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SUMMARY

This document contains Supplementary Material on the following topics: (1) software imple-

mentation; (2) relationship between G-squared and segmented regression; (3) equitability study;

(4) more simulations; (5) proof of the consistency of G2
m and G2

t for estimating the G-squared; 15

(6) proof of the equivalence between G2
m and R2 in the bivariate normal case.

1. SOFTWARE IMPLEMENTATION

We provide R implementation to estimate G2
m and G2

t discussed in the main paper. The R pack-

age is available at http://www.people.fas.harvard.edu/˜junliu/Gs. We studied

the computing time for different methods with sample sizes n = 50, 100, 225 and 500. For each 20

n we simulated 1,000 observations and recorded the computing time for every method; the av-

erage time is shown in Fig 1. The computing time for G2
t was twice as much as the computing

time for G2
m due to the normalizing constant. This time can be further reduced by tabulating the

normalizing constant for pairs of (n, λ0). G
2
m and G2

t were more time efficient compared with

distance correlation, the method of Heller et al. (2016), and MICe. 25

2. SEGMENTED REGRESSION

The R-squared for segmented regression with predictor X and response Y is

R2 = 1−
∑K

h=1 nhσ̂
2
h

nν̂2
,

where ν̂2 is the sample variance of Y , nh and σ̂2
h are sample size and residual variance of Y after

regressing on X in segment h (h = 1, . . . ,K). R2 can be viewed as an estimator of

R2
Y |X = 1− E{var(Y | X)}/var(Y );

C© 2016 Biometrika Trust
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Fig. 1. The left figure shows the average computing time of G2

m (black solid), G2

t (grey solid),
Pearson correlation (grey markers), distance correlation (black dashes) and the method of Heller
et al. (2016) (black dots) for 1,000 simulations with sample sizes n =50, 100, 225 and 500; the
right figure shows the average computing time of mutual information (black solid), MICe (grey
solid), alternating conditional expectation (grey markers), characteristic function (black dashes),
Genest’s test (black dots) and Hoeffding’s test (black markers). The x-axis is the logarithm of n

with base 10 and the y-axis is the logarithm of the computing time in seconds with base 10.

it is zero if and only if E(Y | X) is a constant. G2
Y |X equals30

1− exp [E{log var(Y | X)} − log var(Y )] ;

it is zero if and only if both E(Y | X) and var(Y | X) are constant. G2
Y |X equals R2

Y |X when

var(Y | X) is a constant, but G2
Y |X is more general than R2

Y |X since it can capture heteroscedas-

tic effects.

Given a fixed number of segments K, computing R2
Y |X with the optimal segmentation is

more computationally intensive than computing G2
m and G2

t , especially when K is large. When35

K is unknown, we can apply the same dynamic programming algorithm for G2
m or G2

t and fit

a penalized version of the segmented regression to avoid over-fitting. If we also require that the

fitted curve be continuous, no exact numerical solution is available; we could potentially design

a Markov chain Monte Carlo algorithm under a Bayesian framework.

3. EQUITABILITY40

Reshef et al. (arXiv:1505.02212) gave two equivalent definitions for the equitability of a statis-

tic that measures dependence. Intuitively, equitable statistics can be used to gauge the degree of

dependence. They used Ψ = cor2{Y, f(X)} to define the degree of dependence when the depen-

dence of Y on X can be described by a functional relationship. When var(Y | X) is a constant,

we have Ψ ≡ G2
Y |X . For a perfectly equitable statistic, its sampling distribution should be almost45

identical for different relationships with the same Ψ. But the existence of such a statistic for any

well-defined large class of functional relationships remains unclear.

We repeated the equitability study by Reshef et al. (2011). Figure 2 shows the 95% confidence

bands for G2
m and G2

t , compared with alternating conditional expectation, Pearson correlation,

distance correlation, and MICe for X ∼ N(0, 1) and50
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Fig. 2. The plots from the top left to the bottom right are the 95% confidence bands of Φ for the
6 indicated methods. We chose n = 225 and performed 1,000 replications for each relationship
and each value of Ψ for Example 1–4. The shadow is the lightest for Example 1 and darkest
for Example 4. Ψ is a monotone function of the signal-to-noise ratio when the error variance
is constant. The y-axis shows the values of the corresponding statistic, each estimating its own

population mean, which may or may not be Ψ.

Example 1. Y = X + ǫσ and ǫ ∼ N(0, 1);

Example 2. Y = X + ǫσ and ǫ ∼ N(0, e−|X|);

Example 3. Y = X2/
√
2 + ǫσ and ǫ ∼ N(0, 1);

Example 4. Y = X2/
√
2 + ǫσ and ǫ ∼ N(0, e−|X|).

We chose different values of Ψ with n = 225 and conducted 1,000 replications for each case. The 55

plots show that G2
m and G2

t increased along with Ψ for all relationships, as expected, and that

the confidence bands obtained under different functional relationships had a similar size and lo-

cation for the same Ψ. The confidence bands were also comparably narrow. The MICe displayed

good equitability, though slightly worse than G2
m and G2

t , while the other three statistics did

poorly for non-monotone relationships. The alternating conditional expectation tended to have a 60

wider confidence band for Example 3 and 4 than the other methods, while the Pearson correla-

tion and distance correlation had non-overlapping confidence intervals for different relationships

when Ψ is moderately large. In other words, the Pearson correlation and distance correlation can

yield drastically different values for two relationships with the same Ψ. This phenomenon was

as expected, since it is known that these two statistics do not perform well for non-monotone 65

relationships.

An alternative strategy to study equitability of a statistic is to test H0 : Ψ = x0 against

H1 : Ψ = x1 (x1 > x0) for a broad set of functional relationships using the statistic. The more

powerful a test statistic for all types of relationships, the better its equitability. For each aforemen-

tioned method, we performed right-tailed tests with the type-I error fixed at α = 0.05 and differ- 70

ent combinations of (x0, x1) (0 < x0 < x1 < 1). Given a fixed sample size, a perfectly equitable
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Table 1. Functional relationships for equitability study

Relation Name Function

line x
quadratic (x− 1/2)2

cubic 4(2.4x− 1.3)3 + (2.4x− 1.3)2 − 4(2.4x− 1.3)
exponential (10x) 1010x

exponential (2x) 22x

L-shaped (x/99)Ix≤0/99 + 1Ix>0.99

lopsided L-shaped 200xIx≤0.005 + (−198x+ 19.9)I0.005<x≤0.01 + (−x/99 + 1/99)Ix>0.1

spike 20Ix≤0.05 + (−18x+ 1.9)I0.05<x≤0.1 + (−x/9 + 1/9)Ix>0.1

sigmoid {50(x− 0.5) + 0.5}I0.49<x≤0.51 + 1Ix>0.51

linear + high freq periodic 0.1 sin{10.6(2x− 1)}+ 1.1(2x− 1)
linear + high freq periodic 2 0.2 sin{10.6(2x− 1)}+ 1.1(2x− 1)
linear + low freq periodic 0.2 sin{4(2x− 1)}+ 1.1(2x− 1)
linear + medium freq periodic sin(10πx) + x
high freq sine sin(8πx)
non-Fourier freq sine sin(9πx)
very high freq sine sin(16πx)
varying freq sine sin{6πx(1 + x)}
high freq cosine cos(14πx)
non-Fourier freq cosine cos(7πx)
varying freq cosine sin{5πx(1 + x)}

statistic should yield the same power for all kinds of relationships so that it is able to reflect the

degree of dependency by a single value regardless of the type of relationship. In reality, most

statistics can perform well only for a small class of relationships. We use a heat map to demon-

strate the average power of a test statistic with different pairs of (x0, x1) (0 < x0 < x1 < 1) in75

Fig. 3. Each dot in the plot represents the average power of a test statistic over a class of func-

tional relationships; the darker the color, the higher the power. We simulated (X,Y ) with the

following model

X ∼ U(0, 1), Y = f(X) + ǫσ, ǫ ∼ N(0, 1).

The twenty chosen functional relationships, which were inspired by the functional relation-

ships in (Reshef et al., arXiv:1505.02214), are shown in Table 1. We carried out the testing for80

(x0, x1) = (i/50, j/50) (i < j = 1, . . . , 49). We set n = 225 and conducted 1,000 replications

for each relationship and each pair of (x0, x1) (0 < x0 < x1 < 1). For any method with a tuning

parameter, we chose parameters that resulted in the greatest average power. We observed that G2
m,

G2
t and MICe had the best equitability, followed by alternating conditional expectation and TICe.

The average powers for G2
m, G2

t and MICe over the entire range of (x0, x1) (0 < x0 < x1 < 1)85

were all 0.6, although G2
m and G2

t were slightly better for larger x0’s. Besides, using our em-

pirical Bayes method to select λ0, the equitability of G2
m and G2

t can be further improved. In

comparison, all the remaining methods were not as equitable.

4. SIMULATIONS

4·1. Consistency of G2
m and G2

t90

For a general relationship, the true value of G2 is nontrivial to compute. However, we can cal-

culate G2
Y |X for some special examples and evaluate the sum of squared errors of the estimators.
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Fig. 3. Heat maps for the equitability of different methods. Each gray dot corresponding to
(x1, x0) (0 < x0 < x1 < 1) represents the power of the method for testing H0 : Ψ = x0 against
H1 : Ψ = x1, averaging over a class of functions. The darker a dot, the higher the average power.
We chose sample size n = 225 and performed 1,000 replications for each relationship and pair

of (x0, x1) (0 < x0 < x1 < 1).

The introduction of the working model provides a simple and intuitive derivation of G2
Y |X . With

X ∼ U(0, 1), we consider Example 1–4 and

Example 5. Y = X + ǫσ and ǫ ∼ √
3U(−1, 1); 95

Example 6. Y = X + ǫσ and ǫ ∼ √
3e−|X|U(−1, 1);
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Table 2. Sum of squared errors for G2
m and G2

t with increasing

n

G2

m G2

t

n ex. 1 ex. 2 ex. 3 ex. 4 ex. 1 ex. 2 ex. 3 ex. 4

100 5.11 4.56 19.27 16.45 4.99 3.56 13.15 11.53

225 2.37 2.56 9.30 7.55 2.39 1.88 6.41 5.37

400 1.35 1.42 5.17 4.16 1.35 1.05 3.67 3.04

G2

m G2

t

n ex. 5 ex. 6 ex. 7 ex. 8 ex. 5 ex. 6 ex. 7 ex. 8

100 4.87 4.10 20.29 17.29 5.56 3.12 13.45 11.73

225 2.29 2.43 9.05 8.98 2.76 1.77 6.13 6.42

400 1.49 1.49 5.38 4.82 1.93 1.08 3.78 3.46

Example 7. Y = X2/
√
2 + ǫσ and ǫ ∼ √

3U(−1, 1);

Example 8. Y = X2/
√
2 + ǫσ and ǫ ∼ √

3e−|X|U(−1, 1).

For Example 1, 3, 5, and 7, G2
Y |X is (1 + σ2)−1; for Example 2, 4, 6 and 8, G2

Y |X is (1 +

0.07σ2)(1 + 0.52σ2)−1. We chose σ = 1 and simulated 1, 000 replications for each model and100

sample size and used λ0 = 3 for G2
m and G2

t . Table 2 shows the sum of squared errors of G2
m(Y |

X,λ0) and G2
t (Y | X,λ0) for the different models as n varies. We found that the sum of squared

errors decreased roughly in the order of n−1 for both estimators and that G2
t appeared slightly

more accurate. The sum of squared errors were similar when the function relationships were the

same, regardless of the error type. This confirmed that the estimation accuracies of G2
m and G2

t105

are not sensitive to the Gaussian assumption.

4·2. More simulations for power analysis

Table 3 lists twenty functional relationships for power analysis. For all relationships, we nor-

malize them so that var{f(X)} = 1 with X ∼ U(0, 1). As an intuitive presentation, Figure 4

shows the twenty simulated relationships with G2
Y |X = 0.8. The power analysis results with six110

methods for the first eight relationships were in the main paper. Figure 5 presents the power

for the eight relationships with the remaining six methods. The power analysis of the remaining

twelve relationships with the entire twelve methods are in Figures 6–8. Figures 7 and 8 have the

same legend as Figure 6. We found G2
m and G2

t were among the most powerful test statistics and

G2
t showed a higher power than G2

m in most examples.115

4·3. Influence of sample size

We ran simulations with the same setup with n = 50, 100, 225 and 500. Figure 9 shows the

average power of G2
m, G2

t , the Pearson correlation, the distance correlation, the method of Heller

et al. (2016) and TICe against different sample sizes. We found that G2
m and G2

t were among the

most powerful methods when n is larger than 100. When the sample size is small, the powers120

of G2
m and G2

t were slightly lower than that of Heller et al. (2016) in some cases but were still

among the most powerful methods. Power analysis for more relationships are in Fig. 10–12.

4·4. Simulation for the empirical Bayes selection of λ0

We examined the distributions of G2
m(λ0) and G2

t (λ0) with λ0 = 0.5, 1.5, 2.5 and 3.5 for

X ∼ N(0, 1) and125

Example 9. Y = X + σǫ and ǫ ∼ N(0, 1).

Example 10. Y = sin(4πx)/0.7 + σǫ and ǫ ∼ N(0, 1).
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Fig. 4. Scatter plots for the twenty functional relationships in Table 3 with n = 225. We chose
σ = 0.5 for each relationship and G2

Y |X = 0.8.

Similar to Section 2.5 of the main paper, we chose n = 225 and computed G2
m and G2

t with

data-driven λ0. For each model we performed 1,000 replications and chose σ = 9.95 so that

G2
Y |X = 0.01. Figure 13 presents the same analysis as Figure 1 of the main paper but here X 130

and Y were almost independent. A larger λ0 was preferable for both models; this is because a

small λ0 tended to use more slices than necessary. The data-driven λ0 still gave the most accurate

estimates of the G2
Y |X . Consistency of the data-driven estimators is proven in Section 5·2.
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Table 3. Functional relationships for power analysis

Relation Name Function

linear x
quadratic (x− 1/2)2

cubic 32(x− 1/3)3 − 12(x− 1/3)2 − 3(x− 1/3)
radical x0.25

low freq sine sin(2πx)
triangle (1− x)Ix<0.5 + xIx≥0.5

high freq sine sin(8πx)
piecewise constant 0.287Ix≤0.2 + 0.796I0.2<x≤0.4 + 0.290I0.4<x≤0.6

+0.924I0.6<x≤0.8 + 0.717Ix>0.8

unimodal cubic 32(x− 2/3)3 − 12(x− 2/3)2 − 3(x− 2/3)
low order polynomial x4(1− x)
high order polynomial x(1− x)9

reciprocal 1/(x+ 0.5)
L-shaped (x/90)Ix≤0.9 + (90x− 81)Ix>0.9

lopsided L-shaped 200xIx≤0.005 + (−198x+ 19.9)I0.005<x≤0.01 + (−x/99 + 1/99)Ix>0.1

spike 20xIx≤0.05 + (−18x+ 1.9)I0.05<x≤0.1 + (−x/9 + 1/9)Ix>0.1

sigmoid {50(x− 0.5) + 0.5}I0.4<x≤0.6 + Ix>0.6

medium freq sine sin(4πx)
very high freq sine sin(16πx)
sine with drift sin{2π(2x− 1)}+ (2x− 1)/2
vary freq sine sin{4πx(1 + x)}

5. PROOFS

5·1. Proof of Theorem 1 - consistency135

The following lemma is needed for the main theorem.

LEMMA 1. Suppose X and Y are univariate continuous random variables with |X|, |Y | <
B and var(Y ) > b−2. Given n observations (xi, yi) (i = 1, . . . , n) and let σ̂2 be the residual

variance after regressing Y on X . Then,

pr

[∣∣∣∣σ̂
2 −

{
var(Y )− cov2(X,Y )

var(X)

}∣∣∣∣ > ǫ

]
≤ 10e−C(B,b)nǫ2

with C(B, b) = (288b2B4)−1min{1, (4b2B2)−1} and ǫ > 0 small enough.140

Proof of Lemma 1. Without loss of generality, we assume E(X) = E(Y ) = 0, var(X) =
var(Y ) = 1 and E(XY ) = ρ. By definition

σ̂2 =
1

n

n∑

i=1

y2i −
(
1

n

n∑

i=1

yi

)2

−
{

1
n

∑n
i=1 xiyi − ( 1n

∑n
i=1 xi)(

1
n

∑n
i=1 yi)

}2
1
n

∑n
i=1 x

2
i − ( 1n

∑n
i=1 xi)

2
.

Then x2i , y2i ∈ [0, B2], xiyi ∈ [−B2, B2]. According to Hoeffding’s inequality,

pr

(∣∣∣∣∣
1

n

n∑

i=1

xi

∣∣∣∣∣ > ǫ/6

)
, pr

(∣∣∣∣∣
1

n

n∑

i=1

yi

∣∣∣∣∣ > ǫ/6

)
, pr

(∣∣∣∣∣
1

n

n∑

i=1

x2i − 1

∣∣∣∣∣ > ǫ/6

)
,

pr

(∣∣∣∣∣
1

n

n∑

i=1

y2i − 1

∣∣∣∣∣ > ǫ/6

)
, pr

(∣∣∣∣∣
1

n

n∑

i=1

xiyi − ρ

∣∣∣∣∣ > ǫ/6

)
≤ 2 exp{−c(B)nǫ2}
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with c(B) = (72B2)−1min(1, B−2). If ǫ < 1 and
∣∣∣∣∣
1

n

n∑

i=1

xi

∣∣∣∣∣ ,
∣∣∣∣∣
1

n

n∑

i=1

yi

∣∣∣∣∣ ,
∣∣∣∣∣
1

n

n∑

i=1

x2i − 1

∣∣∣∣∣ ,
∣∣∣∣∣
1

n

n∑

i=1

y2i − 1

∣∣∣∣∣ ,
∣∣∣∣∣
1

n

n∑

i=1

xiyi − ρ

∣∣∣∣∣ ≤ ǫ/6,

we have 145

∣∣σ̂2 − 1 + ρ2
∣∣ ≤

∣∣∣∣∣1−
1

n

n∑

i=1

y2i

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

yi

∣∣∣∣∣

2

+
| 1n
∑n

i=1 x
2
i − ( 1n

∑n
i=1 xi)

2 − 1|ρ2
| 1n
∑n

i=1 x
2
i − ( 1n

∑n
i=1 xi)

2|

|
{

1
n

∑n
i=1 xiyi − ( 1n

∑n
i=1 xi)(

1
n

∑n
i=1 yi)

}2 − ρ2|
| 1n
∑n

i=1 x
2
i − ( 1n

∑n
i=1 xi)

2|

≤ 4(ǫ/6 + ǫ2/36)

1− ǫ/6− ǫ2/36
< ǫ.

So pr
(∣∣σ̂2 − 1− ρ2

∣∣ > ǫ
)
≤ 10 exp{−c(B)nǫ2}. For general cases, define

X ′ =
X − E(X)

sd(X)
, Y ′ =

Y − E(Y )

sd(Y )
.

Then E(X ′) = E(Y ′) = 0, var(X ′) = var(Y ′) = 1 and |X ′|, |Y ′| < 2bB. Thus,

pr

[∣∣∣∣σ̂
2 −

{
var(Y )− cov2(X,Y )

var(X)

}∣∣∣∣ > ǫ

]

= pr

[∣∣σ̂′2 − {1− cov2(X ′, Y ′)}
∣∣ > ǫ

var(Y )

]

≤ 10 exp{− c(2bB)

var(Y )2
nǫ2} = 10 exp{−C(B, b)nǫ2}

with C(B, b) = (288b2B4)−1min{1, (4b2B2)−1}. �

Proof of Theorem 1. We only need to prove that G2
m(Y | X,λ0) and G2

t (Y | X,λ0) are con-

sistent estimators of G2
Y |X . If so, by switching X and Y , we must have that G2

m(X | Y, λ0) and 150

G2
t (X | Y, λ0) are consistent estimators of G2

X|Y which guarantees the consistency of G2
m(λ0)

and G2
t (λ0).

We first introduce some notations that will appear later. Suppose |X|, |Y | < B. Condition 1

shows that νX(y) > b−2 almost surely. Let m = ⌈n1/2⌉ be the minimum size of slices, and let

s ∈ S denote a slice and ps be the probability that an observation falls in s. Let Es, vars, and 155

covs denote the mean, variance and covariance conditional on slice s. Finally, define

σ2
s = vars(Y )− cov2s(X,Y )

vars(X)
.

Then by definition

σ2
s ≥ vars(Y )− vars{E(Y | X)} = Es{var(Y | X)} ≥ exp[Es{log var(Y | X)}] ≥ b−2.

For observations (xi, yi) (i = 1, . . . , n), let ν̂2 be the estimated variance of Y and σ̂2
s be the

residual variance after regressing Y on X in slice s. Besides, we use the following inequality

1− x−1 < log x < x− 1, x > 0

throughout the proof. 160
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Now we prove that G2
m(Y | X,λ0) is a consistent estimator for G2

Y |X . Define

dY |X = log var(Y )− E {log var(Y | X)} ,

so G2
Y |X = 1− exp(−dY |X). Because

G2
m(Y | X) = 1− exp{− max

S: mS≥m
D(Y | S, λ0)},

we only need to show the consistency of

D(Y | X,λ0) = max
S: mS≥m

D(Y | S, λ0).

We prove this in two steps:

Step 1: We show that there exists η(n) > 0 and η(n) → 0 as n → ∞, such that165

pr

{
lim sup
n→∞

D(Y | X,λ0) < dY |X + η(n)

}
= 1,

which means that D(Y | X,λ0) is almost surely smaller than dY |X . Because for any slicing

scheme S, log var(Y )−∑s∈S ps log σ
2
s ≤ dY |X , it is enough to show that there is η(n) such

that

pr

{
lim sup
n→∞

D(Y | S, λ0)− log var(Y ) +
∑

s∈S

ps log(σ
2
s) < η(n)

}
= 1.

Let δ(n) = log(n)n−1/4. By definition of D(Y | S, λ0), we have

D(Y | S, λ0)− log var(Y ) +
∑

s∈S

ps log(σ
2
s)

≤
{
log ν̂2 − log var(Y )

}
+
∑

s∈S

(
ps −

ns

n

)
log σ2

s +
∑

s∈S

ns

n

(
log σ2

s − log σ̂2
s

)
.

First, we consider log ν̂2 − log var(Y ). By Hoeffding’s inequality, for 0 < ǫ < 2,170

pr
{
|ν̂2 − var(Y )| > ǫ

}

≤ pr

[∣∣∣∣∣
1

n

n∑

i=1

{yi − E(Y )}2 − var(Y )

∣∣∣∣∣ > ǫ/2

]
+ pr

{∣∣∣∣∣
1

n

n∑

i=1

yi − E(Y )

∣∣∣∣∣ > ǫ/2

}

≤ 4 exp
[
−nǫ2min{1, (4B2)−1}(8B2)−1

]
,

we have

pr
{
log ν̂2 − log var(Y ) > δ(n)

}

≤ pr
{
ν̂2 − var(Y ) > var(Y )δ(n)

}
≤ 4n−C1n1/2 logn (1)

with C1 = min{1, (4B2)−1}(8b4B2)−1.

Second, we consider
∑

s∈S(ps − ns/n) log σ
2
s . Let us define a new random variable Z and

Z = log σ2
s if X is in slice s. Let zi (i = 1, . . . n) be n independent observations of Z, then,

E(Z) =
∑

s∈S

ps log σ
2
s ,

1

n

n∑

i=1

zi =
∑

s∈S

ns

n
log σ2

s .
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By Hoeffding’s inequality and the fact that σ2
s ∈ [b−2, B2], 175

pr

{∣∣∣∣∣
∑

s∈S

(ps −
ns

n
) log σ2

s

∣∣∣∣∣ > δ(n)

}
≤ 2n−C2n1/2 logn (2)

with C2 = min(1/| logB|, 1/| log b|)2/2.

Third, we focus on the difference between log σ̂2
s and log σ2

s . Consider a slicing scheme Qn of

n4 slices such that an observation falls in each slice equally. Given n observations, the probability

for any of the n4 slices containing more than one observations is smaller than

n4
{
1−

(
1 + n−3

) (
1− n−4

)n} ≤ n−2.

Then event 180

E1,n = {each slice of Qn has at most one observation}
satisfies pr (lim infn→∞E1,n) = 1. Thus, we only need to consider slicing schemes that are

more refined than Qn, denoted as S � Qn. Define the set of slices as

Ξ = {s | there exists S � Qn such that s ∈ S}.
The set Ξ contains at most n4(n4 + 1)/2 = O(n8) slices. Each slice s ∈ Ξ contains at least m
observations. By Lemma 1, if δ(n) < 0.5b−2,

pr
{
log σ2

s − log σ̂2
s > δ(n)

}
(3)

≤ P{σ2
s/σ̂

2
s − 1 > δ(n)}

≤ pr
{
|σ̂2

s − σ2
s | > δ(n)

}
+ P

{
|σ̂2

s − σ2
s | > δ(n)σ̂2

s , |σ̂2
s − σ2

s | ≤ δ(n)
}

≤ 20n−C3 log(n).

with C3 = C(B, b)min{1, (4b4)−1}. Let η(n) = 3δ(n) and event 185

E2,n = {max
S�Qn

D(Y | S, λ0) < dY |X + η(n)}.

Combine the results of (1)–(3), we have pr (lim infn→∞E1,n ∩ E2,n) = 1, which means that

G2
m(Y | X,λ0) is almost surely smaller than G2

Y |X .

Step 2: Next, we show that there exists η′(n) > 0 and η′(n) → 0 as n → ∞, such that

pr
{
lim inf
n→∞

D(Y | X,λ0) > dY |X − η′(n)
}
= 1,

which means that D(Y | X,λ0) is almost surely larger than dY |X . We just need to prove that for

any sample size n, there exists a slicing scheme Tn such that 190

pr
(
lim inf
n→∞

E3,n ∩ E4,n

)
= 1,

where

E3,n = {each slice of Tn contains at least m samples}
and

E4,n = {D(Y | Tn, λ0) > dY |X − η′(n)}.

Consider a slicing scheme Tn of ⌊n1/4⌋ slices such that an observation falls in one slice

equally. Then, we further divide each slice into ⌊n1/2⌋ bins such that an observation falls in each
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bin equally. Given n observations, the probability that each bin contains at least one observation195

is greater than

1− ⌊n1/4⌋⌊n1/2⌋(1− n−3/4)n > 1− ⌊n1/4⌋⌊n1/2⌋e−n1/4
,

so each slice of Tn contains at least m observations. Then, pr (lim infn→∞E3,n) = 1. Define

∆n(Tn) = log var(Y )−
∑

s∈Tn

ps log vars(Y ).

We first consider the difference between D(Y | Tn, λ0)−∆n(Tn):

D(Y | Tn, λ0)−∆n(Tn)

≥
{
log ν̂2 − log var(Y )

}
+
∑

s∈Tn

(
ps −

ns

n

)
log vars(Y ) +

∑

s∈Tn

ns

n
{log vars(Y )− log σ̂2

s}

−λ0n
−3/4 logn.

Similar as (1), if δ(n) < 0.5b−2,

pr
{
log ν̂2 − log var(Y ) < −δ(n)

}
(4)

≤ pr
{
1− var(Y )/ν̂2 < −δ(n)

}

≤ pr
{
|ν̂2 − var(Y )| > δ(n)

}
+ P

{
|ν̂2 − var(Y )| > δ(n)ν̂2, |ν̂2 − var(Y )| ≤ δ(n)

}

≤ 4n−C4n1/2 logn

with C4 = (8B2)−1min{1, (4B2)−1}min{1, (4b4)−1}. Similar as (2), we have200

pr

{∣∣∣∣∣
∑

s∈S

(ps −
ns

n
) log vars(Y )

∣∣∣∣∣ > δ(n)

}
≤ 2n−C2n1/2 logn. (5)

Besides, vars(Y ) ≥ σ2
s and

pr
{
log vars(Y )− log σ̂2

s < −δ(n)
}

(6)

≤ pr
{
log σ2

s − log σ̂2
s < −δ(n)

}

≤ pr
{
1− σ̂2

s/σ
2
s < −δ(n)

}

≤ pr
{
|σ̂2

s − σ2
s | ≥ b−2δ(n)

}
≤ 10n−C(B,b)b−4 log(n).

Now, define δ1(n) = 3δ(n) + λ0 log(n)n
−3/4 and event

E5,n = {D(Y | Tn, λ0) > ∆n(Tn)− δ1(n)}.
By (4)–(6), pr (lim infn→∞E3,n ∩ E5,n) = 1.

The only problem left is how to control the difference between ∆n(Tn) and dY |X , which is

∆n(Tn)− dY |X =
∑

s∈Tn

ps

{
1

ps

∫

s
log ν2Y (x)fX(x)dx− log vars(Y )

}
.

Denote the probability density function of X as fX(x). For one slice s, because X is a continuous205

random variable, set

1

ps

∫

s
µY (x)fX(x)dx = µY (x

′
s),

1

ps

∫

s
log ν2Y (x)fX(x)dx = log ν2Y (x

′′
s),
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where x′s and x′′s lie in the slice almost surely. Then

log ν2Y (x
′′
s)− log vars(Y )

= log ν2Y (x
′′
s)− log

[
1

ps

∫

s
ν2Y (x)fX(x)dx+

1

ps

∫

s

{
µY (x)− µY (x

′
s)
}2

fX(x)dx

]

= log ν2Y (x
′′
s)− log

[
ν2Y (x

′′
s) +

1

ps

∫

s

∫ x

x′′
s

2νY (z)ν
′
Y (z)dzfX(x)dx

+
1

ps

∫

s

{∫ x

x′
s

µ′
Y (z)dz

}2

fX(x)dx




≥ log ν2Y (x
′′
s)− log

[
ν2Y (x

′′
s) +

∫

s
2νY (x)|ν ′Y (x)|dx+

{∫

s
|µ′

Y (x)|dx
}2
]
.

According to Condition 3, we have

log ν2Y (x
′′
s)− log vars(Y )

≥ log ν2Y (x
′′)− log

{
ν2Y (x

′′) + 2C

∫

s
ν2Y (x)dx+ C2

∫

s
1dx

∫

s
ν2Y (x)dx

}

≥ −
∫
s ν

2
Y (x)dx

(
2C + C2

∫
s 1dx

)

ν2Y (x
′′)

≥ −2b2B2C(1 +BC)

∫

s
1dx.

Then, we can conclude

∆n(Tn)− dY |X ≥ −2psb
2B2C(1 +BC)

∑

s∈Tn

∫

s
1dx

≥ −4⌊n1/4⌋−1(1 +BC)Cb2B3 = −δ2(n).

Therefore, let η′(n) = δ1(n) + δ2(n), we have pr (lim infn→∞E3,n ∩ E4,n) = 1, which means 210

G2
m(Y | X,λ0) is almost surely larger than G2

Y |X . By Steps 1 and 2, we can conclude that

G2
m(Y | X,λ0) is a consistent estimator of G2

Y |X .

To prove the consistency of G2
t (Y | X,λ), we introduce a new quantity Z(λ0) =∑

S: mS≥m n−λ0(|S|−1)/2; Z(λ0) is bounded by 1 and (1 + n−λ0/2)n. By definition of G2
m(Y |

X,λ0) and G2
t (Y | X,λ0), we have 215

{
1−G2

t (Y | X,λ0)
}−n/2

= Z(λ0)
−1

∑

S: mS≥m

exp{n
2
D(Y | S, λ0)}

≥ Z(λ0)
−1 exp{n

2
D(Y | X,λ0)},

{
1−G2

t (Y | X,λ0)
}−n/2 ≤ Z(λ0)

−1
∑

S: mS≥m

exp{n
2
D(Y | S, λ0

2
)− λ0

4
(|S| − 1) log(n)}

≤ Z(λ0)
−1Z(

λ0

2
) exp{n

2
D(Y | X,

λ0

2
)}.

By the consistency of D(Y | X,λ0) and D(Y | X,λ0/2), we prove that G2
t (Y | X,λ0) is an

consistent estimator of G2
Y |X . �
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5·2. Consistency of G2
m and G2

t with empirical Bayes selection of λ0

Suppose λ∗ is the optimal λ0 that maximizes BF(λ0) from a range [λ1, λ2] with λ1 > 0. Then

Z(λ2) ≤ Z(λ∗) ≤ Z(λ1) and220

G2
m(Y | X,λ∗) ≤ G2

m(Y | X,λ1),
{
1−G2

m(Y | X,λ∗)
}−n/2

= exp{n
2
D(Y | X,λ∗)}

≥ Z(λ2)
−1

∑

S: mS≥m

exp{n
2
D(Y | S, λ∗ + λ2)}

≥ Z(λ2)
−1
{
1−G2

m(Y | X, 2λ2)
}−n/2

,
{
1−G2

t (Y | X,λ∗)
}−n/2

= Z(λ∗)−1
∑

S: mS≥m

exp{n
2
D(Y | S, λ∗)}

≥ Z(λ1)
−1
{
1−G2

m(Y | X,λ2)
}−n/2

,
{
1−G2

t (Y | X,λ∗)
}−n/2 ≤ Z(λ∗)−1

∑

S: mS≥m

exp{n
2
D(Y | S, λ1)}

≤ Z(λ2)
−1Z(λ1)

{
1−G2

t (Y | X,λ1)
}−n/2

.

By the consistency of G2
m(Y | X,λ1), G

2
m(Y | X, 2λ2), G

2
m(Y | X,λ2) and G2

t (Y | X,λ1), we

conclude that G2
m(Y | X,λ∗) and G2

t (Y | X,λ∗) are consistent estimators. Then the estimators

with data-driven λ0 are consistent.

5·3. Proof of Theorem 2 - Equivalence between G2
m and R2

The following lemma is needed for the main theorem.225

LEMMA 2. Let (p1, p2, p3) ∼ Dir(k1, k2, 2) and

Λ(q, p) = (k1 − 1) log
q1
p1

+ (k2 − 1) log
q2
p2

.

Then for any k1, k2 ≥ 3, q1, q2 > 0, q1 + q2 = 1 and function δ(p) > 0,

pr {Λ(q, p) ≥ δ(p)} ≤ (k1 + k2)
3

∫ 1

0
e−δ(p)dp.

Proof of Lemma 2. By definition, we have

pk1−1
1 pk2−1

2 (1− p1 − p2) ≤ qk1−1
1 qk2−1

2 e−Λ(q,p),

so that

pr {Λ(q, p) ≥ δ(p)}

=
(k1 + k2 + 1)!

(k1 − 1)!(k2 − 1)!

∫

Λ(q,p)≥δ(p)
pk1−1
1 pk2−1

2 (1− p1 − p2)dp1dp2

≤ (k1 + k2 + 1)!

(k1 − 1)!(k2 − 1)!
qk1−1
1 qk2−1

2

∫

Λ(q,p)≥δ(p)
e−Λ(q,p)dp1dp2

≤ (k1 + k2)
3 (k1 + k2 − 2)!

(k1 − 1)!(k2 − 1)!
qk1−1
1 qk2−1

2

∫

Λ(q,p)≥δ(p)
e−Λ(q,p)dp1dp2

≤ (k1 + k2)
3

∫ 1

0
e−δ(p)dp. �
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Proof of Theorem 2. If the slice scheme on X has only one slice, we have 230

D(Y | S, λ0) = log ν̂2 − log σ̂2 = − log(1−R2),

where σ̂2 is the residual variance after regressing Y on X . Intuitively, if Y and X follow a

bivariate normal, the optimal slice scheme is only one slice in each direction. Now, we show that

pr
{
D(Y | X,λ0) + log(1−R2) > 0

}
< 1.5n−λ0/3+5.

For any slice scheme S,

D(Y | S, λ0) + log(1−R2) = log σ̂2 −
∑

s∈S

ns

n
log(σ̂2

s)−
λ0

n
(|S| − 1) log n.

Without loss of generality, we assume that var(Y ) = 1 and x1 < . . . < xn. Suppose the con-

nected slices each has ni (i = 1, . . . |S|) observations. For 1 ≤ j < k ≤ n, define 235

∆(j, k, λ0) =
k

n
log{σ̂(k)}2 − j

n
log{σ̂(j)}2 − k − j

n
log{σ̂(k,j)}2 − λ0

n
log n.

Here, {σ̂(j)}2 is the residual variance of regressing yi on xi (i = 1, . . . , j), {σ̂(k)}2 is the residual

variance of regressing yi on xi (i = 1, . . . , k) and {σ̂(k,j)}2 is the residual variance of regressing

yi on xi (i = j + 1, . . . , k). For given j, k, let

p1 =
j{σ̂(j)}2
k{σ̂(k)}2 , p2 =

(k − j){σ̂(k,j)}2
k{σ̂(k)}2 , q1 =

j

k
, q2 = 1− q1.

Then according to Cochran’s theorem, we have

(p1, p2, 1− p1 − p2) ∼ Dir(j − 2, k − j − 2, 2),

n∆(j, k, λ0) = Λ(q, p)− λ0 log(n) + 3 log (q1/p1) + 3 log (q2/p2) .

By Lemma 2 we have 240

pr {Λ(q, p) > λ0 log(n)/3} ≤ k3n−λ0/3 ≤ n−λ0/3+3.

At the same time,

pr {3 log (q1/p1) > λ0 log(n)/3}

=
(k − 3)!

(j − 3)!(k − j − 1)!

∫ q1n−λ0/9

0
pj−3(1− p)k−j−1dp

≤ (k − 3)!

(j − 3)!(k − j − 1)!

1

j − 2
(q1n

−λ0/9)j−2

= (j/k)j−2 (k − 3)!

(j − 2)!(k − j − 1)!

1

nλ0(j−2)/9
≤ 1

n(j−2)(λ0/9−1)

If n ≥ 25, we have pr {∆(j, k, λ0) > 0} ≤ 3n−λ0/3+3. On the other hand, for any slicing

scheme with |S| ≥ 2, D(Y | S, λ0) + log(1−R2) equals

|S|−1∑

h=1

∆(
h∑

l=1

nl,
h+1∑

l=1

nl, λ0)
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So

pr
{
D(Y | X,λ0) + log(1−R2) > 0

}

≤ pr

{
max

m≤j<k≤n−m
∆(j, k, λ0) > 0

}

≤
∑

m≤j<k≤n−m

pr {∆(j, k, λ0) > 0} < 1.5n−λ0/3+5.

Since X and Y are symmetric, the result tells us that P
{
G2

m(λ0) = R2
}
> 1− 3n−λ0/3+5.245

When λ0 > 18, we have G2
m(λ0) = R2 almost surely. �

REFERENCES

HELLER, R., HELLER, Y., KAUFMAN, S., BRILL, B. & GORFINE, M. (2016). Consistent distribution-free K-
sample and independence tests for univariate random variables. Journal of Machine Learning Research, 17, 1–54.

RESHEF, D. N., RESHEF, Y. A., FINUCANE, H. K., GROSSMAN, S. R., MCVEAN, G., TURNBAUGH, P. J., LAN-250

DER, E. S., MITZENMACHER, M. & SABETI, P. S. (2011). Detecting Novel Associations in Large Data Sets.
Science 334, 1518–1524.



Supplementary material 17

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

linear

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

quadratic

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

cubic

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

radical

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

low freq sine

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

triangle

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

high freq sine

0.00 0.05 0.10 0.15 0.20

G
2

Y |X

0.0

0.2

0.4

0.6

0.8

1.0

p
o
w

e
r

piecewise constant

Fig. 5. The powers of mutual information (black solid), MICe (grey solid), alternating conditional
expectation (grey markers), characteristic function (black dashes), Genest’s test (black dots) and
Hoeffding’s test (black markers) for independence test between X and Y when the function rela-
tionships are linear, quadratic, cubic, radical, low freq sine, triangle, high freq sine and piecewise

constant. The x-axis is G2

Y |X and the y-axis is the power.
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Fig. 6. The left column presents the powers of G2

m (black solid), G2

t (grey solid), Pearson cor-
relation (grey markers), distance correlation (black dashes), the method of Heller et al. (2016)
(black dots) and TICe (black markers) for independence test between X and Y when the function
relationships are power functions; the right column presents the powers of mutual information
(black solid), MICe (grey solid), alternating conditional expectation (grey markers), characteris-
tic function (black dashes), Genest’s test (black dots) and Hoeffding’s test (black markers). The

x-axis is G2

Y |X and the y-axis is the power.
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Fig. 7. The powers for independence test between X and Y when the function relationship are
piecewise linear functions.
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Fig. 8. The powers for independence test between X and Y when the function relationships are
trigonometric functions.
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Fig. 9. The average powers of G2

m (black solid), G2

t (grey solid), Pearson correlation (grey mark-
ers), distance correlation (black dashes), the method of Heller et al. (2016) (black dots) and TICe

(black markers) for testing independence between X and Y with n = 50, 100, 225 and 500.
The underlying true functional relationships are linear, quadratic, cubic, radical, low freq sine,
triangle, high freq sine and piecewise constant. The x-axis is logarithm of n with base 10 and the

y-axis is the average power.
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Fig. 10. The average powers for independence test between X and Y when the function relation-
ships are power functions.
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Fig. 11. The average powers for independence test between X and Y when the function relation-
ship are piecewise linear functions.
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Fig. 12. The average powers for independence test between X and Y when the function relation-
ships are trigonometric functions.
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Fig. 13. Sampling distributions of G2

m and G2

t under the two models in Section 4·4 with G2

Y |X =
0.01 and λ0 = 0.5 (dashes), 1.5 (dots), 2.5 (dot-dash) and 3.5 (solid). The density function in each
case was estimated by the histogram. The sampling distributions of G2

m and G2

t with empirical
Bayes selection of λ0 were in gray shadow and overlaid on top of other density functions.


