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APPENDIX 1. LEMMAS AND THEIR PROOFS 10

In order to prove the main results, we need to invoke the following lemmas. Some of them are
from the literature, and some of them are new and of independent interest.

Lemma S1 is from Esary et al. (1967, Theorem 2.1).

LEMMA S1. Let f(·) and g(·) be functions with K real-valued arguments, which are both
non-decreasing in each of their arguments. If U = (U1, . . . , UK) is a multivariate random vari- 15

able with K mutually independent components, then cov{f(U), g(U)} ≥ 0.

Lemma S2 is from VanderWeele (2008), and Lemmas S3 and S4 are from Chiba (2009).

LEMMA S2. For a univariate U or a multivariate U with mutually independent components,
if for a = 1 and 0, Y (a) A | U , E(Y | A = a, U = u) is non-decreasing in each component
of u, and pr(A = 1 | U = u) is non-decreasing in each component of u, then E(Y | A = 1) ≥ 20

E{Y (1)} and E(Y | A = 0) ≤ E{Y (0)}.

LEMMA S3. For a univariate U and a multivariate U with mutually independent components,
if Y (0) A | U , E(Y | A = 0, U = u) is non-decreasing in each component of u, and pr(A =
1 | U = u) is non-decreasing in each component of u, then E(Y | A = 0) ≤ E{Y (0) | A = 1}.

LEMMA S4. For a univariate U and a multivariate U with mutually independent components, 25

if Y (1) A | U , E(Y | A = 1, U = u) is non-decreasing in each component of u, and pr(A =
1 | U = u) is non-decreasing in each component of u, then E(Y | A = 1) ≥ E{Y (1) | A = 0}.

Lemma S5, extending Rothman et al. (2008), states that under monotonicity, no additive in-
teraction implies non-positive multiplicative interactions for both presence and absence of the
outcome. 30

LEMMA S5. If p11 ≥ max(p10, p01), min(p10, p01) ≥ p00 > 0, and p11 − p10 − p01 + p00 =
0, then

p11p00
p10p01

≤ 1,
(1− p11)(1− p00)
(1− p10)(1− p01)

≤ 1. (S1)

Proof of Lemma S5. Define RR11 = p11/p00 ≥ 1, RR10 = p10/p00 ≥ 1 and RR01 =
p01/p00 ≥ 1. Then p11 − p10 − p01 + p00 = 0 implies RR11 = RR10 + RR01 − 1, which
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further implies35

p11p00
p10p01

=
RR11

RR10RR01
= 1 +

1

RR10RR01
(RR11 − RR10RR01)

= 1 +
1

RR10RR01
(RR10 + RR01 − 1− RR10RR01)

= 1− 1

RR10RR01
(RR10 − 1)(RR01 − 1) ≤ 1.

The second inequality of (S1) follows from

(1− p11)(1− p00)
(1− p10)(1− p01)

= 1 +
(1− p11)(1− p00)− (1− p10)(1− p01)

(1− p10)(1− p01)

= 1 +
1

(1− p10)(1− p01)
{(1− p11 − p00 + p11p00)− (1− p10 − p01 + p10p01)}

= 1 +
1

(1− p10)(1− p01)
(p11p00 − p10p01)

= 1 +
p10p01

(1− p10)(1− p01)

(
p11p00
p10p01

− 1

)
≤ 1. �

Lemma S5 is about interaction between two binary causes, and for our discussion we need to
extend it to interaction between two general causes. Lemma S6 extends Piegorsch et al. (1994)
and Yang et al. (1999) by relating the conditional association between two independent causes
given the outcome to the interaction between the two causes on the outcome.40

LEMMA S6. If Z U , and pr(A = 1 | Z = z, U = u) = β(z) + γ(u) with β(z) and γ(u)
non-decreasing in z and u, then for both a = 1 and 0 and for all values of u and z,

∂F (u | A = a, Z = z)

∂z
≥ 0,

i.e., U has non-positive distributional dependence on Z, given A.

Proof of Lemma S6. For a fixed u and z1 > z0, we define

p11 = pr(A = 1 | U > u,Z = z1) =

∫ ∞
u
{β(z1) + γ(u′)}F (du′)/{1− F (u)},

p10 = pr(A = 1 | U > u,Z = z0) =

∫ ∞
u
{β(z0) + γ(u′)}F (du′)/{1− F (u)},

p01 = pr(A = 1 | U ≤ u, Z = z1) =

∫ u

−∞
{β(z1) + γ(u′)}F (du′)/F (u),

p00 = pr(A = 1 | U ≤ u, Z = z0) =

∫ u

−∞
{β(z0) + γ(u′)}F (du′)/F (u),

following from the additive model of A and Z U.
Because β(z1) ≥ β(z0), it is straightforward to show that p11 ≥ p10 and p01 ≥ p00. Because

γ(u) is increasing in u, we have

p11 ≥ β(z1) + γ(u), p10 ≥ β(z0) + γ(u), p01 ≤ β(z1) + γ(u), p00 ≤ β(z0) + γ(u),
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which imply p11 ≥ p01 and p10 ≥ p00. We further have

p11 − p10 − p01 + p00

=

∫ ∞
u
{β(z1)− β(z0)}F (du′)/{1− F (u)} −

∫ u

−∞
{β(z1)− β(z0)}F (du′)/F (u)

= 0.

The four probabilities (p11, p10, p01, p00) satisfy the conditions in Lemma S5, Therefore, (2) 45

holds. Replacing the probabilities in (2) by their definitions above, we have

pr(A = 1 | U > u,Z = z1)pr(A = 1 | U ≤ u, Z = z0)

pr(A = 1 | U > u,Z = z0)pr(A = 1 | U ≤ u, Z = z1)
≤ 1

⇐⇒ pr(A = 1 | U > u, z1)

pr(A = 1 | U ≤ u, z1)
≤ pr(A = 1 | U > u, z0)

pr(A = 1 | U ≤ u, z0)
,

and

pr(A = 0 | U > u,Z = z1)pr(A = 0 | U ≤ u, Z = z0)

pr(A = 0 | U > u,Z = z0)pr(A = 0 | U ≤ u, Z = z1)
≤ 1

⇐⇒ pr(A = 0 | U > u, z1)

pr(A = 0 | U ≤ u, z1)
≤ pr(A = 0 | U > u, z0)

pr(A = 0 | U ≤ u, z0)
.

Therefore, for both a = 1 and 0 and for all values of u,

pr(A = a | U > u,Z = z)

pr(A = a | U ≤ u, Z = z)
(S2)

is non-increasing in z. Because of the independence of Z and U , we have

F (u | A = a, Z = z)

=
pr(U ≤ u,A = a | Z = z)

pr(A = a | Z = z)

=
pr(U ≤ u)pr(A = a | U ≤ u, Z = z)

pr(U ≤ u)pr(A = a | U ≤ u, Z = z) + pr(U > u)pr(A = a | U > u,Z = z)

=

{
1 +

pr(U > u)

pr(U ≤ u)
× pr(A = a | U > u,Z = z)

pr(A = a | U ≤ u, Z = z)

}−1
.

Therefore, F (u | A = a, Z = z) is a non-increasing function of (S2), and the conclusion holds.� 50

Lemmas S5 and S6 above hold under the assumption of no additive interaction, and the fol-
lowing two lemmas state similar results under the assumption of no multiplicative interaction.

LEMMA S7. If p11 ≥ max(p10, p01),min(p10, p01) ≥ p00, and p11p00 = p10p01, then

p11 − p10 − p01 + p00 ≥ 0,
(1− p11)(1− p00)
(1− p10)(1− p01)

≤ 1.

Proof of Lemma S7. Using the same notation in the proof of Lemma S5, p11p00 = p10p01 im-
plies RR11 = RR10RR01, with RR10 ≥ 1,RR01 ≥ 1, and RR11 ≥ 1. Therefore,

p11 − p10 − p01 + p00 = p00(RR10RR01 − RR10 − RR01 + 1) = p00(RR10 − 1)(RR01 − 1) ≥ 0,
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which further implies that55

(1− p11)(1− p00)
(1− p10)(1− p01)

= 1 +
1

(1− p10)(1− p01)
{(1− p11)(1− p00)− (1− p10)(1− p01)}

= 1− p11 − p10 − p01 + p00
(1− p10)(1− p01)

≤ 1. �

LEMMA S8. If Z U , and pr(A = 1 | Z = z, U = u) = β(z)γ(u) with β(z) > 0 and
γ(u) > 0 non-decreasing in z and u, then Z U | A = 1, and for all values of u and z,

∂F (u | A = 0, Z = z)

∂z
≥ 0,

i.e., U has non-positive distributional dependence on Z, given A = 0.

Proof of Lemma S8. For a fixed u and z1 > z0, we define

p11 = pr(A = 1 | U > u,Z = z1) = β(z1)

∫ ∞
u

γ(u′)F (du′)/{1− F (u)},

p10 = pr(A = 1 | U > u,Z = z0) = β(z0)

∫ ∞
u

γ(u′)F (du′)/{1− F (u)},

p01 = pr(A = 1 | U ≤ u, Z = z1) = β(z1)

∫ u

−∞
γ(u′)F (du′)/F (u),

p00 = pr(A = 1 | U ≤ u, Z = z0) = β(z0)

∫ u

−∞
γ(u′)F (du′)/F (u),

following from the multiplicative model ofA and Z U. Because β(z1) ≥ β(z0),we have p11 ≥
p10 and p01 ≥ p00. Because γ(u) is increasing in u, we have

p11 ≥ β(z1)γ(u), p10 ≥ β(z0)γ(u), p01 ≤ β(z1)γ(u), p00 ≤ β(z0)γ(u),

which imply p11 ≥ p01 and p10 ≥ p00. We can further verify (p11p00)/(p10p01) = 1. Because
the four probabilities (p11, p10, p01, p00) satisfy the conditions in Lemma S7, we have {(1−
p11)(1− p00)}/{(1− p10)(1− p01)} ≤ 1. Replacing the probabilities by their definitions, we60

have
pr(A = 1 | U > u,Z = z1)pr(A = 1 | U ≤ u, Z = z0)

pr(A = 1 | U > u,Z = z0)pr(A = 1 | U ≤ u, Z = z1)
= 1,

pr(A = 0 | U > u,Z = z1)pr(A = 0 | U ≤ u, Z = z0)

pr(A = 0 | U > u,Z = z0)pr(A = 0 | U ≤ u, Z = z1)
≤ 1.

Following the same logic of the proof of Lemma S6, we can prove that Z U | A = 1, and Z
has non-positive distributional association on U , given A = 0. �

Define f = pr(A = 1) to be the proportion of the population under treatment. The average
causal effect for the whole population can be written as a convex combination of the average
causal effects for the treated and control populations:

ACEtrue = E{Y (1)} − E{Y (0)} = fACEtrue
1 + (1− f)ACEtrue

0 .

Analogously, with a scalar instrumental variable, the adjusted estimator for the whole population
can be written as

ACEadj =

∫
µ1(z)F (dz)−

∫
µ0(z)F (dz) = fACEadj

1 + (1− f)ACEadj
0 ,
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and with a general instrumental variable,

ACEadj =

∫
ν1(π)F (dπ)−

∫
ν0(π)F (dπ) = fACEadj

1 + (1− f)ACEadj
0 .

LEMMA S9. With a scalar instrumental variable Z, the differences between the adjusted and
unadjusted estimators are 65

ACEadj
1 − ACEunadj = −cov{Π(Z), µ0(Z)}

f(1− f)
,

ACEadj
0 − ACEunadj = −cov{Π(Z), µ1(Z)}

f(1− f)
,

ACEadj − ACEunadj = −cov{Π(Z), µ0(Z)}
1− f

− cov{Π(Z), µ1(Z)}
f

.

With a general instrumental variable Z, the above formulas hold if we replace Π(Z) by Π and
µa(Z) = E(Y | A = a, Z) by νa(Π) = E(Y | A = a,Π).

Proof of Lemma S9. The difference ACEadj
1 − ACEunadj is equal to

ACEadj
1 − ACEunadj

= E(Y | A = 0)−
∫
µ0(z)F (dz | A = 1)

=

∫
µ0(z)F (dz | A = 0)−

∫
µ0(z)F (dz | A = 1)

=

∫
µ0(z){1−Π(z)}F (dz)

1− f
−
∫
µ0(z)Π(z)F (dz)

f

=
1

f(1− f)

[
E{µ0(Z)(1−Π(Z))}E{Π(Z)} − E{µ0(Z)Π(Z)}E{1−Π(Z)}

]
=

1

f(1− f)

[
E{µ0(Z)}E{Π(Z)} − E{µ0(Z)Π(Z)}

]
= −cov{Π(Z), µ0(Z)}

f(1− f)
.

Similarly, the difference ACEadj
0 − ACEunadj is equal to

ACEadj
0 − ACEunadj =

∫
µ1(z)F (dz | A = 0)−

∫
µ1(z)F (dz | A = 1)

= −cov{Π(Z), µ1(Z)}
f(1− f)

.

Therefore, the difference ACEadj − ACEunadj is equal to 70

ACEadj − ACEunadj = f(ACEadj
1 − ACEunadj) + (1− f)(ACEadj

0 − ACEunadj)

= −cov{Π(Z), µ0(Z)}
1− f

− cov{Π(Z), µ1(Z)}
f

.

Analogously, we can prove the results for general instrumental variables. �
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APPENDIX 2. PROOFS OF THEOREMS AND COROLLARIES IN THE MAIN TEXT

Proof of Theorem 1. Because Π(z) = pr(A = 1 | Z = z) and pr(A = 1 | U = u) are non-
decreasing in z and u, and E(Y | A = a, U = u) is non-decreasing in u for both a = 0 and
1, the unadjusted estimator, ACEunadj, is larger than or equal to ACEtrue,ACEtrue

1 and ACEtrue
0 ,75

according to Lemmas S2–S4.
Because Π(Z) is non-decreasing and µa(Z) is non-increasing in Z for both a = 0 and 1, their

covariance is non-positive according to Lemma S1, i.e., cov{Π(Z), µa(Z)} ≤ 0.

Because the differences between all the adjusted estimators, ACEadj
1 , ACEadj

0 and ACEadj,
and the unadjusted estimator, ACEunadj, are negative constants multiplied by cov{Π(Z), µa(Z)},80

according to Lemma S9 all of ACEadj
1 , ACEadj

0 , and ACEadj are larger or equal to ACEunadj. �

Proof of Theorem 2. The independence of Z and U implies that

pr(A = 1 | Z = z) =

∫
pr(A = 1 | Z = z, U = u)F (du) = β(z) + E{γ(U)},

pr(A = 1 | U = u) =

∫
pr(A = 1 | Z = z, U = u)F (dz) = E{β(Z)}+ γ(u)

are non-decreasing in z and u. Therefore, according to Theorem 1 we need only to verify that
E(Y | A = a, Z = z) in non-increasing in z for both a = 0 and 1.

Because Z U and pr(A = 1 | Z = z, U = u) = β(z) + γ(u) with non-decreasing β(z) and85

γ(u), we can apply Lemma S6, and conclude that ∂F (u | A = a, Z = z)/∂z ≥ 0.
Write the essential infimum and supremum of U given (A = a, Z = z) as u(a, z) and u(a),

with the later depending only on a according to Condition (c) of Theorem 2. Because Y Z |
(A,U), integration or summation by parts gives

E(Y | A = a, Z = z)

=

∫
E(Y | A = a, Z = z, U = u)F (du | A = a, Z = z)

=

∫
ma(u)F (du | A = a, Z = z)

= ma(u)F (u | A = a, Z = z)|u=u(a)
u=u(a,z) −

∫ {
∂ma(u)

∂u

}
F (u | A = a, Z = z) du

= ma{u(a)} −
∫ {

∂ma(u)

∂u

}
F (u | A = a, Z = z) du.

Therefore, its derivative with respect to z,90

∂E(Y | A = a, z)

∂z
= − ∂

∂z

∫ {
∂ma(u)

∂u

}
F (u | A = a, Z = z) du

= −
∫ {

∂ma(u)

∂u

}{
∂F (u | A = a, Z = z)

∂z

}
du,

is smaller than or equal to zero, because ∂ma(u)/∂u ≥ 0 for both a = 0 and 1 and for all u. �

Proof of Corollary 1. According to Theorem 1 we need only to verify that µa(z) = E(Y |
A = a, Z = z) is non-increasing in z for both a = 0 and 1. Following Lemma S5, for binary and
independent Z and U, monotonicity and no additive interaction imply (S1), which, according to
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Bayes’ Theorem, is equivalent to 95

pr(A = 1 | Z = 1, U = 1)pr(A = 1 | Z = 0, U = 0)

pr(A = 1 | Z = 1, U = 0)pr(A = 1 | Z = 0, U = 1)
= ORZU |A=1 ≤ 1, (S3)

pr(A = 0 | Z = 1, U = 1)pr(A = 0 | Z = 0, U = 0)

pr(A = 0 | Z = 1, U = 0)pr(A = 0 | Z = 0, U = 1)
= ORZU |A=0 ≤ 1. (S4)

The above inequalities (S3) and (S4) state that Z and U have negative association given each
level of A, and therefore pr(U = 1 | A = a, Z = z) is non-increasing in z for both a = 1 and 0.

Because ma(1) ≥ ma(0) and

µa(z) = E(Y | A = a, Z = z)

=
∑
u=0,1

E(Y | A = a, Z = z, U = u)pr(U = u | A = a, Z = z)

= ma(1)pr(U = 1 | A = a, Z = z) +ma(0){1− pr(U = 1 | A = a, Z = z)}
= {ma(1)−ma(0)}pr(U = 1 | A = a, Z = z) +ma(0),

we know that µa(z) is non-decreasing in pr(U = 1 | A = a, Z = z). Therefore, µa(z) is non-
increasing in z for both a = 1 and 0. � 100

Proof of Theorem 3. Because of the independence of Z and U , we have pr(A = 1 | Z = z) =
β(z)E{γ(U)} and pr(A = 1 | U = u) = E{β(Z)}γ(u) are non-decreasing in z and u. Accord-
ing to Lemma S8, the multiplicative model of A also implies that for both a = 1 and 0 and for
all z and u, ∂F (u | A = a, Z = z)/∂z ≥ 0. Following exactly the same steps of the proof of
Theorem 2, we can prove Theorem 3. � 105

Proof of Corollary 2. For binary and independent Z and U , monotonicity, no multiplicative
interaction, and Lemma S7 imply

p11p00
p10p01

= 1 ≤ 1,
(1− p11)(1− p00)
(1− p10)(1− p01)

≤ 1. (S5)

With the above results in (S5), the rest of the proof is the same as the proof of Corollary 1. �

Proof of Theorem 4. First, we consider the treatment effect on the population under treat-
ment. Taking U = Y (0) in Lemma S3, we have ACEunadj ≥ ACEtrue

1 , because A Y (0) | 110

Y (0), pr{A = 1 | Y (0)} is non-decreasing in Y (0), and E{Y | A = 0, Y (0)} = Y (0) is non-
decreasing in Y (0). The condition cov{Π, E(Y | A = 0,Π)} ≤ 0 implies that ACEadj

1 ≥
ACEunadj according to Lemma S9. Therefore, ACEadj

1 ≥ ACEunadj ≥ ACEtrue
1 .

Second, we take U = Y (1) in Lemma S4, and by a similar argument as above we have
ACEadj

0 ≥ ACEunadj ≥ ACEtrue
0 . 115

The conclusion holds because ACEtrue = fACEtrue
1 + (1− f)ACEtrue

0 and ACEadj =

fACEadj
1 + (1− f)ACEadj

0 . �

Proof of Theorem 5. Under the additive model of A given Π and U = {Y (1), Y (0)}, we have
the following results. First, pr(A = 1 | Π) = Π is increasing in Π. Second, Π {Y (1), Y (0)}
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implies120

pr{A = 1 | Π, Y (1) = y1} =

∫
pr(A = 1 | Π, U)F (dy0 | y1)

=

∫
{Π + δ(y1) + η(y0)}F (dy0 | y1)

= Π + δ(y1) +

∫
η(y0)F (dy0 | y1) ≡ Π + δ̃(y1).

Denote the infimum and supremum of Y (0) given Y (1) = y1 by y
0
(y1) and y0, with the later not

depending on y1 according to Condition (c) of Theorem 5. Applying integration or summation
by parts, we have

δ̃(y1) = δ(y1) + η(y0)F (y0 | y1)|y0=y0
y0=y

0
(y1)
−
∫ {

dη(y0)

dy0

}
F (y0 | y1) dy0

= δ(y1) + η(y0)−
∫ {

dη(y0)

dy0

}
F (y0 | y1) dy0.

The function δ̃(y1) is non-decreasing in y1, because

d δ̃(y1)

dy1
=

dδ(y1)

dy1
−
∫ {

dη(y0)

dy0

}{
∂F (y0 | y1)

∂y1

}
dy0 ≥ 0.

Third, following the same reasoning as the second argument, we have pr{A = 1 | Π, Y (1) =125

y0} = Π + η̃(y0), with η̃(y0) being a non-decreasing function of y0. Fourth, Π Y (1) implies
pr{A = 1 | Y (1) = y1} = f + δ̃(y1), which is non-decreasing in y1. Fifth, Π Y (0) implies
pr{A = 1 | Y (0) = y0} = f + η̃(y0), which is non-decreasing in y0.

According the fourth and fifth arguments above, Condition (a) in Theorem 4 holds. Therefore,
we need only to verify Condition (b) in Theorem 4 to complete the proof.130

We have shown that pr{A = 1 | Π, Y (1)} = Π + δ̃{Y (1)}, which is additive and non-
decreasing in Π and Y (1). According to Lemma S6, we know that

∂pr{Y (1) ≤ y1 | A = 1,Π = π}
∂π

≥ 0 (S6)

for all y1 and π. We have also shown that pr{A = 1 | Π, Y (0)} = Π + η̃{Y (0)}, which is addi-
tive and non-decreasing in Π and Y (0). Again according to Lemma S6, we know that

∂pr{Y (0) ≤ y0 | A = 0,Π = π}
∂π

≥ 0 (S7)

for all y0 and π. According to Xie et al. (2008), the above negative distributional associations in135

(S6) and (S7) imply the negative associations in expectation between Y (0) and Π given A, as
required by condition (b) of Theorem 4. �

Proof of Corollary 3. As shown in the proof of Theorem 5, the conclusion follows immedi-
ately from the five ingredients. We will show that they hold even if there is non-negative interac-
tion between binary Y (1) and Y (0). The following proof is in parallel with the proof of Theorem140

5.
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First, pr(A = 1 | Π) = Π is increasing in Π. Second,

pr{A = 1 | Π, Y (1) = y1}
= E [pr{A = 1 | Π, Y (1) = y1, Y (0)} | Π, Y (1) = y1]

= E {α+ Π + δy1 + ηY (0) + θy1Y (0) | Π, Y (1) = y1}
= α+ Π + δy1 + ηpr{Y (0) = 1 | Y (1) = y1}+ θy1pr{Y (0) = 1 | Y (1) = y1} (S8)

≡ Π + δ̃[y1 − E{Y (1)}]. (S9)

The last equation in (S9) follows from the fact that Y (1) is binary and the functional form must
be linear in y1, where the coefficient is

δ̃ = pr{A = 1 | Π, Y (1) = 1} − pr{A = 1 | Π, Y (1) = 0}
= δ + η[pr{Y (0) = 1 | Y (1) = 1} − pr{Y (0) = 1 | Y (1) = 0}] + θpr{Y (0) = 1 | Y (1) = 1}

(S10)
≥ η[pr{Y (0) = 1 | Y (1) = 1} − pr{Y (0) = 1 | Y (1) = 0}], (S11)

where (S10) follows from (S8), and (S11) follows from δ ≥ 0 and θ ≥ 0. Because ORY ≥ 1, the 145

potential outcomes have non-negative association, implying that their risk difference RDY =

pr{Y (0) = 1 | Y (1) = 1} − pr{Y (0) = 1 | Y (1) = 0} ≥ 0. Therefore, δ̃ ≥ 0, and pr{A = 1 |
Π, Y (1)} is additive and non-decreasing in Π and Y (1).

Third, similar to the second argument, we have pr{A = 1 | Π, Y (0) = y0} = Π + η̃[y0 −
E{Y (0)}] with η̃ ≥ 0. Therefore, pr{A = 1 | Π, Y (0)} is additive and non-decreasing in Π 150

and Y (0). Fourth, Π Y (1) implies that pr{A = 1 | Y (1)} = f + δ̃Y (1) is increasing in Y (1).
Fifth, Π Y (0) implies that pr{A = 1 | Y (0)} = f + η̃Y (0) is increasing in Y (0).

With these five ingredients, the rest of the proof is exactly the same as the proof of Theorem
5. �

Proof of Theorem 6. First, pr(A = 1 | Π) = Π is non-decreasing in Π. Second,

pr{A = 1 | Π, Y (1) = y1} = Πδ(y1)

∫
δ(y0)F (dy0 | y1) ≡ Πδ̃(y1)

is multiplicative and non-decreasing in Π and y1, following the same argument as the proof of 155

Theorem 5. Third, pr{A = 1 | Π, Y (0) = y0} = Πη̃(y0) is multiplicative and non-decreasing in
Π and y0. Fourth, pr{A = 1 | Y (1) = y1} = f δ̃(y1) is non-decreasing in y1. Fifth, pr{A = 1 |
Y (0) = y0} = fη̃(y0) is non-decreasing in y0.

The multiplicative models and Lemma S8 imply that for all π, y1 and y0,

∂pr{Y (1) ≤ y1 | A = 1,Π = π}
∂π

= 0 ≤ 0,
∂pr{Y (0) ≤ y0 | A = 0,Π = π}

∂π
≥ 0.(S12)

The rest part is the same as the proof of Theorem 5. � 160

Proof of Corollary 4. First, pr(A = 1 | Π) = Π is non-decreasing in Π. Second,

pr{A = 1 | Π, Y (1) = y1} = αΠδy1E{ηY (0)θy1Y (0) | Y (1) = y1} ≡ αΠδ̃Y (1),



10 P. DING, T. J. VANDERWEELE AND J. M. ROBINS

where the functional form must be multiplicative because of binary Y (0), and the parameter δ̃ is

δ̃ =
pr{A = 1 | Π, Y (1) = 1}
pr{A = 1 | Π, Y (1) = 0}

= δ × E{ηY (0)θY (0) | Y (1) = 1}
E{ηY (0) | Y (1) = 0}

= δ × ηθpr{Y (0) = 1 | Y (1) = 1}+ pr{Y (0) = 0 | Y (1) = 1}
ηpr{Y (0) = 1 | Y (1) = 0}+ pr{Y (0) = 0 | Y (1) = 0}

= δ × (ηθ − 1)pr{Y (0) = 1 | Y (1) = 1}+ 1

(η − 1)pr{Y (0) = 1 | Y (1) = 0}+ 1
.

Because ORY ≥ 1, we have pr{Y (0) = 1 | Y (1) = 1} ≥ pr{Y (0) = 1 | Y (1) = 0}, which im-
plies that δ̃ ≥ 1. Therefore, pr{A = 1 | Π, Y (1)} is multiplicative and non-decreasing in Π
and Y (1). Third, we can similarly show that pr{A = 1 | Π, Y (0)} is multiplicative and non-
decreasing in Π and Y (0). Fourth, pr{A = 1 | Y (1) = y1} = αfδ̃y1 is non-decreasing in y1.165

Fifth, pr{A = 1 | Y (0) = y0} = αfη̃y0 is non-decreasing in y0.
The rest part is the same as the proof of Theorem 6. �

Proof of Theorem 7.. In Figure 4, Z and U are two independent confounders for the relation-
ship between A and Y . Because pr(A = 1 | Z = z, U = u) and E(Y | A = a, Z = z, U = u)
are non-decreasing in z and u for both a = 0 and 1, Lemmas S2–S4 imply that the unadjusted170

estimator, ACEunadj, is larger than or equal to ACEtrue,ACEtrue
1 and ACEtrue

0 .
The independence between Z and U implies pr(A = 1 | Z = z) =

∫
pr(A = 1 | Z = z, U =

u)F (du), and the monotonicity of pr(A = 1 | Z = z, U = u) in z implies that pr(A = 1 | Z =
z) is non-decreasing in z. The rest of the proof is identical to the proof of Theorem 1. �

APPENDIX 3. EXTENSIONS TO OTHER CAUSAL MEASURES175

Appendix 3·1. Distributional Causal Effects
Sometimes we are also interested in estimating the distributional causal effects (Ju & Geng,

2010) for the treatment, control and whole populations:

DCEtrue
1 (y) = pr{Y (1) > y | A = 1} − pr{Y (0) > y | A = 1},

DCEtrue
0 (y) = pr{Y (1) > y | A = 0} − pr{Y (0) > y | A = 0},

DCEtrue(y) = pr{Y (1) > y} − pr{Y (0) > y}.

The unadjusted estimator is

DCEunadj(y) = pr(Y > y | A = 1)− pr(Y > y | A = 0).

The adjusted estimators for the treatment, control and whole populations are

DCEadj
1 (y) = pr(Y > y | A = 1)−

∫
pr(Y > y | A = 0, z)F (dz | A = 1),

DCEadj
0 (y) =

∫
pr(Y > y | A = 1, z)F (dz | A = 0)− pr(Y > y | A = 0),

DCEadj(y) =

∫
pr(Y > y | A = 1, z)F (dz)−

∫
pr(Y > y | A = 0, z)F (dz).
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If the outcome is binary, then the distributional causal effects at y < 1 are the average causal 180

effects, and zero at y ≥ 1. All results about distributional causal effects reduce to average causal
effects for binary outcome. For a general outcome, the distributional causal effects are the av-
erage causal effects on the dichotomized outcome Iy = I(Y > y). Therefore, if we replace the
outcome Y by Iy in Theorems 1–3, the results about Z-bias hold for distributional effects. For
instance, the condition that pr(Y > y | A = a, U = u) is non-decreasing in u for all a is the 185

same as requiring a non-negative sign on the arrow U → Y , according to the theory of signed
directed acyclic graphs (VanderWeele & Robins, 2010). The following theorem states the results
analogous to Theorems 4–6.

COROLLARY S1. In the causal diagram of Figure 2, if for all y and for both a = 1 and 0,

(a) pr{Y (a) > y | A = 1} ≥ pr{Y (a) > y | A = 0}; 190

(b) cov{Π, pr(Y > y | A = a,Π)} ≤ 0;

then DCEadj
1 (y)

DCEadj
0 (y)

DCEadj(y)

 ≥
DCEunadj(y)

DCEunadj(y)
DCEunadj(y)

 ≥
DCEtrue

1 (y)
DCEtrue

0 (y)
DCEtrue(y)

 . (S13)

Under the conditions of Theorems 5 and 6, (S13) holds.

Proof of Corollary S1. Condition (a) of Corollary S1 is equivalent to pr{A = 1 | Iy(a) =
1} ≥ pr{A = 1 | Iy(a) = 0}, and Condition (b) of Corollary S1 is equivalent to cov{Π, E(Iy | 195

A = a,Π)} ≤ 0. Therefore, the conclusion follows from Theorem 4.
According to the proofs of Theorems 5 and 6, we have

pr{A = 1 | Iy(a) = 1} = pr{A = 1 | Y (a) > y} ≥ pr{A = 1 | Y (a) = y}
≥ pr{A = 1 | Y (a) ≤ y} = pr{A = 1 | Iy(a) = 0},

because of monotonicity of pr{A = 1 | Y (a)} in Y (a). Therefore, Condition (a) of Theorem S1
holds. Under the conditions of Theorems 5 and 6, we have also shown in (S6)–(S12) that for all
a, y and π, ∂pr(Y ≤ y | A = a,Π = π)/∂π ≥ 0, which implies that E(Iy | A = a,Π = π) is 200

non-increasing in π. Therefore, Condition (b) of Theorem S1 holds. The proof is complete. �

Appendix 3·2. Ratio Measures
In many applications with binary or positive outcomes, we are also interested in assessing

causal effects on the ratio scale for the treatment, control and whole populations, defined as

RRtrue
1 =

E{Y (1) | A = 1}
E{Y (0) | A = 1}

, RRtrue
0 =

E{Y (1) | A = 0}
E{Y (0) | A = 0}

, RRtrue =
E{Y (1)}
E{Y (0)}

.

The unadjusted estimator on the ratio scale is

RRunadj =
E(Y | A = 1)

E(Y | A = 0)
.
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The adjusted estimators on the ratio scale for the treatment, control and whole populations are205

RRadj
1 =

E(Y | A = 1)∫
E{Y | A = 0, Z = z}F (dz | A = 1)

,

RRadj
0 =

∫
E{Y | A = 1, Z = z}F (dz | A = 0)

E(Y | A = 0)
,

RRadj =

∫
E{Y | A = 1, Z = z}F (dz)∫
E{Y | A = 0, Z = z}F (dz)

.

With a general instrumental variable Z, we can replace Z by Π in the definitions of the adjusted
estimators.

COROLLARY S2. All the theorems and corollaries in §§3 and 4 hold on the ratio scale, i.e.,
under their conditions, RRadj

1

RRadj
0

RRadj

 ≥
RRunadj

RRunadj

RRunadj

 ≥
RRtrue

1

RRtrue
0

RRtrue

 .

Proof of Corollary S2. First, RRtrue is a convex combination of RRtrue
1 and RRtrue

0 , and RRadj
210

is a convex combination of RRadj
1 and RRadj

0 , which are formally stated in Ding & VanderWeele
(2016, eAppendix). Then the conclusion follows from the proofs of the theorems above. �

Appendix 3·3. Average Over Observed Covariates
In practice, we need to adjust for the observed covariates X that are confounders affecting

both the treatment and outcome. The discussion in previous sections is conditional on or within215

strata of observed covariates X , and the causal effects and their estimators are given X . For
example,

ACEtrue(x) = E{Y (1) | X = x} − E{Y (0) | X = x},
ACEunadj(x) = E(Y | A = 1, X = x)− E(Y | A = 0, X = x),

ACEadj(x) =

∫
E(Y | A = 1, Z = z,X = x)F (dz | X = x)

−
∫
E(Y | A = 0, Z = z,X = x)F (dz | X = x),

and other conditional quantities can be analogously defined. If the conditions in the theorems and
corollaries in §§3 and 4 hold within each level of X , then the conclusions in (1) and (S13) hold
not only within each level of X but also averaged over X . For example, for the average causal220

effects, we have∫ ACEadj
1 (x)F (dx | A = 1)∫

ACEadj
0 (x)F (dx | A = 0)∫

ACEadj(x)F (dx)

 ≥
∫ ACEunadj(x)F (dx | A = 1)∫

ACEunadj(x)F (dx | A = 0)∫
ACEunadj(x)F (dx)


≥

∫ ACEtrue
1 (x)F (dx | A = 1)∫

ACEtrue
0 (x)F (dx | A = 0)∫

ACEtrue(x)F (dx)

 .
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