3) 5 (4) 20 (14) 37 (37) 64 (60) 88 (86)
SPU(4) 5 (5) 15 (16) 33 (35) 65 (62) 91 (88)
SPU(5) 4 (4) 14 (12) 31 (32) 61 (60) 88 (88)
SPU(6) 5 (4) 13 (12) 28 (28) 57 (54) 87 (84)
SPU(∞) 5 (5) 8 (8) 14 (14) 29 (28) 55 (57)
aSPU 7 (6) 21 (15) 41 (39) 71 (66) 94 (90)
CLZ 7 (5) 15 (13) 30 (26) 62 (56) 90 (84)
CLX 5 (5) 8 (8) 14 (14) 29 (28) 55 (57)
BZ 6 (5) 15 (16) 33 (32) 58 (57) 82 (82)
CQ 6 (5) 15 (16) 33 (32) 58 (57) 82 (82)
SD 5 (5) 12 (14) 29 (32) 54 (56) 80 (82)

The size (type I error) or power outside and inside parentheses were cal-
culated from asymptotics- and permutation-based p-values, respectively.
SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen
et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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Table 19. Empirical test sizes and powers (%) based on
1,000 replicates of simulated single nucleotide polymor-
phisms data. There were n1 = n2 = 200 cases and controls
with p = 1, 000 single nucleotide polymorphisms; 5% of the
single nucleotide polymorphisms were causal. The associa-
tion odds ratios were randomly drawn from U(1, a), where
a varied from 1 to 1.5. The covariance matrix was estimated

by the sample covariance matrix.

Test a = 1 (Size) a = 1.2 a = 1.3 a = 1.4 a = 1.5

SPU(1) 4 (5) 16 (13) 24 (26) 38 (36) 50 (51)
SPU(2) 0 (5) 1 (15) 7 (32) 18 (57) 41 (83)
SPU(3) 4 (4) 17 (14) 32 (37) 61 (60) 86 (86)
SPU(4) 1 (5) 5 (16) 16 (35) 39 (62) 75 (88)
SPU(5) 4 (4) 13 (12) 30 (32) 60 (60) 88 (88)
SPU(6) 3 (4) 8 (12) 19 (28) 45 (54) 81 (84)
SPU(∞) 5 (5) 8 (8) 14 (14) 29 (28) 55 (57)
aSPU 4 (6) 12 (15) 27 (39) 55 (66) 87 (90)
CLZ 7 (5) 15 (13) 30 (26) 62 (56) 90 (84)
CLX 5 (5) 8 (8) 14 (14) 29 (28) 55 (57)
BS 6 (5) 15 (16) 33 (32) 58 (57) 82 (82)
CQ 6 (5) 15 (16) 33 (32) 58 (57) 82 (82)
SD 5 (5) 12 (14) 29 (32) 54 (56) 80 (82)

The size (type I error) or power outside and inside parentheses were cal-
culated from asymptotics- and permutation-based p-values, respectively.
SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen
et al. (2014); CLX: Cai et al. (2014); BS: Bai & Saranadasa (1996); CQ:
Chen & Qin (2010); SD: Srivastava & Du (2008).
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4. REAL DATA ANALYSIS

Table 20 presents the complete results of all 22 autosomes in the data collected by The Well-
come Trust Case Control Consortium (2007) for bipolar disorder.

Table 20. The 100 × p-values of various tests for the Wellcome Trust Case Control Consortium
bipolar disease data.

Test
Chromosome (number of single nucleotide polymorphisms)

1 (3340) 2 (3194) 3 (2710) 4 (2617) 5 (2590) 6 (2424) 7 (2270) 8 (2050) 9 (1986) 10 (2224) 11 (2039)

SPU(1) 63.6 (64.3) 17.0 (17.8) 0.7 (0.7) 0.2 (0.2) 38.6 (38.4) 3.1 (3.5) 6.9 (7.3) 67.5 (68.1) 5.7 (6.1) 87.5 (87.6) 77.3 (77.5)
SPU(2) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 1.5 (1.7) 0.2 (0.2) <0.1 (<0.1) <0.1 (<0.1) 12.9 (13.3) <0.1 (<0.1) 16.2 (16.6) 0.7 (0.8)
SPU(3) 73.8 (74.5) 0.6 (0.7) <0.1 (<0.1) 3.1 (3.1) 96.3 (96.3) 4.2 (4.7) 0.2 (0.3) 55.2 (55.9) 28.1 (28.4) 33.1 (32.6) 78.8 (79.0)
SPU(4) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 2.0 (2.7) 0.1 (0.4) <0.1 (<0.1) <0.1 (<0.1) 15.3 (15.0) <0.1 (<0.1) 10.9 (11.3) 8.5 (9.3)
SPU(5) 74.2 (73.2) 0.2 (0.3) 0.4 (0.5) 37.5 (36.1) 57.3 (55.9) 32.1 (30.8) <0.1 (0.2) 52.1 (49.7) 66.2 (64.5) 8.0 (7.5) 81.1 (80.6)
SPU(6) <0.1 (<0.1) <0.1 (0.1) <0.1 (0.3) 2.7 (4.1) 1.0 (2.5) 0.5 (1.5) <0.1 (0.4) 19.4 (16.7) <0.1 (0.2) 10.4 (10.0) 38.9 (34.4)
SPU(∞) 13.1 (11.8) 4.5 (4.3) 70.4 (72.9) 12.1 (11.9) 4.8 (4.5) 31.7 (31.9) 19.3 (18.8) 45.6 (47.1) 4.8 (4.1) 10.0 (9.1) 24.4 (23.9)
aSPU <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 1.0 (1.2) 0.6 (1.0) <0.1 (<0.1) <0.1 (<0.1) 50.2 (43.3) <0.1 (<0.1) 27.1 (28.3) 3.9 (4.0)
CLZ <0.1 (<0.1) <0.1 (0.3) 0.3 (0.7) 9.6 (10.2) 0.8 (1.5) <0.1 (<0.1) <0.1 (0.2) 23.3 (19.2) <0.1 (0.3) 12.9 (12.7) 12.6 (12.9)
CLX 13.1 (11.8) 4.5 (4.3) 70.4 (72.9) 12.1 (11.9) 4.8 (4.5) 31.7 (31.9) 19.3 (18.8) 45.6 (47.1) 4.8 (4.1) 10.0 (9.1) 24.4 (23.9)
BZ <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 1.5 (1.7) 0.2 (0.2) <0.1 (<0.1) <0.1 (<0.1) 12.8 (13.3) <0.1 (<0.1) 16.2 (16.6) 0.7 (0.8)
CQ <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 1.5 (1.7) 0.2 (0.2) <0.1 (<0.1) <0.1 (<0.1) 12.8 (13.3) <0.1 (<0.1) 16.0 (16.6) 0.7 (0.8)
SD <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) <0.1 (1.0) <0.1 (0.4) <0.1 (<0.1) <0.1 (<0.1) <0.1 (10.0) <0.1 (<0.1) <0.1 (11.6) <0.1 (2.5)

Test
Chromosome (number of single nucleotide polymorphisms)

12 (2135) 13 (1592) 14 (1434) 15 (1428) 16 (1476) 17 (1405) 18 (1421) 19 (1026) 20 (1257) 21 (698) 22 (776)

SPU(1) 3.3 (3.3) 3.7 (3.7) 61.1 (62.2) 82.5 (82.5) 60.1 (60.2) 80.6 (81.0) 33.0 (32.3) 17.9 (18.1) 89.2 (89.2) 19.5 (19.9) 32.2 (32.0)
SPU(2) <0.1 (<0.1) 2.7 (2.9) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 15.0 (14.5) 28.9 (28.7) <0.1 (0.1) <0.1 (<0.1) 34.1 (33.0) 0.6 (0.8)
SPU(3) 3.6 (3.6) 12.9 (12.6) 2.1 (2.1) 100.0 (100.0) 34.9 (34.4) 98.2 (98.2) 18.7 (17.4) 3.4 (3.6) 94.6 (94.7) 41.5 (41.0) 67.9 (67.5)
SPU(4) 1.0 (1.5) <0.1 (0.2) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 23.2 (21.7) 35.3 (33.1) 0.1 (0.4) 1.2 (2.0) 16.5 (15.6) 2.8 (3.6)
SPU(5) 15.6 (14.7) 39.4 (37.1) 0.2 (0.7) 32.9 (30.5) 2.5 (3.3) 97.6 (97.6) 25.9 (23.4) 0.4 (1.0) 80.6 (79.6) 72.4 (69.1) 75.5 (73.0)
SPU(6) 10.0 (10.3) <0.1 (0.4) <0.1 (0.2) <0.1 (0.2) <0.1 (<0.1) 21.9 (17.9) 44.8 (38.6) 0.3 (1.5) 18.1 (15.8) 9.7 (9.2) 13.0 (11.4)
SPU(∞) 61.4 (63.2) 8.8 (8.0) 11.2 (10.3) 14.3 (13.8) 6.4 (5.8) 18.7 (18.0) 0.5 (0.4) 9.9 (9.4) 78.3 (81.0) 9.8 (9.0) 66.2 (68.1)
aSPU 0.2 (0.4) <0.1 (1.3) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 46.3 (45.9) 1.4 (1.9) 0.4 (0.7) 0.2 (0.5) 26.6 (31.1) 3.4 (3.7)
CLZ 2.5 (3.4) 0.2 (0.5) <0.1 (<0.1) <0.1 (0.2) <0.1 (<0.1) 47.0 (30.1) 5.6 (6.6) 0.3 (0.7) 2.1 (2.9) 0.9 (1.4) 3.2 (4.2)
CLX 61.4 (63.2) 8.8 (8.0) 11.2 (10.3) 14.3 (13.8) 6.4 (5.8) 18.7 (18.0) 0.5 (0.4) 9.9 (9.4) 78.3 (81.0) 9.8 (9.0) 66.2 (68.1)
BZ <0.1 (<0.1) 2.6 (2.9) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 14.9 (14.5) 28.8 (28.7) <0.1 (0.1) <0.1 (<0.1) 34.1 (33.0) 0.6 (0.8)
CQ <0.1 (<0.1) 2.7 (2.9) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) 14.9 (14.5) 29.0 (28.7) <0.1 (0.1) <0.1 (<0.1) 34.1 (33.0) 0.6 (0.8)
SD <0.1 (0.2) <0.1 (11.4) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1) <0.1 (8.2) <0.1 (9.7) <0.1 (<0.1) <0.1 (0.1) <0.1 (33.1) <0.1 (0.5)

The p-values outside parentheses were calculated from asymptotic distributions; those inside parentheses were based
on permutations. SPU and aSPU: the sum-of-powers tests and the adaptive test; CLZ: Chen et al. (2014); CLX: Cai
et al. (2014); BS: Bai & Saranadasa (1996); CQ: Chen & Qin (2010); SD: Srivastava & Du (2008).
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5. R PACKAGE AND CODE

An R package highmean implementing the tests studied in this paper is available on CRAN.455

Below is R code for Table 1 of the main file.

library(snowfall)
# the snowfall package is used for parallel computing on a multi-CPU computer
sfInit(parallel = TRUE, cpus = 10, type = "SOCK")

460

begin <- proc.time()

#install.packages("highmean")
sfLibrary(highmean) # package highmean version 2.0
sfLibrary(mnormt)465

sfLibrary(mvtnorm)
sfLibrary(CVTuningCov)

pow <- c(1:6, Inf) # the candidate parameters (gamma) for sum-of-powers tests
470

iter <- 1000 # number of Monte Carlo iterations
n1 <- 50 # sample size of group 1
n2 <- 50 # sample size of group 2
p <- 200 # dimension
sigma <- 0.6ˆabs(outer(1:p, 1:p, "-")) # first-order autoregressive covariance475

beta <- 0.1 # the signal sparsity parameter ranging between 0 and 1
r <- 0.06 # the signal strength parameter (0, 0.02, ..., 0.08 in Table 1);

# we take r = 0.06 as an example
480

m <- floor(pˆ(1 - beta)) # number of non-zero signals in mu2
mu1 <- rep(0, p) # mean vector of group 1
mu2 <- rep(0, p)
if(m != 0){
diff.mean <- rep(sqrt(2*r*log(p)*(1/n1 + 1/n2)), m)485

set.seed(1234)
m.entries <- sample(p)[1:m]
mu2[m.entries] <- diff.mean # mean vector of group 2
}

490

set.seed(12345)
iter.seeds <- sample(1000000, iter)

# asymptotics-based
sim.asym <- function(n1, n2, p, mu1, mu2, sigma, pow, seed){495

set.seed(seed)
sam1 <- rmnorm(n = n1, mean = mu1, sigma)
sam2 <- rmnorm(n = n2, mean = mu2, sigma)
set.seed(seed)
n <- n1 + n2 - 2500

sam.cov <- ((n1 - 1)*cov(sam1) + (n2 - 1)*cov(sam2))/n
sam1.ctr <- sam1 - matrix(rep(colMeans(sam1), n1), n1, p, byrow = TRUE)
sam2.ctr <- sam2 - matrix(rep(colMeans(sam2), n2), n2, p, byrow = TRUE)
out <- regular.CV(rbind(sam1.ctr, sam2.ctr),
k.grid = seq(from = 0, to = 50, by = 1), method = "banding",505

fold = 5, norm = "F")
cov.est <- sam.cov*banding(p, out$CV.k[1])
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pval.spu <- apval_aSPU(sam1, sam2, pow = pow, cov.est = cov.est)$pval
pval.bai1996 <- apval_Bai1996(sam1, sam2)$pval 510

pval.cai2014 <- apval_Cai2014(sam1, sam2)$pval
pval.chen2010 <- apval_Chen2010(sam1, sam2)$pval
pval.chen2014 <- apval_Chen2014(sam1, sam2)$pval
pval.sri2008 <- apval_Sri2008(sam1, sam2)$pval
pval <- c(pval.spu, pval.chen2014, pval.cai2014, pval.bai1996, 515

pval.chen2010, pval.sri2008)
return(pval)
}

sfExport("n1", "n2", "p", "mu1", "mu2", "sigma", "pow", "iter.seeds") 520

sfExport("sim.asym")

pval.asym <- sfLapply(1:iter, function(i){
sim.asym(n1, n2, p, mu1, mu2, sigma, pow, seed = iter.seeds[i])
}) 525

pval.asym <- unlist(pval.asym)
test.names <- unique(names(pval.asym))
powers.asym <- numeric(length(test.names))
for(i in 1:length(test.names)){
pval.temp <- pval.asym[names(pval.asym) == test.names[i]] 530

powers.asym[i] <- sum(pval.temp <= 0.05)/iter
}
powers.asym <- as.matrix(powers.asym)
rownames(powers.asym) <- test.names
round(100*powers.asym) # powers outside the parentheses when r = 0.06 in Table 1535

# permutation-based
perm.iter <- 1000

540

sim.perm <- function(n1, n2, p, mu1, mu2, sigma, pow, perm.iter, seed){
set.seed(seed)
sam1 <- rmnorm(n = n1, mean = mu1, sigma)
sam2 <- rmnorm(n = n2, mean = mu2, sigma)
set.seed(seed) 545

seeds <- sample(1000000, perm.iter)
pval.spu <- epval_aSPU(sam1, sam2, pow = pow, n.iter = perm.iter, seeds = seeds)$pval
pval.bai1996 <- epval_Bai1996(sam1, sam2, n.iter = perm.iter, seeds = seeds)$pval
pval.cai2014 <- epval_Cai2014(sam1, sam2, n.iter = perm.iter, seeds = seeds)$pval
pval.chen2010 <- epval_Chen2010(sam1, sam2, n.iter = perm.iter, seeds = seeds)$pval550

pval.chen2014 <- epval_Chen2014(sam1, sam2, n.iter = perm.iter, seeds = seeds)$pval
pval.sri2008 <- epval_Sri2008(sam1, sam2, n.iter = perm.iter, seeds = seeds)$pval
pval <- c(pval.spu, pval.chen2014, pval.cai2014, pval.bai1996,
pval.chen2010, pval.sri2008)
return(pval) 555

}

sfExport("n1", "n2", "p", "mu1", "mu2", "sigma", "pow", "perm.iter", "iter.seeds")
sfExport("sim.perm")

560

pval.perm <- sfLapply(1:iter, function(i){
sim.perm(n1, n2, p, mu1, mu2, sigma, pow, perm.iter, seed = iter.seeds[i])
})
pval.perm <- unlist(pval.perm)
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test.names <- unique(names(pval.perm))565

powers.perm <- numeric(length(test.names))
for(i in 1:length(test.names)){
pval.temp <- pval.perm[names(pval.perm) == test.names[i]]
powers.perm[i] <- sum(pval.temp <= 0.05)/iter
}570

powers.perm <- as.matrix(powers.perm)
rownames(powers.perm) <- test.names
round(100*powers.perm) # powers inside the parentheses when r = 0.06 in Table 1

end <- proc.time()575

end - begin

sfStop()
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