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ADDITIONAL SIMULATION STUDIES 20

Bivariate covariate
We compared the performance of the six estimators studied in § 5 of the main paper with

that of other doubly robust estimators, including the modified one-step estimator of Cao et al.
(2009), the calibrated likelihood estimator of Tan (2010), the parametric bias-reduced estimator
of Vermeulen & Vansteelandt (2014), and the data-adaptive bias-reduced estimator of Vermeulen 25

& Vansteelandt (2016). The former three estimators, as described in the original works, rely on
parametric estimators of the outcome regression and propensity score, while the latter allows for
data-adaptive estimation of the outcome regression. To highlight the potential benefits of allow-
ing data-adaptive estimation, we used misspecified parametric models for the three parametric-
based methods, employing a main-terms-only regression based on W for both the outcome re- 30

gression and the propensity score. However, where methods allowed for data-adaptive nuisance
parameter estimation, we used kernel regression, as in the original simulation. Thus, for the es-
timator of Vermeulen & Vansteelandt (2016), we estimated the outcome regression using kernel
regression and the propensity score using a misspecified logistic regression model, whereas for
the six estimators considered in § 5 we used kernel regression for both the outcome regression 35

and the propensity score. We simulated 500 datasets according to the simulation set-up described
in § 5, with sample sizes of 250, 1000 and 5000. We compared the Monte Carlo bias of these es-
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Table S1. Bias of estimators (×10) in the bivariate covariate setting
n 250 1000 5000

Cao 1·135 1·182 1·188
Verm-1 1·135 1·179 1·187
Tan 0·004 0·017 0·024
Verm-2 0·216 0·115 0·060
OS 0·058 0·015 0·006
TMLE 0·019 0·005 0·002
TMLE-1 0·016 −0·001 0·003
OS-1 0·028 0·001 0·001
TMLE-2 0·001 −0·002 0·003
OS-2 0·028 0·004 0·001

Cao, the estimator of Cao et al. (2009); Verm-1, the estimator of Vermeulen & Vanstee-
landt (2014); Tan, the estimator of Tan (2010); Verm-2, the estimator of Vermeulen &
Vansteelandt (2016); TMLE, targeted minimum loss-based estimator; TMLE-1, tar-
geted minimum loss-based estimator with univariate correction; TMLE-2, targeted
minimum loss-based estimator with bivariate correction; OS, one-step estimator; OS-1,
one-step estimator with univariate correction; OS-2, one-step estimator with bivariate
correction.

timators as well as the coverage probability of nominal 95% confidence intervals constructed
using each of these estimators. Confidence intervals for the Tan estimator were computed using
Wald intervals based on the estimated variance computed in the R package iWeigReg (Tan &40

Shu, 2013). The confidence intervals for the estimators from Vermeulen & Vansteelandt (2014)
and Vermeulen & Vansteelandt (2016) were computed using the code accompanying the respec-
tive papers. The confidence intervals for the estimator of Cao et al. (2009) were constructed using
a percentile-based nonparametric bootstrap based on 500 bootstrap resamples.

The Monte Carlo bias of each of the estimators is displayed in Table S1. As anticipated, the45

bias of the parametric estimators does not converge to zero since both nuisance models are mis-
specified. The bias of the Vermeulen & Vansteelandt (2016) estimator appears to be converging
to zero; however, the rate is slower than that of the estimators that allow for data-adaptive es-
timation of both nuisance parameters. The behaviour of the Vermeulen & Vansteelandt (2016)
estimator is thus comparable to the targeted minimum loss-based and one-step estimators that50

used misspecified logistic regression models. As such, we do expect its bias to converge to zero,
though at a rate slower than n−1/2.

The coverage probability for nominal 95% confidence intervals is shown in Table S2. The
coverage probabilities for the Cao et al. (2009) and Vermeulen & Vansteelandt (2014) estima-
tors converge quickly to zero due to the inconsistency of these estimators. Surprisingly, and in55

spite of its inconsistency, the Tan (2010) estimator achieves approximately nominal coverage.
In Table S1 it can be seen that the bias of this estimator does not converge to zero, and so we
anticipate that this estimator will suffer from poor coverage in large enough samples. The cov-
erage probabilities for the Vermeulen & Vansteelandt (2016) estimator do not achieve nominal
coverage because this estimator is not asymptotically linear under the misspecified propensity60

score model. The coverage probabilities for the six estimators utilizing kernel regression for
both nuisance parameters achieve their approximate nominal level.

The performance of all estimators that rely on parametric models was quite poor in this simu-
lation study, since by design we used only misspecified models. We did so to emphasize the sig-
nificant drawbacks of reliance on parametric models alone for nuisance estimation. Certainly, we65

expect the poor performance of these parametric model-based estimators to be much less drastic
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Table S2. Nominal 95% confidence interval coverage probability in
the bivariate covariate setting

n 250 1000 5000

Cao 0·275 0·000 0·000
Verm-1 0·269 0·000 0·000
Tan 0·890 0·947 0·943
Verm-2 0·817 0·872 0·840
OS 0·865 0·951 0·954
TMLE 0·871 0·957 0·954
TMLE-1 0·869 0·966 0·952
OS-1 0·880 0·961 0·962
TMLE-2 0·888 0·966 0·958
OS-2 0·871 0·961 0·962

when there is only a small amount of misspecification. However, we want to stress that, for the
sake of inference, how severe a certain deviation from the model is depends entirely on the sam-
ple size. In particular, what may seem like a small deviation may in fact be quite consequential
if the dataset is large. We leave to future work a comparison between the finite-sample operating 70

characteristics of these parametric model-based estimators and those of the fully data-adaptive
procedures in settings where the true nuisance functions are well-approximated by parametric
models.

Six-dimensional covariate
To examine how the estimators perform in settings with covariates of higher dimension, we 75

conducted an additional simulation study inspired by the study reported above. The baseline
covariate vector W = (W1, . . . ,W6) had independent components, with W1,W3 and W5 dis-
tributed according to a uniform distribution over the interval (−2,+2), and W2,W4 and W6 dis-
tributed as a binary random variable with success probability 1/2. The conditional probability of
A = 1 given W = w was the same as in the original simulation, g0(w) = expit(−w1 + 2w1w2), 80

as was the conditional probability of Y = 1 given A = a and W = w, Q̄0(a,w) = expit(0·2a−
w1 + 2w1w2).

In this simulation, rather than using kernel regression to estimate nuisance parameters for
the data-adaptive estimators, we used loss-based ensemble machine learning or super learning
(van der Laan & Polley, 2007; Polley & van der Laan, 2013). Our ensemble estimator relied 85

on ten-fold crossvalidation to select the convex combination of three candidate estimators that
minimized crossvalidated mean squared error. The three candidate estimators were a main-terms-
only logistic regression, an AIC-based forward stepwise logistic regression including all two-
way interactions, and a gradient-boosted machine (Friedman, 2001) with tuning parameters also
selected via ten-fold crossvalidation (Kuhn, 2016). We compared the same estimators as in the 90

previous subsection, again using misspecified main-terms-only logistic regression models for
the parametric doubly robust estimators and using super learning for estimators that allowed for
data-adaptive estimation.

The bias of each estimator considered is displayed in Table S3. The results are similar to those
obtained in the bivariate setting. The bias of the data-adaptive estimators converges to zero, while 95

the bias of the parametric estimators does not. The bias of the Vermeulen & Vansteelandt (2016)
estimator again converges more slowly than the estimators that allow for data-adaptive estimation
of both nuisance parameters. For the smallest sample size considered, the proposed univariate-
corrected targeted minimum loss-based estimator performed best, with lower bias than both the
uncorrected and the bivariate-corrected targeted minimum loss-based estimator of van der Laan 100
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Table S3. Bias of estimators (×10) in the six-dimensional co-
variate setting

n 250 1000 5000

Cao 1·200 1·172 1·180
Verm-1 1·181 1·167 1·179
Tan 1·051 1·034 1·038
Verm-2 0·371 0·171 0·133
OS 0·095 0·001 −0·002
TMLE 0·050 −0·001 −0·002
TMLE-1 0·012 −0·009 −0·006
OS-1 0·069 −0·007 −0·004
TMLE-2 0·027 −0·008 −0·006
OS-2 0·228 0·017 −0·003

Table S4. Nominal 95% confidence interval coverage
probability in the six-dimensional covariate setting
n 250 1000 5000

Cao 0·214 0·000 0·000
Verm-1 0·204 0·000 0·000
Tan 0·330 0·034 0·002
Verm-2 0·758 0·774 0·664
OS 0·896 0·936 0·948
TMLE 0·896 0·938 0·948
TMLE-1 0·896 0·940 0·944
OS-1 0·872 0·946 0·948
TMLE-2 0·878 0·932 0·938
OS-2 0·808 0·916 0·942

(2014). In Table S4, the coverage probability for the nominal 95% confidence interval about
each estimator is provided. Similarly to above, because of strong model misspecification, the
parametric estimators do not achieve proper coverage. Furthermore, the surprisingly good nom-
inal coverage achieved by the Tan (2010) estimator in the bivariate scenario is not seen in this
case. The coverage probability of the interval based on the Vermeulen & Vansteelandt (2016)105

estimator again decreases with sample size. The coverage probability of the intervals based on
the six estimators utilizing super learning for both nuisance functions is approximately nominal
for moderate sample sizes.
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