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SUMMARY

In this Supplementary Material we provide proofs of theorems and propositions in the paper,
and alternative causal diagrams that are compatible with the structural equations (4) in the paper, 15

but allow for certain dependencies between error terms. Some additional equations and figures
are created within this document, which we label as equation (S1), Figure S1 and so forth, to
distinguish them from those in the main text.

1. PROOF OF THEOREMS 1–3
By definition, ∆LL = E{Y (1) ∣ G = LL} −E{Y (0) ∣ G = LL}, where E{Y (z) ∣ G = LL} is 20

given in (1). It then suffices to identify πLL∣W and µz,LL,W for identification of ∆LL.
Identification of πLL∣W : under the assumptions of Theorem 1 or 3, πLL∣W can be identified

from (2), whereas under the assumptions of Theorem 2, πLL∣W can be identified from the
following equations:

pr{S(1) = 1 ∣W} = pr(S = 1 ∣ Z = 1,W ) = πLL∣W + πLD∣W ; 25

pr{S(0) = 1 ∣W} = pr(S = 1 ∣ Z = 0,W ) = πLL∣W + πDL∣W ;

πLL∣W = pr{S(0) = 1 ∣W}pr{S(1) = 1 ∣ S(0) = 1,W};

pr{S(1) = 1 ∣ S(0) = 1,W} = pr{S(1) = 1 ∣W}

+ ρ(W )(min [1, pr{S(1) = 1 ∣W}
pr{S(0) = 1 ∣W}

] − pr{S(1) = 1 ∣W}) ,

where due to Assumption 2, pr{S(z) = 1 ∣W} = pr(S = 1 ∣ Z = z,W ) and thus is identifiable 30

for z = 0,1. Note that under these assumptions, πg∣W is also identifiable with g ∈ {LD,DL,DD}.
Identification of µz,LL,W : under the assumptions of Theorem 1, µ0,LL,W can be identified

from (3). First recall that W = (A,X). As described above, pg∣z,w,s=1 = pr(G = g ∣X =
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x,A = a)/pr(S = 1 ∣ Z = z,X = x,A = a) is identifiable from the observed data. Note that by
consistency, 0 = pDL∣1,x,a,s=1 = pLD∣0,x,a,s=1 = pDD∣z,x,a,s=1, z ∈ {0,1}. Furthermore, Assumption35

5 implies that for all x, there exist a0 ≠ a1 such that pLL∣1,x,a1,s=1 ≠ pLL∣1,x,a0,s=1. Due to
Assumption 4, for g = LL,LD,

µ1,g,w = E(Y ∣ Z = 1,G = g,X = x,A = a) = E(Y ∣ Z = 1,G = g,X = x) ≡ µ1,g,x.

Furthermore, µ1,LL,x can be identified from

E(Y ∣ Z = 1, S = 1,X = x,A = a1) = pLL∣1,x,a1,s=1µ1,LL,x + (1 − pLL∣1,x,a1,s=1)µ1,LD,x,

E(Y ∣ Z = 1, S = 1,X = x,A = a0) = pLL∣1,x,a0,s=1µ1,LL,x + (1 − pLL∣1,x,a0,s=1)µ1,LD,x. (S1)40

Under the assumptions of Theorem 2, we can obtain similarly that for z ∈ {0,1}, µz,LL,w =
µz,LL,x, where µ1,LL,x is identified by (S1), and µ0,LL,x can be identified from

E(Y ∣ Z = 0, S = 1,X = x,A = a′1) = pLL∣0,x,a′1,s=1µ0,LL,x + (1 − pLL∣0,x,a′1,s=1)µ0,DL,x,

E(Y ∣ Z = 0, S = 1,X = x,A = a′0) = pLL∣0,x,a′0,s=1µ0,LL,x + (1 − pLL∣0,x,a′0,s=1)µ0,DL,x,

where a′1 and a′0 are two distinct values of A such that pLL∣0,x,a′1,s=1 ≠ pLL∣0,x,a′0,s=1.45

Similarly, under the assumptions of Theorem 3, µ0,LL,W is identified by (3) and µ1,LL,x,a1 can
be identified from the following equations:

E(Y ∣ Z = 1, S = 1,X = x,A = a1) = pLL∣1,x,a1,s=1µ1,LL,x,a1 + (1 − pLL∣1,x,a1,s=1)µ1,LD,x,a1 ;

E(Y ∣ Z = 1, S = 1,X = x,A = a0) = pLL∣1,x,a0,s=1µ1,LL,x,a0 + (1 − pLL∣1,x,a0,s=1)µ1,LD,x,a0 ;

µ1,LL,x,a1 − µ1,LL,x,a0 = µ1,LD,x,a1 − µ1,LD,x,a0 ;50

µ1,LL,x,a1 − µ1,LL,x,a0 = µ0,LL,x,a1 − µ0,LL,x,a0 ;

E(Y ∣ Z = 0, S = 1,X = x,A = a1) = µ0,LL,x,a1 ;

E(Y ∣ Z = 0, S = 1,X = x,A = a0) = µ0,LL,x,a0 ,

where µz,g,x,a ≡ E(Y ∣ Z = z,G = g,X = x,A = a).
For any a ∈ A / {a1}, µ1,LL,x,a can be identified via the following equations:55

µ1,LL,x,a − µ1,LL,x,a1 = µ0,LL,x,a − µ0,LL,x,a1 ;

E(Y ∣ Z = 0, S = 1,X = x,A = a) = µ0,LL,x,a;

E(Y ∣ Z = 0, S = 1,X = x,A = a1) = µ0,LL,x,a1 .

2. PROOF THAT THE NONPARAMETRIC STRUCTURAL EQUATION MODEL WITH
INDEPENDENT ERRORS IN SECTION 3.3 IMPLIES ASSUMPTION 2–460

Under (4), ϵZ⊥⊥(ϵX , ϵA, ϵS , ϵY ) implies that Z⊥⊥(ϵS , ϵY ) ∣X,A, which then implies
Assumptions 2 and 3; recall here that the error terms can be interpreted as the set of
one-step-ahead counterfactuals. To see that Assumption 4 holds under the structural equations
(4), note the following:

pr{Y ∣ A = a1, Z = 1,X = x,S(1) = 1, S(0)} = pr{Y ∣ A = a1, Z = 1,X = x,S = 1, S(0)}65

= pr(Y ∣ A = a1, Z = 1,X = x,S = 1)
= pr(Y ∣ A = a0, Z = 1,X = x,S = 1)
= pr{Y ∣ A = a0, Z = 1,X = x,S = 1, S(0)}
= pr{Y ∣ A = a0, Z = 1,X = x,S(1) = 1, S(0)},
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where the first and last lines follow from consistency; the second and fourth follow from 70

Y⊥⊥S(0) ∣ A,Z = 1,X,S = 1, which holds as Y is d-separated from ϵS given X,A,Z,S; the
third line follows since Y is d-separated from A conditioning on X,Z,S.

As Assumption 4 holds trivially for the subgroup with S(1) = 0, we complete the proof.

3. PROOF OF PROPOSITION 1
Constraint (8) is standard. To prove (9), note that under Assumption 4, (S1) holds for all a, i.e. 75

E(Y ∣ Z = 1, S = 1,X = x,A = a) = pLL∣1,x,a,s=1µ1,LL,x + (1 − pLL∣1,x,a,s=1)µ1,LD,x. (S2)

It follows that

∣E(Y ∣ Z = 1, S = 1,X = x,A = a)∣ ≤max(∣µ1,LL,x∣, ∣µ1,LD,x∣).

Hence for all x, E(Y ∣ Z = 1, S = 1,X = x,A = a) is bounded as a function of a. On the other
hand, suppose that for all x, E(Y ∣ Z = 1, S = 1,X = x,A = a) is bounded as a function of a.
Let

f̄(x) = sup
a

E(Y ∣ Z = 1, S = 1,X = x,A = a), and
¯
f(x) = inf

a
E(Y ∣ Z = 1, S = 1,X = x,A = a).

Then (S2) holds with

pLL∣1,x,a,s=1 =
f̄(x) −E(Y ∣ Z = 1, S = 1,X = x,A = a)

f̄(x) −
¯
f(x)

, µ1,LL,x =
¯
f(x) and µ1,LD,x = f̄(x).

Hence (9) summarizes all the constraints on the observed data law derived from (S2). The proof
of (11) is similar and hence omitted.

Constraint (10) follows immediately from Assumption 5 by noting that

pr(S = 1 ∣ Z = 0,X = x,A = a)
pr(S = 1 ∣ Z = 1,X = x,A = a)

= pr(G = LL ∣X = x,A = a)
pr(S = 1 ∣ Z = 1,X = x,A = a)
= pr(G = LL ∣ Z = 1, S = 1,X = x,A = a). 80

To show (12), note that Assumption 7 implies that for all a1, a0,

µ1,LL,x,a1 − µ0,LL,x,a1 = µ1,LL,x,a0 − µ0,LL,x,a0 ,

µ1,LD,x,a1 − µ0,LL,x,a1 = µ1,LD,x,a0 − µ0,LL,x,a0 .

It follows that µ1,LL,w − µ0,LL,w = µ1,LL,x − µ0,LL,x and µ1,LD,w − µ0,LL,w = µ1,LD,x − µ0,LL,x.
We then have 85

E(Y ∣ Z = 1, S = 1,X = x,A = a) −E(Y ∣ Z = 0, S = 1,X = x,A = a)
= pLL∣1,x,a,s=1µ1,LL,x,a + pLD∣1,x,a,s=1µ1,LD,x,a − µ0,LL,x,a

= pLL∣1,x,a,s=1(µ1,LL,x,a − µ0,LL,x,a) + pLD∣1,x,a,s=1(µ1,LD,x,a − µ0,LL,x,a)
= pLL∣1,x,a,s=1(µ1,LL,x − µ0,LL,x) + pLD∣1,x,a,s=1(µ1,LD,x − µ0,LL,x)

so that 90

∣E(Y ∣ Z = 1, S = 1,X = x,A = a) −E(Y ∣ Z = 0, S = 1,X = x,A = a)∣
≤max(∣µ1,LL,x − µ0,LL,x∣, ∣µ1,LD,x − µ0,LL,x∣).

The rest of the proof is similar to that for (9) and is hence omitted.
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4. ALTERNATIVE CAUSAL DIAGRAMS

Figure S1 shows some more complicated causal diagrams that imply assumptions95

Assumptions 2–4 but allow for dependence of errors in the structural equations (4) representing
unmeasured confounding between nodes in Fig. 1. Here unmeasured confounding is denoted by
a bi-directed edge between observed nodes. In general, using graphical terminology (Richardson,
2003), the mixed graphs, such as those in Fig. S1, imply Assumptions 2–4 so long as the pairs
(Z,S), (Z,Y ), (A,Y ) and (S,Y ) are not in the same district, where a district is a connected100

component of the graph obtained by removing all edges that are not bi-directed. Specifically,
Assumption 2 requires that Z and S cannot be in the same district, Assumption 3 requires that
neither Z and Y nor S and Y can be in the same district, and Assumption 4 requires additionally
that A and Y cannot be in the same district.

X A Z S Y

(i)

X A Z S Y

(ii)

X A Z S Y

(iii)

Fig. S1. More complicated causal diagrams that imply
Assumptions 2–4. The districts in these graphs are: (i)
{X,A,Z},{S} and {Y }; (ii) {X,A,S},{Z} and {Y };

(iii) {X,Y },{A,Z} and {S}.



Causal Inference with Truncation by Death 5

REFERENCES 105

RICHARDSON, T. S. (2003). Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics
30, 145–157.


