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S·1. PROOF OF THEOREM 1
SKETCH OF TECHNICAL ARGUMENTS 20

Necessary U-Statistic theory
Consider the case of one sample. Let Z1,. . . ,Zn be independent and identically distributed.

Let h∗(·) be a function such that E{h∗(Z1, Z2)} = 0. Define

Un∗ =
∑n

i=1

∑n
j ̸=ih∗(Zi, Zj)/{n(n− 1)} =

∑n
i=1

∑
j<ih∗(Zi, Zj)/{n(n− 1)/2}.

If h∗(z1, z2) ̸= h∗(z2, z1), we make it symmetric in its arguments by noticing that if

h(z1, z2) = {h∗(z1, z2) + h∗(z2, z1)}/2,

then 25

Un∗ = Un =
∑n

i=1

∑n
j ̸=ih(Zi, Zj)/{n(n− 1)}.

We recognize Un as a U-statistic of order 2 with a symmetric kernel h(·). Define

h1(z) = 2E{h(z, Z2)}. (1)

Then, as in Theorem 12.3 of Van der Vaart (1998),

n1/2Un = n−1/2∑n
i=1h1(Zi) + op(1). (2)
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Next we consider a special case of two samples, namely the n0 controls and n1 cases, denoted
as (U1, . . . , Un0) and (V1, . . . , Vn1), respectively, with n = n0 + n1. The U-statistic of interest
is30

Un = (n0n1)
−1∑n0

i=1

∑n1
j=1I(Di = 0)I(Dj = 1)h(Ui, Vj), (3)

where 0 = E{h(Ui, Vj) | Di = 0, Dj = 1}. Let n0/n → λ and n1/n → 1− λ, with 0 < λ < 1.
Define

h1,0(u) = E{h(u, V ) | D = 1};
h0,1(v) = E{h(U, v) | D = 0}.

Then, from Chapter 12.2 of Van der Vaart (1998),

n1/2Un = n1/2n−1
0

∑n0
i=1I(Di = 0)h1,0(Ui) + n1/2n−1

1

∑n1
j=1I(Dj = 1)h0,1(Vj) + op(1). (4)

Preliminary Lemma
Let the data be Zi = (Di, Gi, Xi) for i = 1, . . . , n, ordered so that the first n0 observations35

are the controls, and the last n1 observations are the cases.
Define nd = cdn.
In the proofs, for generic functions T (·) and P (·), we need to deal with terms

Dn(P, T ) =
∑1

d=0(πd/nd)n
−1∑n

i=1

∑n
j=1

∑1
r=0I(Dj = d)

×P (Xi) {T (r,Gj , Xi)− TE(r,Dj , Xi)}
=

∑1
t=0

∑1
d=0(πd/nd)n

−1∑n
i=1

∑n
j=1

∑1
r=0I(Di = t,Dj = d)

×P (Xi) {T (r,Gj , Xi)− TE(r, d,Xi)} ,

where

TE(r, d, x) = E{T (r,G, x) | D = d}.

We will use repeatedly the fact that for any constant x,40

0 = E [P (x) {T (r,G, x)− TE(r, d, x)} | D = d] . (5)

We will make the following notational convention. We define

E [P (X) {T (r, gi, X)− TE(r, d,X)} | D = t] (6)

to mean

E [P (X) {T (r, g,X)− TE(r, d,X)} | D = t]g=Gi
.

Similarly, E [P (xi) {T (r,G, xi)− TE(r, d, xi)} | D = t] is

E [P (x) {T (r,G, x)− TE(r, d, x)} | D = t]x=Xi
.

Below, we will prove the following Lemma, which relies of U-statistics of order 2 for one
sample and U-statistics of order 1 for independent samples, namely the cases and the controls.45

We use the notation defined at (6).
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LEMMA 1. Define Zi = (Di, Gi, Xi). As n → ∞ in such a way that nd = cdn for 0 <
c0, c1 < 1,

n1/2Dn(P, T )

= n−1/2∑n0
i=1

∑1
d=0

∑1
r=0{cdπdi/cdi}E{P (X)T (r, gi, X) | D = d}

−n−1/2n0E
[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 0

]
−n−1/2n1E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 1

]
+ op(1).

Proof of Lemma 1
Now, since there are only n terms with i = j, whereas the leading terms before the summations 50

are O(n−2), and because (n− 1)−1 − n−1 = O(n−2), and because the first n0 observations are
controls, to order n1/2, analyzing Dn is equivalent to analyzing

Dn(P, T ) =
∑1

t=0

∑1
d=0Dn(P, T, t, d) + op(n

−1),

where

Dn(P, T, 0, 0) = (π0/n0)n
−1∑n0

i=1

∑n0
j=1,j ̸=iI(Di = 0, Dj = 0)

×P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 0, Xi)}
= {n0(n0 − 1)}−1∑n0

i=1

∑n0
j=1,j ̸=iI(Di = 0, Dj = 0)

×(π0c0)P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 0, Xi)}+Op(n
−1);

Dn(P, T, 0, 1) = (π1/n1)n
−1∑n0

i=1

∑n
j=n0+1I(Di = 0, Dj = 1)

×P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)}
= (n0n1)

−1∑n0
i=1

∑n
j=n0+1I(Di = 0, Dj = 1)

×(π1c0)P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)} ;
55

Dn(P, T, 1, 0) = (π0/n0)n
−1∑n

i=n0+1

∑n0
j=1I(Di = 1, Dj = 0)

×P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 0, Xi)}
= (n0n1)

−1∑n0
i=1

∑n
j=n0+1I(Di = 0, Dj = 1)

×(π0c1)P (Xj)
∑1

r=0 {T (r,Gi, Xj)− TE(r, 0, Xj)} ;

Dn(P, T, 1, 1) = (π1/n1)n
−1∑n

i=n0+1

∑n
j=n0+1,j ̸=iI(Di = 1, Dj = 1)

×P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)}
= {n1(n1 − 1)}−1∑n

i=n0+1

∑n
j=n0+1,j ̸=iI(Di = 1, Dj = 1)

×(π1c1)P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)}+Op(n
−1).

Now, Dn(P, T, 1, 0) and Dn(P, T, 0, 1) are U-statistics of order 1 for 2 independent samples,
while Dn(P, T, 0, 0) and Dn(P, T, 1, 1) are U-statistics of order 2 for a single sample, all with
asymmetric kernels.

We next analyze Dn(P, T, 0, 1). The term Dn(P, T, 0, 1) has kernel 60

h(Zi, Zj , 0, 1) = (π1c0)P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)} .
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Then

h1,0(u, 0, 1) = E{h(u,Zj , 0, 1) | Dj = 1} = 0, by (5);
h0,1(v, 0, 1) = E{h(Zi, v) | Di = 0}

= (π1c0)E
[
P (X)

∑1
r=0 {T (r, v,X)− TE(r, 1, X)} | D = 0

]
.

Thus, from (4),

n1/2Dn(P, T, 0, 1) = (n1/2/n1)
∑n

j=n0+1h0,1(Zj , 0, 1) + op(1)

= n−1/2∑n
j=n0+1c

−1
1 h0,1(Zj , 0, 1) + op(1). (7)

In the notation defined at (6),

n1/2Dn(P, T, 0, 1) = n−1/2∑n
j=n0+1(π1c0/c1)I(Dj = 1)

×
∑1

r=0E [P (X) {T (r, gj , X)− TE(r, 1, X)} | D = 0] + op(1)

= n−1/2∑n
i=n0+1I(Di = 1) (8)

×(π1c0/c1)
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 1, X)} | D = 0] + op(1).

Now consider he term Dn(P, T, 1, 0), which has kernel

h(Zi, Zj , 1, 0) = (π0c1)P (Xj)
∑1

r=0 {T (r,Gi, Xj)− TE(r, 0, Xj)} .

Then65

h1,0(u, 1, 0) = E{h(u,Zj , 1, 0) | Dj = 1}

= (π0c1)E
[
P (Xj)

∑1
r=0 {T (r, u,Xj)− TE(r, 0, Xj)} | Dj = 1

]
;

h0,1(v, 1, 0) = E{h(Zi, v, 1, 0) | Di = 0} = 0, by (5).

Thus, from (4),

n1/2Dn(P, T, 1, 0) = (n1/2/n0)
∑n0

i=1h1,0(Zi, 1, 0) + op(1)

= n−1/2∑n0
i=1c

−1
0 h1,0(Zj , 1, 0) + op(1). (9)

In the notation defined at (6),

n1/2Dn(P, T, 1, 0) = n−1/2∑n0
i=1I(Di = 0)(π0c1/c0) (10)

×
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 1] + op(1).

We next analyze Dn(P, T, 0, 0), which is a U-statistic of order 2 but with an asymmetric kernel

h∗(Zi, Zj , 0, 0) = I(Di = Dj = 0)(π0c0)P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 0, Xi)} .

To make this a symmetric kernel, we define

h(Zi, Zj , 0, 0) = (1/2)I(Di = Dj = 0)(π0c0)
[
P (Xi)

∑1
r=0 {T (r,Gj , Xi)− TE(r, 0, Xi)}

+P (Xj)
∑1

r=0

{
T (r,Gi, Xj)− TE(r, 0, Xj)

}]
.
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We now apply (1), so that 70

h1(z, 0, 0) = (π0c0)E
[
P (x)

∑1
r=0 {T (r,G, x)− TE(r, 0, x)} | D = 0

]
+(π0c0)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 0, X)} | D = 0

]
= (π0c0)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 0, X)} | D = 0

]
, by (5).

From (2), this means that

n1/2Dn(P, T, 0, 0) = (n1/2/n0)
∑n0

i=1h1(Zi, 0, 0) + op(1)

= (n−1/2/c0)
∑n0

i=1h1(Zi, 0, 0) + op(1).

Thus, in the notation defined at (6),

n1/2Dn(P, T, 0, 0) = n−1/2∑n0
i=1I(Di = 0)π0 (11)

×
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 0] + op(1).

We next analyze Dn(P, T, 1, 1), which is a U-statistic of order 2 but with an asymmetric kernel

h∗(Zi, Zj , 1, 1) = I(Di = Dj = 1)(π1c1)P (Xi)
∑1

r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)} .

To make this a symmetric kernel, we define

h(Zi, Zj , 1, 1) = (1/2)I(Di = Dj = 1)(π1c1)
[
P (Xi)

∑1
r=0 {T (r,Gj , Xi)− TE(r, 1, Xi)}

+P (Xj)
∑1

r=0

{
T (r,Gi, Xj)− TE(r, 1, Xj)

}]
.

We now apply (1), so that 75

h1(z, 1, 1) = (π1c1)E
[
P (x)

∑1
r=0 {T (r,G, x)− TE(r, 1, x)} | D = 1

]
+(π1c1)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 1, X)} | D = 1

]
= (π1c1)E

[
P (X)

∑1
r=0 {T (r, g,X)− TE(r, 1, X)} | D = 1

]
, by (5).

From (2),

n1/2Dn(P, T, 1, 1) = (n1/2/n1)
∑n

i=n0+1h1(Zi, 1, 1) + op(1)

= (n−1/2/c1)
∑n

i=n0+1h1(Zi, 1, 1) + op(1).

Thus, in the notation at (6),

n1/2Dn(P, T, 1, 1) = n−1/2∑n
i=n0+1I(Di = 1) (12)

×π1E
[
P (X)

∑1
r=0 {T (r, gi, X)− TE(r, 1, X)} | D = 1

]
+ op(1).
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Collecting the terms (8), (10), (11) and (12), we get that

n1/2Dn(P, T )

= n−1/2∑n0
i=1I(Di = 0)π0

∑1
r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 0]

+n−1/2∑n0
i=1I(Di = 0)(π0c1/c0)

∑1
r=0E [P (X) {T (r, gi, X)− TE(r, 0, X)} | D = 1]

+n−1/2∑n
i=n0+1I(Di = 1)π1E

[
P (X)

∑1
r=0 {T (r, gi, X)− TE(r, 1, X)} | D = 1

]
+n−1/2∑n

i=n0+1I(Di = 1)(π1c0/c1)
∑1

r=0E [P (X) {T (r, gi, X)− TE(r, 1, X)} | D = 0]

+op(1).

This in turn is seen to be

n1/2Dn(P, T ) = G1 − G2 + op(1),

where80

G1(P, T ) = n−1/2∑n
i=1

∑1
d=0

∑1
r=0(cdπdi/cdi)E{P (X)T (r, gi, X) | D = d};

G2(P, T ) = n−1/2∑n
i=n0+1

∑1
r=0I(Di = 0)π0E {P (X)TE(r, 0, X) | D = 0}

+n−1/2∑n0
i=1

∑1
r=0I(Di = 0)(π0c1/c0)E {P (X)TE(r, 0, X) | D = 1}

+n−1/2∑n
i=n0+1

∑1
r=0I(Di = 1)π1E {P (X)TE(r, 1, X) | D = 1}

+n−1/2∑n
i=n0+1

∑1
r=0I(Di = 1)(π1c0/c1)

∑1
r=0E {P (X)TE(r, 1, X) | D = 0} .

It is easily seen that

G2(P, T ) = n−1/2n0E
[
P (X)

{
π0

∑1
r=0TE(r, 0, X)

}
| D = 0

]
+n−1/2n1E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X)

}
| D = 1

]
+n−1/2n1E

[
P (X)

{
π1

∑1
r=0TE(r, 1, X)

}
| D = 1

]
+n−1/2n0E

[
P (X)

{
π1

∑1
r=0TE(r, 1, X)

}
| D = 0

]
= n−1/2n0E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 0

]
+n−1/2n1E

[
P (X)

{
π0

∑1
r=0TE(r, 0, X) + π1

∑1
r=0TE(r, 1, X)

}
| D = 1

]
.

This completes the proof of Lemma 1.

Proof of Theorem 1
With a first-order Taylor series expansion, it is readily seen that

n−1/2∑n
i=1

{
SΩ(Di, Gi, Xi, Ω̂)

S(Di, Gi, Xi, Ω̂)
− SΩ(Di, Gi, Xi,Ω)

S(Di, Gi, Xi,Ω)

}
= Γ1n

1/2(Ω̂− Ω) + op(1).

Similarly,85

n−1/2∑n
i=1

{
R̂Ω(Xi, Ω̂)

R̂(Xi, Ω̂)
− R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}
= Γ2n

1/2(Ω̂− Ω) + op(1).
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In a manner similar to that of Wei et al. (2013), we have that

0 = Ŝn(Ω̂) = Ŝn(Ω) + n−1/2∂Ŝn(Ω)

∂ΩT
n1/2(Ω̂− Ω) + op(1)

= Ŝn(Ω) + (Γ1 − Γ2)n
1/2(Ω̂− Ω) + op(1)

= Sn(Ω)− n−1/2∑n
i=1

{
R̂Ω(Xi,Ω)

R̂(Xi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)

}
+(Γ1 − Γ2)n

1/2(Ω̂− Ω) + op(1). (13)

We now analyze the second term in (13), which equals

n−1/2∑n
i=1

[
R̂Ω(Xi,Ω)−RΩ(Xi,Ω)

R(Xi,Ω)
− RΩ(Xi,Ω){R̂(Xi,Ω)−R(Xi,Ω)}

R2(Xi,Ω)

]
+ op(1)

= n−1/2∑n
i=1P1(Xi,Ω){R̂Ω(Xi,Ω)−RΩ(Xi,Ω)}

−n−1/2∑n
i=1P2(Xi,Ω){R̂(Xi,Ω)−R(Xi,Ω)}+ op(1).

Thus,

Cn = n−1/2∑n
i=1{

R̂Ω(Xi,Ω)

R̂(Xi,Ω)
− RΩ(Xi,Ω)

R(Xi,Ω)
}

= n−1/2∑n
i=1

R̂Ω(Xi,Ω)−RΩ(Xi,Ω)

R(Xi,Ω)

−n−1/2∑n
i=1

RΩ(Xi,Ω)

R2(Xi,Ω)
{R̂(Xi,Ω)−R(Xi,Ω)}+ op(1)

= Cn1 − Cn2 + op(1).

First, we calculate that

R̂(x,Ω)−R(x,Ω) =
∑n

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj , x,Ω)

−
∑1

r=0

∑1
d=0πdSE(r, d, x,Ω)

=
∑n

j=1{
∑1

r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj , x,Ω)

−
∑1

r=0

∑1
d=0(πd/nd)I(Dj = d)SE(r, d, x,Ω)}

=
∑1

d=0n
−1
d

∑n
j=1

∑1
r=0I(Dj = d)πd

×{S(r,Gj , x,Ω)− SE(r, d, x,Ω)} . (14)

Similarly, 90

R̂Ω(x,Ω)−RΩ(x,Ω) =
∑1

d=0n
−1
d

∑n
j=1

∑1
r=0I(Dj = d)πd

×{SΩ(r,Gj , x,Ω)− SE,Ω(r, d, x,Ω)} . (15)
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Then, from (14) and (15),

Cn1 = n−1/2∑n
i=1P1(Xi,Ω){R̂Ω(Xi,Ω)−RΩ(Xi,Ω)}

=
∑1

d=0(πd/nd)n
−1/2∑n

i=1P1(Xi,Ω)

×
∑n

j=1

∑1
r=0I(Dj = d) {SΩ(r,Gj , Xi,Ω)− SE,Ω(r,Dj , Xi,Ω)} ;

Cn2 = n−1/2∑n
i=1P2(Xi,Ω){R̂(Xi,Ω)−R(Xi,Ω)}

=
∑1

d=0(πd/nd)n
−1/2∑n

i=1P2(Xi,Ω)

×
∑n

j=1

∑1
r=0I(Dj = d) {S(r,Gj , Xi,Ω)− SE(r,Dj , Xi,Ω)} .

In the notation defined at (6),

Cn1 = n1/2Dn(P1, SΩ) + op(1);

Cn2 = n1/2Dn(P2, S) + op(1).

Thus, with Lemma 1,

Cn = Cn1 − Cn2 + op(1)

= n−1/2∑n
i=1

∑1
d=0

∑1
r=0

cdπdi
cdi

E [{P1(X,Ω)SΩ(r, gi, X)− P2(X,Ω)S(r, gi, X)} | D = d]

−n−1/2n0E
[
P1(X,Ω)

{
π0

∑1
r=0SE,Ω(r, 0, X) + π1

∑1
r=0SE,Ω(r, 1, X)

}
| D = 0

]
−n−1/2n1E

[
P1(X,Ω)

{
π0

∑1
r=0SE,Ω(r, 0, X) + π1

∑1
r=0SE,Ω(r, 1, X)

}
| D = 1

]
+n−1/2n0E

[
P2(X,Ω)

{
π0

∑1
r=0SE(r, 0, X) + π1

∑1
r=0SE(r, 1, X)

}
| D = 0

]
+n−1/2n1E

[
P2(X,Ω)

{
π0

∑1
r=0SE(r, 0, X) + π1

∑1
r=0SE(r, 1, X)

}
| D = 1

]
+ op(1)

= n−1/2∑n
i=1

∑1
d=0

∑1
r=0

cdπdi
cdi

E [{P1(X,Ω)SΩ(r, gi, X)− P2(X,Ω)S(r, gi, X)} | D = d]

−n−1/2n0E {P1(X,Ω)RΩ(X,Ω) | D = 0}
−n−1/2n1E {P1(X,Ω)RΩ(X,Ω) | D = 1}
+n−1/2n0E {P2(X,Ω)R(X,Ω) | D = 0}
+n−1/2n1E {P2(X,Ω)R(X,Ω) | D = 1}+ op(1).

However,

P1(X,Ω)RΩ(X,Ω) = {R(X,Ω)}−1RΩ(X,Ω);

P2(X,Ω)R(X,Ω) = {R(X,Ω)}−1RΩ(X,Ω),

so the last 4 terms above cancel, completing the proof of Theorem 1.95
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S·2. ALTERNATIVE PROOF BASED ON A HYPOTHETICAL POPULATION

Here we give an alternative argument using the hypothetical population framework
of Ma (2010). Define K1(D,G,X,Ω) = SΩ(D,G,X,Ω)/S(D,G,X,Ω) and K2(X,Ω) =
RΩ(X,Ω)/R(X,Ω). Solving (7) in the main paper leads to the expansion

0 = n−1/2
n∑

i=1

{
K1(Di, Gi, Xi, Ω̂)−

R̂Ω(Xi, Ω̂)

R̂(Xi, Ω̂)

}

= n−1/2
n∑

i=1

{
K1(Di, Gi, Xi,Ω)−

R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}

+

[
n−1∑n

i=1∂

{
K1(Di, Gi, Xi,Ω)−

R̂Ω(Xi,Ω)

R̂(Xi,Ω)

}
/∂ΩT + op(1)

]
√
n(Ω̂− Ω)

= n−1/2
n∑

i=1

[
K1(Di, Gi, Xi,Ω)−K2(Xi,Ω)−

R̂Ω(Xi,Ω)−RΩ(Xi,Ω)

R(Xi,Ω)

+
RΩ(Xi,Ω)

R2(Xi,Ω)

{
R̂(Xi,Ω)−R(Xi,Ω)

}]
+ (Γ1 − Γ2)

√
n(Ω̂− Ω) + op(1)

= n−1/2
n∑

i=1

{
K1(Di, Gi, Xi,Ω)−K2(Xi,Ω)− P1(Xi,Ω)R̂Ω(Xi,Ω)

+P2(Xi,Ω)R̂(Xi,Ω)
}
+ (Γ1 − Γ2)

√
n(Ω̂− Ω) + op(1).

Now using U-statistics properties, 100

n−1/2∑n
i=1

{
P1(Xi,Ω)R̂Ω(Xi,Ω)− P2(Xi,Ω)R̂(Xi,Ω)

}
=

∑1
r=0

∑1
d=0n

−3/2∑n
i=1

∑n
j=1

πd
cd

I(Dj = d) {P1(Xi,Ω)SΩ(r,Gj , Xi,Ω)

−P2(Xi,Ω)S(r,Gj , Xi,Ω)}

=
∑1

r=0

∑1
d=0n

−1/2∑n
i=1E

[
πd
cd

I(D = d) {P1(xi,Ω)SΩ(r,G, xi,Ω)− P2(xi,Ω)S(r,G, xi,Ω)}
]

+
∑1

r=0

∑1
d=0n

−1/2∑n
j=1E

[
πd
cd

I(dj = d) {P1(X,Ω)SΩ(r, gj , X,Ω)− P2(X,Ω)S(r, gj , X,Ω)}
]

−
∑1

r=0

∑1
d=0n

−1/2∑n
j=1E

[
πd
cd

I(Dj = d) {P1(X,Ω)SΩ(r,Gj , X,Ω)− P2(X,Ω)S(r,Gj , X,Ω)}
]

+op(1).

Further, we thus have that

n−1/2∑n
i=1

{
P1(Xi,Ω)R̂Ω(Xi,Ω)− P2(Xi,Ω)R̂(Xi,Ω)

}
=

∑1
r=0

∑1
d=0n

−1/2∑n
i=1πd {P1(Xi,Ω)SE,Ω(r, d,Xi,Ω)− P2(Xi,Ω)SE(r, d,Xi,Ω)}

+
∑1

t=0

∑1
r=0

∑1
d=0n

−1/2∑n
i=1

πdct
cd

I(di = d)

×E [{P1(X,Ω)SΩ(r, gi, X,Ω)− P2(X,Ω)S(r, gi, X,Ω)} | D = t]

−
∑1

t=0

∑1
r=0

∑1
d=0n

1/2πdctE {P1(X,Ω)SE,Ω(r, d,X,Ω)− P2(X,Ω)SE(r, d,X,Ω) | D = t}
+op(1).
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Thus,

n−1/2∑n
i=1

{
P1(Xi,Ω)R̂Ω(Xi,Ω)− P2(Xi,Ω)R̂(Xi,Ω)

}
=

∑1
r=0

∑1
d=0n

−1/2∑n
i=1πd {P1(Xi,Ω)SE,Ω(r, d,Xi,Ω)− P2(Xi,Ω)SE(r, d,Xi,Ω)}

+
∑1

d=0

∑1
r=0n

−1/2∑n
i=1

πdicd
cdi

E [{P1(X,Ω)SΩ(r, gi, X,Ω)− P2(X,Ω)S(r, gi, X,Ω)} | D = d]

−
∑1

t=0

∑1
r=0

∑1
d=0n

1/2πdctE {P1(X,Ω)SE,Ω(r, d,X,Ω)− P2(X,Ω)SE(r, d,X,Ω) | D = t}
+op(1)

=
∑1

d=0

∑1
r=0n

−1/2∑n
i=1

πdicd
cdi

E [{P1(X,Ω)SΩ(r, gi, X,Ω)− P2(X,Ω)S(r, gi, X,Ω)} | D = d]

+op(1).

Here the last step is because for any X ,∑1
r=0

∑1
d=0πd {P1(X,Ω)SE,Ω(r, d,X,Ω)− P2(X,Ω)SE(r, d,X,Ω)}

=
1

R(X,Ω)

∑1
r=0

∑1
d=0πdSE,Ω(r, d,X,Ω)− RΩ(X,Ω)

R2(X,Ω)

∑1
r=0

∑1
d=0πdSE(r, d,X,Ω)

=
RΩ(X,Ω)

R(X,Ω)
− R(X,Ω)RΩ(X,Ω)

R2(X,Ω)

= 0.

This leads to the result.
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S·3. SCORE AND HESSIAN: RARE DISEASE CASE OF §2.2 IN THE MAIN PAPER 105

We consider models in which κ+m(g, x,β) = QT(g, x)Ω, and Ω = (κ,βT)T. The point of
this section is to show that both the log-pseudolikelihood score and its Hessian are very simply
calculated, and that the Hessian is negative semidefinite.

In the rare disease case,

S(d, g, x,Ω) = exp{dQT(g, x)Ω}, (16)

and thus 110

log{S(d, g, x,Ω)} = dQT(g, x)Ω.

This means that

∂log{S(d, g, x,Ω)}/∂Ω = dQ(g, x),

and also that

∂2log{S(d, g, x,Ω)}∂Ω∂ΩT = 0.

Similarly, in the rare disease case,

R̂(X,Ω) = n−1
0

∑n
j=1

∑1
r=0I(Dj = 0)S(r,Gj , X,Ω).

From (16),

R̂Ω(X,Ω) = ∂R̂(X,Ω)/∂Ω = n−1
0

∑n
j=1

∑1
r=0I(Dj = 0)S(r,Gj , X,Ω)rQ(Gj , X)

= n−1
0

∑n
j=1I(Dj = 0)S(1, Gj , X,Ω)Q(Gj , X). (17)

Thus, 115

R̂ΩΩ(X,Ω) = ∂2R̂(X,Ω)/∂Ω∂ΩT

= n−1
0

∑n
j=1I(Dj = 0)S(1, Gj , X,Ω)Q(Gj , X)QT(Gj , X). (18)

This means that the Hessian for the log-pseudolikelihood in equation (6) of the main paper is

−∂{R̂Ω(X,Ω)/R̂(X,Ω)}
∂ΩT

= −R̂ΩΩ(X,Ω)

R̂(X,Ω)
+

R̂Ω(X,Ω)R̂T
Ω(X,Ω)

R̂2(X,Ω)

= {R̂(X,Ω)}−2
{
−R̂ΩΩ(X,Ω)R̂(X,Ω) + R̂Ω(X,Ω)R̂T

Ω(X,Ω)
}
.

Write Vj = I(Dj = 0)S(1, Gj , X,Ω). For matrices, define A ≤ B to be that B −A is positive
semidefinite. By Hölder’s inequality

R̂Ω(X,Ω)R̂T
Ω(X,Ω)

= n−1
0

∑n
j=1VjQ(Gj , X)× n−1

0

∑n
j=1VjQ

T(Gj , X)

≤ n−1
0

∑n
j=1VjQ(Gj , X)QT(Gj , X)× n−1

0

∑n
j=1Vj

= R̂ΩΩ(X,Ω)R̂(X,Ω).

Hence, the Hessian is negative semidefinite as claimed.
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S·4. STRATIFICATION AND THE INDEPENDENCE ASSUMPTION120

The assumption of gene-environment independence may not hold when there may exist un-
derlying strata in the population, e.g. defined by ethnicity, across which the distribution of both
genetic and environmental factors vary. In this case, as discussed in Section 3.1 of Chatterjee
& Carroll (2005), we extend our framework to account for the scenario where the genetic and
environmental factors can be assumed to be independent conditional on a discrete stratification125

A with a = 1, ..., A levels.
To apply the method in Section 2.1 in the main paper to this case, for stratum a, we replace

πd by πda, the probability that D = d in the ath stratum of the source population, and we re-
place n, n0 and n1 by na, n0a and n1a, the number of subjects, controls, and cases in stratum a,
respectively. We modify (1) to pr(D = 1|G,X,A = a) = H{α0a +m(G,X, β)}: more com-130

plex models with possible interactions between (G,X) and the strata can also be considered.
We then set κa = α0a + log(n1a/n0a)− log(π1a/π0a). The parameters to be estimated are then
Ω = (κ1, ..., κA, β

T)T. We also replace S(d, g, x,Ω) by

Sa(d, g, x,Ω) =
exp[d{κa +m(g, x, β)}]

1 + exp{κa + log(π1a/π0a)− log(n1a/n0a) +m(g, x, β)}
.

Next, set n =
∑A

a=1 na, and replace (5) by

R̂a(x,Ω) =
∑n

j=1

∑1
r=0

∑1
d=0(πda/nda)I(Dj = d,Aj = a)Sa(r,Gj , x,Ω),

and the estimated loglikelihood (6) becomes135

L(Ω) =
∑A

a=1I(Ai = a)[
∑n

i=1log{Sa(Di, Gi, Xi,Ω)} −
∑n

i=1log{R̂a(Xi,Ω)}],

which is then maximized to obtain the estimate Ω̂. Now replace the score function (7) by

Ŝn(Ω) = n−1/2∑A
a=1

∑n
i=1I(Ai = a)

{
SΩ,a(Di, Gi, Xi,Ω)

Sa(Di, Gi, Xi,Ω)
−

R̂Ω,a(Xi,Ω)

R̂a(Xi,Ω)

}
,

using the obvious definitions of SΩ,a(·), R̂Ω,a(·), P1a(X,Ω), P2a(X,Ω) and with Zi =
(Di, Gi, Xi,Ai).

In terms of the asymptotic theory of Section 2.3 of the main paper, we replace (Γ1,Γ2) by

Γ1 =
∑A

a=1

∑1
d=0(nda/n)E

{
∂SΩ,a(D,G,X,Ω)/Sa(D,G,X,Ω)

∂ΩT

∣∣∣∣A = a,D = d

}
;

Γ2 =
∑A

a=1

∑1
d=0(nda/n)E

{
∂RΩ,a(X,Ω)/Ra(X,Ω)

∂ΩT

∣∣∣∣A = a,D = d

}
.

Then define140

ζa(Zi,Ω) = I(Ai = a)
SΩ,a(Zi,Ω)

Sa(Zi,Ω)
−

RΩ,a(Xi,Ω)

Ra(Xi,Ω)

−
1∑

d=0

1∑
r=0

cd,aπdi,a
cdi,a

×E [{P1a(X,Ω)SΩ,a(r, gi, X)− P2a(X,Ω)Sa(r, gi, X)} | A = a,D = d] ,

and now Σ becomes

Σ =
∑A

a=1

∑1
d=0(nda/n)cov{ζa(D,X,G,Ω)|D = d,A = a}.
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S·5. ADDITIONAL SIMULATIONS

S·5·1. Comparison with the Method of Chatterjee & Carroll (2005)
Table 2 of this Supplementary Material gives results in the same simulation setting as in Sec-

tion 3 in the main paper, except that to compare with Chatterjee & Carroll (2005), we only use 145

the first SNP for our method and for the Chatterjee-Carroll method. The latter method uses the
R package CGEN in Bioconductor, and is based on that package’s function snp.logistic, which
allows for SNP levels 0, 1, 2 and X values 0,1, as in our simulation. The results of that analysis
and our method are very similar, indicating that our method is, in this case, almost efficient.

S·5·2. Misspecification of Population Disease Rate 150

Table 3 of this Supplementary Material reports the results of a simulation to evaluate the
robustness of our method to misspecification of the population disease rate, using a sample of
1000 cases and 1000 controls. We considered actual disease rates of π1 = 0.03, 0.05, 0.085 and
0.12, and compared the results for the rare disease approximation and when the assumed disease
rate was π1 = 0.03. For the method using the a rare disease approximation, it was only when the 155

rate was π1 = 0.12 that there was a deterioration in the coverage probabilities, but even then the
lowest coverage rate was 91.8%. When the disease rate was assumed to be π1 = 0.03, nominal
coverage was seen except when the exact disease rate was π1 = 0.12, and even at the worst case
the lowest coverage rate was 93.1%, almost nominal. This indicates a surprising robustness to
disease rate misspecification. 160

S·5·3. Violations of the Gene-Environment Independence Assumption
Tables S.4, S.5 and S.6 of this Supplementary Material contain simulations to examine

the robustness of our method to violations of the gene-environment independence assump-
tion. In these simulations, the genetic variables are generated as described in Section 3 of the
main paper, but the environmental variable is normally distributed with mean αG1, αG2, or 165

αG3. We let α = 0.032 to introduce a dependence between X and G with R2 = 0.001. Here
βG = {log(1.2), log(1.2), 0, log(1.2), 0} as in Section 3 of the main paper, but βX = log(1.73)
and βGX = {log(1.42), 0, 0, log(1.42), 0}. In each simulation, the logistic intercept was chosen
to give a 3% population disease prevalence. In Table S.4 X is correlated with G1, which has a
nonzero main effect and a nonzero interaction; in Table S.5 X is correlated with G2, which has 170

a nonzero main effect but no interaction effect; in Table S.6 X is correlated with G3, which has
neither main nor interaction effects.

Similarly to Chatterjee & Carroll (2005), we find that violating the G-E independence assump-
tion induces a bias in the parameter estimates. In Section S·4 of this Supplementary Material we
describe how to remove this bias when G and E are independent conditional on a discrete strat- 175

ification variable A. Mukherjee & Chatterjee (2008) and Chen et al. (2009) show how to use
empirical-Bayes methods as well to provide additional robustness against violations of the gene-
environment independence assumption.
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S·6. PROPERTIES OF R̂(x,Ω) IN EQUATION (5) OF THE MAIN PAPER

Equation (5) of the main paper is180

R̂(x,Ω) =
∑n

j=1

∑1
r=0

∑1
d=0(πd/nd)I(Dj = d)S(r,Gj , x,Ω).

Computing its expectation is facilitated by seeing that

E{I(Dj = d)S(r,Gj , x,Ω)} = E{S(r,Gj , x,Ω)|Dj = d} = E{S(r,G, x,Ω)|D = d}

Hence, recognizing that there are nd subjects with D = d,

E{R̂(x,Ω)} =
∑n

j=1

∑1
r=0

∑1
d=0(πd/nd)E{S(r,G, x,Ω)|D = d}

=
∑1

r=0

∑1
d=0πd/nd)E{S(r,G, x,Ω)|D = d}

= R(x,Ω).

Hence, (5) of the main paper is unbiased for R(x,Ω). Further, we see that

R̂(x,Ω)−R(x,Ω)

=
∑1

r=0

∑1
d=0(πd/nd)

∑n
j=1

× [I(Dj = d)S(r,Gj , x,Ω)−E{I(Dj = d)S(r,Gj , x,Ω)}] ,

so that R̂(x,Ω) is n1/2-consistent for R(x,Ω), and with proper normalization is asymptotically
normally distributed.185
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S·7. SNPS INVOLVED IN CREATING THE POLYGENIC RISK SCORE

Table S.1. SNPs involved in creating the polygenic risk score, and their regression coefficients
Actual RS Variable
Number Name Coefficient
rs11249433 gene1 -0.02813492
rs1045485 gene2 -0.09307971
rs13387042 gene3 -0.26203658
rs4973768 gene4 0.08013260
rs10069690 gene5 0.06459363
rs10941679 gene6 0.09185539
rs889312 gene7 -0.00565121
rs17530068 gene8 0.09668742
rs2046210 gene9 0.09851217
rs1562430 gene10 -0.14871719
rs1011970 gene11 0.05329783
rs865686 gene12 -0.02913340
rs2380205 gene13 -0.01821032
rs10995190 gene14 -0.04275836
rs2981582 gene15 0.14008397
rs909116 gene16 0.04955235
rs614367 gene17 0.06438418
rs3803662 gene18 0.27080105
rs6504950 gene19 -0.17586244
rs8170 gene20 0.08570773
rs999737 as gene21 -0.13737833



16

S·8. COMPARISON WITH THE METHOD OF CHATTERJEE & CARROLL (2005) IN A
SPECIAL CASE

Table S.2. Results of 1000 simulations with 3% disease
prevalence as described in Section 3 of the main paper,
except that to compare with Chatterjee & Carroll (2005),
we only use the first SNP. We compare our semiparametric
pseudolikelihood estimator to the method of Chatterjee &
Carroll (2005) and to ordinary logistic regression. The sim-
ulations were performed with 500 cases and 500 controls

500 cases & 500 controls 1000 cases & 1000 controls
βG1 βX βG1X βG1 βX βG1X

True 0.182 0.405 0.262 0.182 0.405 0.262

Logistic
Bias -0.011 0.001 0.015 0.009 0.003 -0.001
CI (%) 93.9 94.1 93.7 95.2 94.2 95.6

Chatterjee Carroll
Bias -0.008 0.005 -0.004 0.013 0.006 -0.016
CI (%) 95.1 94.1 93.6 96.0 94.6 94.4
MSE Eff 1.405 1.108 2.227 1.321 1.118 2.183

SPMLE, Rare
Bias -0.007 0.004 -0.001 0.013 0.006 -0.015
CI (%) 95.1 94.1 94.1 95.8 94.5 94.8
MSE Eff 1.381 1.104 2.166 1.290 1.113 2.141

SPMLE, π1 known
Bias -0.014 0.001 0.014 0.006 0.003 0.000
CI (%) 95.1 94.2 94.8 95.9 94.7 94.4
MSE Eff 1.359 1.100 2.016 1.292 1.113 2.021

Logistic is ordinary logistic regression; Chatterjee Carroll is the method
of Chatterjee & Carroll (2005); SPMLE, Rare is our estimator using the
rare disease approximation with unknown π1 (Section 2.2 of the main pa-
per); SPMLE, π1 known is our estimator when π1 is known in the source
population (Section 2.1 of the main paper); Bias is the mean bias; CI (%)
is the coverage in percent of a nominal 95% confidence interval (calcu-
lated using the asymptotic standard error); MSE Eff is the mean squared
error efficiency of the method compared to logistic regression.
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S·9. SIMULATION WHEN THE DISEASE RATE IS MISSPECIFIED
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Table S.3. Results of 1000 simulations as described in §3 of the main paper, except that the
logistic intercept has been modified to give population disease rates (0.03, 0.05, 0.085, 0.12).
We compare ordinary logistic regression, our method using the rare disease approximation, and
our method with “known” π1 = 0.03, which is misspecified when π1 > 0.03. The simulations

were performed with 1000 cases and 1000 controls
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic
Disease Rate = 0.03

Bias 0.00 0.01 0.00 0.01 -0.01 0.01 0.01 -0.01 0.00 0.00 0.01
CI (%) 94.3 95.2 95.7 95.1 94.7 94.6 94.9 94.2 94.5 96.0 94.2

Disease Rate = 0.05
Bias 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.01
CI (%) 95.8 95.2 95.9 94.7 94.4 95.6 95.7 95.5 95.3 94.8 95.3

Disease Rate = 0.085
Bias -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
CI (%) 94.2 94.8 95.6 94.4 93.7 94.4 94.9 94.3 94.9 95.9 94.2

Disease Rate = 0.12
Bias 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
CI (%) 94.8 95.5 94.9 95.2 93.8 95.7 94.4 95.9 94.9 95.3 95.0

SPMLE, Rare
Disease Rate = 0.03

Bias 0.01 0.00 0.00 0.02 -0.01 0.02 -0.02 -0.01 0.01 -0.02 0.01
CI (%) 95.2 95.4 96.4 95.8 95.3 95.1 95.4 94.8 96.1 95.5 94.9
MSE Eff All G: 1.28 X: 1.26 All G ∗X: 2.18

Disease Rate = 0.05
Bias 0.02 0.00 0.00 0.02 -0.01 0.03 -0.04 0.00 0.00 -0.03 0.00
CI (%) 94.4 95.4 96.8 94.4 95.0 95.1 93.8 94.6 96.3 94.5 94.4
MSE Eff All G: 1.25 X: 1.23 All G ∗X: 1.99

Disease Rate = 0.085
Bias 0.02 0.01 0.00 0.02 0.00 0.05 -0.05 -0.01 0.00 -0.05 0.00
CI (%) 95.0 94.5 96.1 94.1 93.9 93.5 93.9 94.8 95.8 94.5 95.6
MSE Eff All G: 1.25 X: 1.14 All G ∗X: 2.02

Disease Rate = 0.12
Bias 0.03 0.01 -0.01 0.03 0.00 0.06 -0.08 -0.01 0.00 -0.06 0.00
CI (%) 94.2 95.5 94.6 93.3 93.9 93.4 92.0 96.1 94.5 91.8 94.4
MSE Eff All G: 1.21 X: 1.02 All G ∗X: 1.88

SPMLE, π1 = 0.03
Disease Rate = 0.03

Bias 0.00 0.00 0.00 0.01 -0.01 0.01 0.00 -0.01 0.01 -0.01 0.01
CI (%) 95.1 95.5 96.4 95.8 95.0 95.5 95.6 94.6 95.9 95.2 94.5
MSE Eff All G: 1.28 X: 1.28 All G ∗X: 2.07

Disease Rate = 0.05
Bias 0.01 0.00 0.00 0.01 -0.01 0.01 -0.01 0.00 0.00 -0.01 0.01
CI (%) 94.6 95.4 96.4 94.7 94.7 95.8 94.3 94.6 96.0 94.5 94.1
MSE Eff All G: 1.25 X: 1.27 All G ∗X: 1.90

Disease Rate = 0.085
Bias 0.01 0.01 0.00 0.01 0.00 0.03 -0.03 -0.01 0.00 -0.03 0.00
CI (%) 95.1 94.8 96.4 94.4 93.9 94.7 94.9 95.1 95.8 94.9 95.2
MSE Eff All G: 1.25 X: 1.21 All G ∗X: 1.95

Disease Rate = 0.12
Bias 0.02 0.01 -0.01 0.03 0.00 0.05 -0.06 -0.01 0.00 -0.05 0.01
CI (%) 94.3 95.6 94.9 93.6 93.8 94.4 93.5 96.3 94.6 93.1 94.6
MSE Eff All G: 1.22 X: 1.10 All G ∗X: 1.84

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation with
unknown π1 (Section 2.2 of the main paper); SPMLE, π1 = 0.03 is our estimator calculated as if the disease rate in
the source population were known to be 0.03 (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the
coverage in percent of a nominal 95% confidence interval (calculated using the asymptotic standard error); MSE Eff
is the mean squared error efficiency of our method compared to logistic regression, averaged over G, over X and over
the G ∗X interactions.
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S·10. SIMULATIONS WHEN THE GENE-ENVIRONMENT INDEPENDENCE ASSUMPTION IS 190

VIOLATED
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Table S.4. Results of 1000 simulations with G as described in Section 3 of the main paper,
but X ∼ N(0.032G1, 1). We compare our semiparametric pseudolikelihood estimator to
ordinary logistic regression. Three simulations were performed with sample sizes of (1000,

2000, 3000) cases and controls each
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.55 0.35 0.00 0.00 0.35 0.00

Logistic: 1000 cases
Bias -0.01 0.00 0.01 0.00 -0.01 0.01 0.01 0.01 -0.01 0.01 0.01
CI (%) 94.5 96.2 95.8 94.8 93.7 94.0 95.4 95.7 95.6 95.5 95.3

Logistic: 2000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 95.4 94.7 94.8 95.2 95.0 94.5 95.6 96.1 94.0 94.7 95.9

Logistic: 3000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 94.1 94.1 95.1 95.7 94.6 94.2 94.2 95.4 94.8 95.0 94.7

SPMLE, π1 known: 1000 cases
Bias -0.01 0.00 0.01 0.00 -0.01 -0.03 0.10 0.00 0.00 0.01 0.00
CI (%) 94.2 95.9 95.0 95.2 93.8 93.3 80.4 94.9 94.9 95.0 94.8
MSE Eff All G: 1.07 X: 1.31 All G ∗X: 1.75

SPMLE, π1 known: 2000 cases
Bias 0.00 0.00 0.00 0.01 0.00 -0.03 0.10 0.00 0.00 0.00 0.00
CI (%) 94.2 94.8 95.1 95.5 95.6 90.9 71.4 95.5 94.1 95.0 95.6
MSE Eff All G: 1.07 X: 1.08 All G ∗X: 1.53

SPMLE, π1 known: 3000 cases
Bias -0.01 0.00 0.00 0.00 0.00 -0.03 0.10 0.00 0.00 0.00 0.00
CI (%) 94.7 95.3 95.7 95.2 94.2 88.0 54.8 94.2 95.7 95.0 93.9
MSE Eff All G: 1.06 X: 0.95 All G ∗X: 1.27

Logistic is ordinary logistic regression; SPMLE, π1 known is our estimator when π1 is known in the source
population (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a
nominal 95% confidence interval (calculated using the asymptotic standard error); MSE Eff is the mean squared
error efficiency of our method compared to logistic regression, averaged over G, over X and over the G ∗X
interactions.
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Table S.5. Results of 1000 simulations with G as described in Section 3 of the main paper,
but X ∼ N(0.032G2, 1). We compare our semiparametric pseudolikelihood estimator to
ordinary logistic regression. Three simulations were performed with sample sizes of (1000,

2000, 3000) cases and controls each
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.55 0.35 0.00 0.00 0.35 0.00

Logistic: 1000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
CI (%) 93.4 95.1 94.5 93.0 95.7 94.4 94.4 93.7 94.8 93.4 94.4

Logistic: 2000 cases
Bias 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
CI (%) 95.3 94.0 94.4 94.6 93.2 94.9 94.6 94.8 94.2 95.5 93.8

Logistic: 3000 cases
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 94.1 94.5 94.5 95.3 95.2 95.9 94.7 93.9 94.4 95.6 95.3

SPMLE, π1 known: 1000 cases
Bias 0.00 -0.01 0.00 0.01 -0.01 -0.04 0.01 0.06 0.00 0.00 0.00
CI (%) 93.7 95.3 95.4 94.0 95.1 89.4 93.8 86.0 95.0 94.6 94.9
MSE Eff All G: 1.06 X: 1.12 All G ∗X: 2.19

SPMLE, π1 known: 2000 cases
Bias 0.00 -0.01 0.00 0.00 0.00 -0.04 0.01 0.06 0.00 0.00 0.00
CI (%) 95.6 94.2 94.9 94.4 93.9 88.1 94.3 78.7 95.1 95.4 95.6
MSE Eff All G: 1.08 X: 0.91 All G ∗X: 1.91

SPMLE, π1 known: 3000 cases
Bias 0.00 0.00 0.00 0.00 0.00 -0.04 0.01 0.06 0.00 0.00 0.00
CI (%) 94.8 94.2 94.9 95.9 94.9 84.3 95.4 72.7 95.4 95.3 95.5
MSE Eff All G: 1.08 X: 0.72 All G ∗X: 1.82

Logistic is ordinary logistic regression; SPMLE, π1 known is our estimator when π1 is known in the source
population (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a
nominal 95% confidence interval (calculated using the asymptotic standard error); MSE Eff is the mean squared
error efficiency of our method compared to logistic regression, averaged over G, over X and over the G ∗X
interactions.



22

Table S.6. Results of 1000 simulations with G as described in Section 3 of the main paper,
but X ∼ N(0.032G3, 1). We compare our semiparametric pseudolikelihood estimator to
ordinary logistic regression. Three simulations were performed with sample sizes of (1000,

2000, 3000) cases and controls each
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.55 0.35 0.00 0.00 0.35 0.00

Logistic: 1000 cases
Bias -0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01
CI (%) 95.5 94.4 95.2 96.2 95.3 94.7 94.9 94.0 94.9 95.5 94.9

Logistic: 2000 cases
Bias 0.00 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
CI (%) 94.0 94.1 94.4 94.6 94.9 95.2 95.5 95.1 95.5 94.0 94.7

Logistic: 3000 cases
Bias 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
CI (%) 95.9 94.2 94.1 94.8 94.3 95.1 95.4 95.9 95.8 92.9 94.4

SPMLE, π1 known: 1000 cases
Bias 0.00 0.00 0.00 0.00 0.00 -0.04 0.01 0.00 0.06 0.01 0.00
CI (%) 95.6 94.8 95.5 96.3 95.3 92.0 94.8 95.5 88.3 95.7 96.2
MSE Eff All G: 1.07 X: 1.20 All G ∗X: 2.12

SPMLE, π1 known: 2000 cases
Bias 0.00 0.00 -0.01 0.00 0.00 -0.04 0.01 0.00 0.06 0.00 0.00
CI (%) 95.2 94.4 94.5 94.0 94.8 89.4 95.0 94.8 82.3 94.9 94.6
MSE Eff All G: 1.06 X: 0.95 All G ∗X: 1.95

SPMLE, π1 known: 3000 cases
Bias 0.00 0.00 0.00 0.00 -0.01 -0.04 0.00 0.00 0.06 0.00 0.00
CI (%) 95.3 94.7 94.0 95.3 94.2 84.5 94.4 94.9 75.7 95.0 94.8
MSE Eff All G: 1.06 X: 0.76 All G ∗X: 1.82

Logistic is ordinary logistic regression; SPMLE, π1 known is our estimator when π1 is known in the source popu-
lation (Section 2.1 of the main paper); Bias is the mean bias; CI (%) is the coverage in percent of a nominal 95%
confidence interval (calculated using the asymptotic standard error); MSE Eff is the mean squared error efficiency
of our method compared to logistic regression, averaged over G, over X and over the G ∗X interactions.
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S·11. THE SIMULATION IN TABLE 1 OF THE MAIN PAPER WITH COMPONENTWISE
MEAN SQUARED ERROR EFFICIENCIES
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Table S.7. Results of 1000 simulations as described in Section 3 of the main paper,
with mean bias, coverage probabilities of a 95% nominal confidence interval, and mean
squared error efficiency of our semiparametric pseudolikelihood estimator compared to
ordinary logistic regression. The sample sizes were performed with 500 cases and 500

controls, and again with 1000 cases and 1000 controls
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic, 500 cases
Bias 0.02 -0.02 0.02 -0.01 0.01 0.00 0.00 0.02 -0.02 0.02 -0.01
CI (%) 94.7 94.9 94.8 94.5 95.2 96.4 94.3 93.6 94.3 94.9 95.4

Logistic, 1000 cases
Bias 0.00 0.01 0.00 0.01 -0.01 0.01 0.01 -0.01 0.00 0.00 0.01
CI (%) 94.3 95.2 95.7 95.1 94.7 94.6 94.9 94.2 94.5 96.0 94.2

SPMLE, Rare, 500 cases
Bias 0.02 -0.01 0.02 0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00
CI (%) 95.0 95.8 94.2 94.5 95.5 95.6 95.8 95.3 94.3 95.0 95.9
MSE Eff 1.37 1.34 1.23 1.27 1.27 1.29 2.44 2.13 1.87 1.91 2.22

SPMLE, Rare, 1000 cases
Bias 0.01 0.00 0.00 0.02 -0.01 0.02 -0.02 -0.01 0.01 -0.02 0.01
CI (%) 95.2 95.4 96.4 95.8 95.3 95.1 95.4 94.8 96.1 95.5 94.9
MSE Eff 1.35 1.25 1.29 1.25 1.24 1.26 2.36 2.00 2.19 2.02 2.21

SPMLE, π1 known: 500 cases
Bias 0.01 -0.01 0.02 -0.01 0.00 0.00 0.01 0.01 -0.02 0.01 0.00
CI (%) 95.0 95.7 94.3 94.4 95.5 95.7 95.4 95.1 94.3 94.9 95.7
MSE Eff 1.39 1.34 1.22 1.26 1.28 1.28 2.31 2.01 1.78 1.81 2.09

SPMLE, π1 known: 1000 cases
Bias 0.00 0.00 0.00 0.01 -0.01 0.01 0.00 -0.01 0.01 -0.01 0.01
CI (%) 95.1 95.5 96.4 95.8 95.0 95.5 95.6 94.6 95.9 95.2 94.5
MSE Eff 1.36 1.25 1.28 1.27 1.24 1.28 2.25 1.91 2.06 1.96 2.08

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation
with unknown π1, Section 2.2; SPMLE, π1 known is our estimator when π1 is known in the source pop-
ulation, Section 2.1; CI (%) is the coverage in percent of a nominal 95% confidence interval, calculated
using the asymptotic standard error; MSE Eff is the mean squared error efficiency of our method compared
to logistic regression.
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S·12. SKEWNESS, KURTOSIS AND QQ-PLOTS FOR THE SIMULATION IN TABLE 1 OF THE
MAIN PAPER 195

Table S.8 gives skewness and kurtosis for the simulation in Table 1 of the main paper with
1000 cases and controls.

Figure S.1 presents q–q plots for the main effects for (G1, . . . , G5, X) in the same simulation.
Figure S.2 presents q–q plots for the interaction effects for X and (G1, . . . , G5) in the same

simulation. 200
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Table S.8. Skewness and kurtosis for the simulation in Table 1 of the main paper with
1000 cases and controls. Kurtosis = 0 for the normal distribution

Skewness Kurtosis
-0.02 -0.08
-0.05 0.12
-0.13 0.07
-0.02 -0.15
0.06 -0.04

-0.21 0.15
-0.01 -0.20
-0.03 -0.10
0.04 0.11
0.09 -0.13
0.01 -0.06
0.14 0.25
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Fig. S.1. The qq-plots for the main effects for (G1, . . . , G5,X) in the simulation in Table 1 of the main paper with 1000 cases and
controls.
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Fig. S.2. The qq-plots for the interaction effects for X and (G1, . . . , G5) in the simulation in Table 1 of the main paper with 1000
cases and controls.
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S·13. THE SIMULATION IN TABLE 1 OF THE MAIN PAPER WITH 500 CASES AND
CONTROLS



30

Table S.9. Results of 1000 simulations as described in §3 of the main paper, with mean bias,
coverage probabilities of a 95% nominal confidence interval, and mean squared error efficiency
of our semiparametric pseudolikelihood estimator compared to ordinary logistic regression.

The simulations were performed with 500 cases and 500 controls
βG1 βG2 βG3 βG4 βG5 βX βG1X βG2X βG3X βG4X βG5X

True 0.18 0.18 0.00 0.18 0.00 0.41 0.26 0.00 0.00 0.26 0.00

Logistic: 500 cases
Bias 0.02 -0.02 0.02 -0.01 0.01 0.00 0.00 0.02 -0.02 0.02 -0.01
CI (%) 94.7 94.9 94.8 94.5 95.2 96.4 94.3 93.6 94.3 94.9 95.4

SPMLE, Rare: 500 cases
Bias 0.02 -0.01 0.02 0.00 0.00 0.01 -0.01 0.01 -0.02 -0.01 0.00
CI (%) 95.0 95.8 94.2 94.5 95.5 95.6 95.8 95.3 94.3 95.0 95.9
Avg MSE Eff All G: 1.30 X: 1.29 All G ∗X: 2.13

SPMLE, π1 known: 500 cases
Bias 0.01 -0.01 0.02 -0.01 0.00 0.00 0.01 0.01 -0.02 0.01 0.00
CI (%) 95.0 95.7 94.3 94.4 95.5 95.7 95.4 95.1 94.3 94.9 95.7
Avg MSE Eff All G: 1.30 X: 1.28 All G ∗X: 2.02

Logistic is ordinary logistic regression; SPMLE, Rare is our estimator using the rare disease approximation with
unknown π1 (§2.2); SPMLE, π1 known is our estimator when π1 is known in the source population (§2.1); CI (%) is
the coverage in percent of a nominal 95% confidence interval (calculated using the asymptotic standard error); Avg
MSE Eff is the mean squared error efficiency of our method compared to logistic regression averaged over G, over
X and over the G ∗X interactions, respectively.
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