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1. EXPECTATION-MAXIMIZATION ALGORITHM FOR EXPANDABLE FACTOR ANALYSIS

1·1. Estimation of Λ and Σ
Define the following quantities using mean-centered data:

Syy =
1
n

n∑
i=1

yiy
T
i , Szz =

1
n

n∑
i=1

ziz
T
i , Syz =

1
n

n∑
i=1

yiz
T
i , Ω = ΛΛT + Σ,

∆ = Ik − ΛT Ω−1Λ, G = Ω−1Λ, F = ∆ +GTSyyG, L = SyyG,

where Ik is the k × k identity matrix. We place Jeffreys’ prior on the error variances, π(σd) ∝
σ−1

d (d = 1, . . . , p). Let Λ(t) and Σ(t) be the estimates of Λ and Σ at iteration t, then the condi-
tional expectations of Szz , Syz , and complete data log likelihood at iteration (t+ 1) are

E
(
Szz | Y,Λ(t),Σ(t)

)
= ∆(t) +G(t)T

SyyG
(t) = F (t), E

(
Syz | Y,Λ(t),Σ(t)

)
= L(t),

Q(Λ,Σ | Λ(t),Σ(t)) = E
{
(npk)−1 log p(Z,Λ,Σ | Y,Λ(t),Σ(t), α1:k, η1:k)

}
= −

p∑
d=1

[
1

2pk

(
Syy

)
dd

+
{
ΛE
(
Szz | Y,Λ(t),Σ(t)

)
ΛT
}

dd

σ2
d

−

1
2pk

2
{
E
(
Syz | Y,Λ(t),Σ(t)

)
ΛT
}

dd

σ2
d

]
−

p∑
d=1

k∑
j=1

αj + 1
npk

log
(

1 +
|λdj |
ηj

)
− n+ 2

2npk

p∑
d=1

log σ2
d

≡ −
p∑

d=1

log pmis(λd, σ
2
d | Syy, F

(t), L(t)) − n+ 2
2npk

P∑
d=1

log σ2
d, (1)
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where the superscript (t) denotes the dependence on Λ(t) and Σ(t). The objective (1) splits into
p separate terms, and term d depends on λd and σ2

d; therefore, (1) is maximized by repeating the
following two until steps until convergence to a fixed point:

1. For d = 1, . . . , p,
a. fix σ2

d at σ2(t)

d in

log pmis(λd, σ
2
d | Syy, F

(t), L(t)) +
n+ 2
2npk

log σ2
d, (2)

and minimize with respect to λd to estimate λ(t+1)
d ;

b. fix λd at λ(t+1)
d in (2) and minimize (2) with respect to σ2

d to estimate σ2(t+1)

d .
2. Increment t to (t+ 1).

1·2. Block coordinate descent algorithm for estimation of Λ
We use local linear approximation of the objective (2) to derive a new block coordinate descent

algorithm. We suppress the superscript (t) inwd andX to ease notation. The algorithm initializes
Λ̃0 at Λlla(t)

and updates Λ̃(i)
dj using (2) as

λ̃
(i+1)
dj = argmin

λdj

λ2
djX

T
j Xj + 2λdj(Λ̃

(i)T

d,(−j)X
T
(−j)Xj −XT

j wd)

2
+

(αj + 1)σ2(t)

d

(ηj + |λ(t)
dj |)n

|λdj |

successively for j = 1, . . . , k in the (i+ 1)th cycle. This objective function is convex and its
optimum is

λ̃
(i+1)
dj =

sign(s(i)dj )

fjj

|s(i)dj | −
(αj + 1)σ2(t)

d

(ηj + |λ(t)
dj |)n


+

, (3)

where s(i)dj = XT
j wd − Λ̃(i)

d,(−j)X
T
(−j)Xj and fjj = XT

j Xj . We also exploit the form of (3) and

use it to update the kth column of Λ̃(i). This leads to k block updates for Λ̃(i) in a single cycle of
the coordinate descent algorithm. These updates are repeated until the change in Λ̃ is negligible.
We then set Λlla(t+1)

= Λ̃(∞). We have implemented this algorithm in R (R Development Core
Team, 2016) using the glmnet package (Friedman et al., 2010).

1·3. Root-n consistent estimates of Λ and Σ
Let Syy be the empirical covariance matrix of mean-centered data and ζ̂d and ψ̂d (d =

1, . . . , p) be its eigenvalues and eigenvectors, then

Syy = Y TY/n =
p∑

d=1

ζ̂d ψ̂dψ̂
T
d (4)

is the eigen decomposition of Syy. Use (4) to define

λ0
dj = ζ̂

1/2

j ψ̂dj (d = 1, . . . , p; j = 1, . . . , k).

An application of Theorem 2 in Kneip & Sarda (2011) shows that λ0
dj/p

1/2 is a root-n consistent
estimator of λdj/p

1/2 when n ≤ p. Equations 4.3 and 4.4 in Kneip & Sarda (2011) and Assump-
tions A.1–A.4 in the main paper imply that there exist universal positive constants D0, D1, and



3

C0 such that

λ2
dj

p
≤ D0 −D1

p
,

λ02

dj

p
≤ D0 + C0 (log p/n)1/2

p

with probability at least A(n, p) = 1 − 8p2−C0/2 → 1 as n→ ∞, n ≤ p→ ∞, and log p/n→
0. This implies that∣∣∣∣∣ λdj

p1/2
−

λ0
dj

p1/2

∣∣∣∣∣ ≤
(
D0 −D1

p

)1/2

+

{
D0 + C0 (log p/n)1/2

p

}1/2

(5)

with probability at least A(n, p). Since log p/n→ 0, log p/n ≤ D2
0/C

2
0 for large n and p and

(5) reduces to ∣∣∣∣∣ λ0
dj

p1/2
−

λdj

p1/2

∣∣∣∣∣ ≤
(

2D0

p

)1/2

≤
(

2D0

n

)1/2

with probability at least A(n, p) → 1 as n→ ∞, n ≤ p→ ∞, and log p/n→ 0. This shows
that λ0

dj/p
1/2 is a root-n consistent estimator of λdj/p

1/2. Theorem 3 in Kneip & Sarda (2011)

implies that σ20

d = (Syy − Λ0Λ0T
)dd is a root-n consistent estimator of σ2

d for overfitted factor
models.

We also prove a result that is used in the proof for asymptotic normality of nonzero loadings.

LEMMA 1. If Assumptions A.0–A.4 in the main paper hold, then E(λ02

dj ) <∞ (d = 1, . . . , p;
j = 1, . . . , k).

Proof. Using (4),

E(λ02

dj ) = E(ζ̂
2

j ψ̂
2
dj)

(i)

≤ E(ζ̂
2

j ) =
∫ ∞

0
pr(ζ̂

2

j > t) dt ≤ (D2 +D0)2 +
∫ ∞

(D2+D0)2
pr(ζ̂

2

j > t) dt,

(6)

where (i) follows because
∑p

d=1 ψ̂
2
dj = 1. Equation 4.1 of Theorem 2 in Kneip & Sarda (2011)

implies that for some ζj ≥ 0,

8/pC0/2−2 ≥ pr
{
| ζ̂j /p− ζj/p| > D2/p+ C0(log p/n)1/2

}
(ii)

≥ pr
{
| ζ̂j /p− ζj/p| > (C0D2/D0 + C0)(log p/n)1/2

}
≥ pr

{
ζ̂j /p > ζj/p+ (C0D2/D0 + C0)(log p/n)1/2

}
≥ pr

{
ζ̂j /p > (C0D2/D0 + C0)(log p/n)1/2

}
= pr

{
ζ̂
2

j > (C0D2/D0 + C0)2p2 log p/n
}
,

where (ii) follows because C0(log p/n)1/2 > D0/p by Assumption A.4 in the main paper. Sub-
stituting t = (C0D2/D0 + C0)2p2 log p/n in (6) implies that

pr(ζ̂
2

j > t) ≤ 8(C0D2/D0 + C0)C0/2−2(log p/n)C0/2−2t1−C0/4, t ≥ (D0 +D2)2.
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Therefore,
∫∞
(D2+D0)2 pr(ζ̂

2

j > t) dt <∞ for C0 ∈ (8,∞), which in turn shows that E(λ02

dj ) is
bounded because log p/n→ 0.

1·4. Computational complexity
The computational complexity of the estimation algorithm equals the cost of performing p

penalized regression problems of dimension k = O(log p). Our estimation algorithm requires
O(np2 + p log2 p) time upfront to calculate Syy and its eigen decomposition. Estimation of
G,∆, F , and L in (1) involves k-dimensional matrix multiplications and inversions of O(log3 p)
time complexity. Using these matrices, one iteration of the block coordinate descent algorithm
has O(log p) time complexity for dimension d (d = 1, . . . , p). The total time complexity of each
iteration isO(p log p+ log3 p); therefore, the time complexity of T iterations of the expectation-
maximization algorithm is O(Tp log p).

2. PROPERTIES OF THE MULTISCALE GENERALIZED DOUBLE PARETO PRIOR

2·1. Proof of Lemma 1
If C is the support of multiscale generalized double Pareto prior on Λ, then

pr(C) =pr

(
Λ | max

1≤d≤p

∞∑
k=1

λ2
dk <∞

)
≥ 1 − lim

t↑∞

p∑
d=1

pr

(
Λ |

∞∑
k=1

λ2
dk ≥ t

)
≥ 1 − p lim

t↑∞

∑∞
k=1 V (λ1k)

t
.

Since λ1k follows generalized double Pareto distribution with parameters (αk, ηk), V (λ1k) =
2η2

k(αk − 1)−1(αk − 2)−1 for αk > 2 and
∞∑

k=1

V (λ1k) ≤ 2
∞∑

k=1

η2
k

α2
k

(
1 − 2

αk

)−2

≤ {2 +O(1)}
∞∑

k=1

η2
k

α2
k

. (7)

This summation is finite if αk > 2 and ηk/αk = O(k−m) for m > 0·5; therefore, pr(C) = 1.

2·2. Proof of Lemma 2
Let k(p, δ, ϵ) be such that pr{Ωk | d∞(Ω,Ωk) ≥ ϵ} ≤ ϵ for any ϵ > 0. Then,

pr{d∞(Ω,Ωk) ≥ ϵ}
(i)

≤
p∑

i=1

p∑
j=1

pr(|Ωij − Ωk
ij | ≤ ϵ)

(ii)

≤ p2

ϵ

∞∑
l=k+1

E(|λ1l|2),

where (i) follows from the union bound and (ii) follows from Markov’s inequality and the
independence of λiks. The assumptions in Lemma 2 of the main paper and (7) imply that

p2

ϵ

∞∑
l=k+1

E(|λ1l|2) = constant
p2

ϵ
δ−2k ≤ ϵ =⇒ k = O

(
log−1 δ log p

ϵ

)
.

3. THEORETICAL PROPERTIES OF Λlla AND Σlla

3·1. Proof of Theorem 1
Let θ = (Λ,Σ). Then, the objective function in (1) is

L(θ) = LML(θ) −
p∑

d=1

k∑
j=1

αj + 1
npk

log
(

1 +
|λdj |
ηj

)
− n+ 2

2npk

p∑
d=1

log σ2
d, (8)
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where LML(θ) is the log likelihood of θ scaled by npk. This leads to the Q-function

Q(θ | θ(t)) = −
p∑

d=1

log pmis(λd, σ
2
d | Syy, F

(t), L(t)) − n+ 2
2npk

p∑
d=1

log σ2
d. (9)

The local linear approximation of (9) is

QLLA(θ | θ(t)) = −
p∑

d=1

(
Syy

)
dd

+
(
ΛF (t)ΛT

)
dd

− 2
(
L(t)ΛT

)
dd

2pkσ2
d

− n+ 2
2npk

p∑
d=1

log σ2
d

−
p∑

d=1

k∑
j=1

αj + 1
npk

log
(

1 +
|λ(t)

dj |
ηj

)
+

sign(λ(t)
dj )

ηj + |λ(t)
dj |

(λdj − λ
(t)
dj )


= QML(θ | θ(t)) − n+ 2

2npk

p∑
d=1

log σ2
d

−
p∑

d=1

k∑
j=1

αj + 1
npk

log
(

1 +
|λ(t)

dj |
ηj

)
+

sign(λ(t)
dj )

ηj + |λ(t)
dj |

(λdj − λ
(t)
dj )

 , (10)

where QML(θ | θ(t)) is the Q-function that corresponds to LML(θ). Theorem 1 of Dempster
et al. (1977) shows that QML(θ(t) | θ(t)) = LML(θ(t)), and using this in (8) and (10) shows that
Q(θ(t) | θ(t)) = L(θ(t)) and QLLA(θ(t) | θ(t)) = L(θ(t)). Subtracting (10) from (8) yields

L(θ) −QLLA(θ | θ(t)) = LML(θ) −QML(θ | θ(t)) +
p∑

d=1

k∑
j=1

αj + 1
npk

ldj(λdj | λ
(t)
dj ), (11)

where

ldj(λdj | λ
(t)
dj ) = log

(
1 +

|λ(t)
dj |
ηj

)
+

sign(λ(t)
dj )

ηj + |λ(t)
dj |

(λdj − λ
(t)
dj ) − log

(
1 +

|λdj |
ηj

)
. (12)

The log function is concave and is majorized by its tangent, so ldj(λdj | λ
(t)
dj ) ≥ 0 for any |λdj | ≥

0; therefore, L(θ) −QLLA(θ | θ(t)) ≥ 0 because LML(θ) −QML(θ | θ(t)) ≥ 0 using Lemma 1
and Theorem 1 in Dempster et al. (1977). If θ(t+1) maximizes QLLA(θ | θ(t)), then

L(θ(t+1)) ≥ QLLA(θ(t+1) | θ(t)) ≥ QLLA(θ(t) | θ(t)) = L(θ(t)), (13)

where the last equality follows from (10). The objective (1) is bounded in probability on the
parameter space, so the sequence {L(θ(t))}∞t=1 converges to some L(θ(∞)). Using Proposition 1
in Zou & Li (2008), θ(t) converges to the stationary point θ(∞).

3·2. Proof of asymptotic normality of nonzero loadings and consistency of estimated Λ
The proof has two steps. First, we show asymptotic normality of nonzero loadings. Second,

we use results of the first step to show consistency of the estimated loadings.
Step 1. Let λ0

dj/p
1/2 and σ20

d are the root-n consistent sequence of estimators of λ∗dj/p
1/2 and

σ2∗
d (d = 1, . . . , p; j = 1, . . . , k) as n→ ∞, n ≤ p→ ∞, and log p/n→ 0, then imputing Z
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based on the eigen decomposition of Y TY/n in (4) implies that

Λ̂ = argmin
λd

d=1,...,p

p∑
d=1

∥yd/p
1/2 − Z0λd/p

1/2∥2

2σ20

d /p
+

p∑
d=1

k∑
j=1

αj + 1
ηj + |λ0

dj |/p1/2
|λdj/p

1/2|, (14)

where Λ̂ is the estimate of Λ obtained using the estimation algorithm of expandable factor anal-
ysis,

σ20

d =
p∑

d=k+1

ζ̂d ψ̂
2
dj , λ0 = ζ̂

1/2

j ψ̂dj , (d = 1, . . . , p; j = 1, . . . , k),

Z0 = Y
(
ζ̂
−1/2

1 ψ̂1, . . . , ζ̂
−1/2

k ψ̂k

)
. (15)

Again using (4),

Z0T
Z0

n
=
(
ζ̂
−1/2

1 ψ̂1, . . . , ζ̂
−1/2

k ψ̂k

)T

Y TY/n
(
ζ̂
−1/2

1 ψ̂1, · · · , ζ̂
−1/2

k ψ̂k

)
= Ik. (16)

If U is a p× k matrix independent of n and p and uT
d represents row d of U , then define

Vn(U) =
p∑

d=1

∥∥∥ yd

p1/2 − Z0
(

λ∗
d

p1/2 + ud

(np)1/2

)∥∥∥2

2σ20

d /p
+

p∑
d=1

k∑
j=1

αj + 1

ηj +
|λ0

dj
|

p1/2

∣∣∣∣ λ∗djp1/2
+

udj

(np)1/2

∣∣∣∣ , (17)

where vectors are added component-wise. Substitute udj = 0 (d = 1, . . . , p; j = 1, . . . , k) in
(17) to obtain

Vn(0) =
p∑

d=1

∥∥∥ yd

p1/2 − Z0 λ∗
d

p1/2

∥∥∥2

2σ20

d /p
+

p∑
d=1

k∑
j=1

αj + 1

ηj +
|λ0

dj
|

p1/2

∣∣∣∣ λ∗djp1/2

∣∣∣∣ . (18)

Using (15) and (16),

Vn(U) − Vn(0) =
p∑

d=1

uT
d ud

2σ20

d

−
p∑

d=1

n1/2uT
d

σ20

d

(
Z0T

yd

n
− λ∗d

)
+

p∑
d=1

k∑
j=1

αj + 1

ηj +
|λ0

dj
|

p1/2

(∣∣∣∣ λ∗djp1/2
+

udj

(np)1/2

∣∣∣∣− ∣∣∣∣ λ∗djp1/2

∣∣∣∣)

≡
p∑

d=1

T1d −
p∑

d=1

T2d +
p∑

d=1

k∑
j=1

T3dj . (19)

The limiting forms of all the terms in (19) are derived next. First, we obtain the limiting
form of T1d in (19). Because σ20

d is a root-n consistent estimator of σ2∗
d , T1d → (uT

d ud)/(2σ2∗
d )

in probability as n→ ∞, n ≤ p→ ∞, and log p/n→ 0 using Slutsky’s theorem. Second, we
obtain the limiting form of T2d in (19). Lemma 1 shows that variance of λ0

dj (d = 1, . . . , p;
j = 1, . . . , k) is bounded, so using (4), Slutsky’s theorem, and the central limit theorem,

T2d = n1/2
(
λ0

d1 − λ∗d1, . . . , λ
0
dk − λ∗dk

) ud

σ20

d

→
uT

d rd
σ2∗

d

(d = 1, . . . , p) (20)
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as n→ ∞, n ≤ p→ ∞, and log p/n→ 0, where the convergence is in distribution and rd ∼
Nk(0k×1, Cd) for some symmetric positive definite matrix Cd. Let M∗

d be the set of js such that
λ∗dj is nonzero, then M∗

d = {j : (d, j) ∈ M∗} and M∗c

d = {j : (d, j) /∈ M∗}. If ABB denotes a
sub-matrix that contains the rows and the columns of matrix A with indices in B, then the block
partitioned form of the covariance matrix of rd in (20) based on M∗

d is

C∗
d =

[
CdM∗

d
M∗

d

CdM∗
d
M∗c

d

CdM∗c
d

M∗
d

CdM∗c
d

M∗c
d

]
, (rdM∗

d

, rdM∗c
d

)T ∼ Nk (0k×1, C
∗
d) , (d = 1, . . . , p), (21)

where rdM∗
d

and rdM∗c
d

include elements of rd with indices in M∗
d and M∗c

d , respec-

tively. Finally, the limiting form of T3dj is found using arguments in Zou & Li (2008).
If λ∗dj ̸= 0, then ηj + p−1/2|λ0

dj | = ηj + p−1/2|λ∗dj | +OP {(np)−1/2}, (np)1/2(∣∣p−1/2λ∗dj +
(np)−1/2udj

∣∣− ∣∣p−1/2λ∗dj
∣∣) = sign (λ∗dj)udj , and

T3dj =

{
n−1/2(αj + 1)

} [
(np)1/2

{∣∣p−1/2λ∗dj + (np)−1/2udj

∣∣− ∣∣p−1/2λ∗dj
∣∣}]{

p1/2ηj + |λ∗dj | +OP (n−1/2)
} → 0

in probability by Slutsky’s theorem and the continuous mapping theorem as n→ ∞, n ≤
p→ ∞, and log p/n→ 0. Similarly, if λ∗dj = 0, then ηj + p−1/2|λ0

dj | = ηj +OP {(np)−1/2},
(np)1/2

(∣∣p−1/2λ∗dj + (np)−1/2udj

∣∣− ∣∣p−1/2λ∗dj
∣∣) = |udj |, and

T3dj =
(αj + 1)

[
(np)1/2

{∣∣p−1/2λ∗dj + (np)−1/2udj

∣∣− ∣∣p−1/2λ∗dj
∣∣}]{

(np)1/2ηj +OP (1)
} →

{
0, udj = 0,
∞, udj ̸= 0,

(22)

in probability by Slutsky’s theorem and the continuous mapping theorem as n→ ∞, n ≤ p→
∞, and log p/n→ 0.

Let Ûn = argmin
U

{Vn(U) − Vn(0)}, then λ̂dj/p
1/2 = λ∗dj/p

1/2 + ûdjn/(np)
1/2 or n1/2(λ̂dj −

λ∗dj) = ûdjn . The limiting forms of T1d, T2d, and T3dj (d = 1, . . . , p; j = 1, . . . , k), and Slutsky’s
theorem imply that Vn(U) − Vn(0) → V ∗(U) in distribution for every U as n→ ∞, n ≤ p→
∞, and log p/n→ 0, where

V ∗(U) =


∑

(d,j)∈M∗
u2

dj

2σ2∗
d

−
∑

(d,j)∈M∗
udjrdj

σ2∗
d

, udj = 0 for all (d, j) /∈ M∗,

∞, otherwise.
(23)

Since Vn(U) − Vn(0) is convex, the unique minimizer of V ∗(U) is

U∗ such that u∗dj =

{
0, (d, j) /∈ M∗,

rdj , (d, j) ∈ M∗ .
(24)

Following the epi-convergence results of Geyer (1994) and Knight & Fu (2000), ûdjn → u∗dj
in distribution (d = 1, . . . , p; j = 1, . . . , k) as n→ ∞, n ≤ p→ ∞, and log p/n→ 0. Let λ̂ =
(λ̂T

1 , . . . , λ̂
T
p )T , λ∗ = (λ∗

T

1 , . . . , λ∗
T

p )T , and |A| be the cardinality of set A, then

n1/2(λ̂M∗ − λ∗M∗) →
(
r1M∗

1
, . . . , rpM∗

p

)T
≡ rM∗ , λ̂M∗c → 0|M∗c |×1
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in distribution as n→ ∞, n ≤ p→ ∞, and log p/n→ 0 using (21), (22), (24), and n1/2(λ̂dj −
λ∗dj) = ûdjn → u∗dj in distribution (d = 1, . . . , p; j = 1, . . . , k). Further,

rM∗ ∼ N|M∗|
(
0|M∗|×1, CM∗ M∗

)
, CM∗ M∗ = bdiag(C1M∗

1
M∗

1
, . . . , CpM∗

p M∗
p
),

where bdiag(C1M∗
1
M∗

1
, . . . , CpM∗

p M∗
p
) is a block diagonal matrix with C1M∗

1
M∗

1
, . . . , CpM∗

p M∗
p

forming the diagonal blocks. This proves the asymptotic normality of nonzero loadings.
Step 2. We now prove the consistency of λ̂dj (d = 1, . . . , p; j = 1, . . . , k). For every (d, j) ∈

M∗, asymptotic normality of λ̂dj implies that λdj → λ∗dj in probability, so pr{(d, j) ∈ M̂} →
1, where M̂ is the estimated set of the locations of nonzero loadings based on Λ̂. The proof
is completed by showing that for all (d̃, j̃) /∈ M∗, pr{(d̃, j̃) ∈ M̂}→0. Let (d̃, j̃) ∈ M̂, then
Karush-Kuhn-Tucker optimality condition implies that

n−1/2z0T

j̃

(
yd̃ − Z0λ̂d̃

)
= sign(λ̂d̃j̃)

σ20

d̃
(αj̃ + 1)

ηj̃(np)1/2 +OP (1)
. (25)

The right hand side of (25) is unbounded in probability as n→ ∞, n ≤ p→ ∞, and log p/n→
0 because (d̃, j̃) /∈ M∗. The left hand side of (25) is

n1/2

z0T

j̃
yd̃

n
−
z0T

j̃
Z0

n
λ∗

d̃

+
z0T

j̃
Z0

n

{
n1/2

(
λ∗

d̃
− λ̂d̃

)}
. (26)

Following arguments similar to those used to derive (20), the first term in (26) is asymptotically
normal. The second term in (26) is also asymptotically normal from asymptotic normality of the
estimates of nonzero loadings shown previously. By Slutsky’s theorem, the left hand side of (25)
is asymptotically normal; therefore,

pr{(d̃, j̃) ∈ M̂} ≤ pr

{
n−1/2z0T

j̃

(
yd̃ − Z0λ̂d̃

)
= sign(λ̂d̃j̃)

σ20

d̃
(αj̃ + 1)

ηj̃(np)1/2 +OP (1)

}
→ 0 (27)

in probability because asymptotic normality of n−1/2z0T

j̃

(
yd̃ − Z0λ̂d̃

)
implies that it is bounded

in probability. This proves the consistency of λ̂dj (d = 1, . . . , p; j = 1, . . . , k).

3·3. Proof of asymptotic normality and consistency of estimated Σ
We now prove asymptotic normality and consistency of σ̂2

d (d = 1, . . . , p). We first show that
σ̂2

d is consistent. For the root-n consistent sequence of estimators λ0
dj/p

1/2, (d = 1, . . . , p; j =
1, . . . , k), Assumption A.5 in the main paper and the continuous mapping theorem imply that
if n→ ∞, n ≤ p→ ∞, and log p/n→ 0, then L0 = {Ω∗ + oP (1)}{Ω∗−1

Λ∗ + oP (1)}, where
convergence is element-wise, and

σ̂2
d ={1 + o(1)}

{
λ∗

T

d λ∗d + oP (1) − 2λ∗
T

d λ∗d + oP (1) + (Ω∗)dd + oP (1)
}

= − λ∗
T

d λ∗d + (Ω∗)dd + oP (1) = σ2∗
d + oP (1), (28)

which proves the consistency of σ̂2
d.

The asymptotic normality of σ̂2
d follows from Equation (5.19) and Exercise 5.20 in van der

Vaart (2000) because the objective for estimating σ̂2
d has two continuous derivatives with respect

to σ2
d for any Y and Λ.
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3·4. Lemma required to prove Theorem 3
We use the eigen decomposition of Y TY/n to impute Σ and Z in Equation (3) of the main

paper. Using the notation of Algorithm 1 in the main paper, impute Σ by Σ0 and Z by Z0 and let
y = vec(Y ), λ = vec(ΛT ), ϵ = vec(ET ), and X = Ip ⊗ Z0 ∈ ℜpn×pk. Then, the hierarchical
model for the joint distribution of y and λ after scaling Equation (3) in the main paper by p1/2 is

p−1/2y | λ ∼ Nnp(X p−1/2λ, p−1Σ0 ⊗ In),

λ | δ, ρ ∼ multiscale generalized double Pareto{α1(δ), . . . , αk(δ), p1/2η1(ρ), . . . , p1/2ηk(ρ)}.
(29)

The density of the prior for loadings that are estimated to be nonzero in M is∏
(d,j)∈M pgdP(λdj), where pgdP(·) is the density of the generalized double Pareto prior in Section

2.2 of the main paper. The log likelihood of λM given M is

log fG(y | λM) =
np log p

2
− np

2

∑p
d=1 log(Σ0)dd

p
− np

2
log 2π − 1

2

n∑
i=1

p∑
d=1

y2
id/(Σ

0)dd−

n

2

∑
(d,j)∈M

λ2
dj/(Σ

0)dd + n
∑

(d,j)∈M

λdjλ
0
dj/(Σ

0)dd (30)

and the log joint density of y and λM given M is

log f(y, λM | δ, ρ) = log fG(y | λM) +
∑

(d,j)∈M

log pgdP(λdj). (31)

The following lemma describes the order of log fG(y | λM) and log f(y, λM | δ, ρ) when λM
is replaced by a consistent estimator of λ∗M and n→ ∞, n ≤ p→ ∞, and log p/n→ 0.

LEMMA 2. If λ̃M and λ̂M are root-n consistent estimators of λ∗M and Assumptions A.0–A.7
in the main paper hold, then

2 log fG(y | λ̃M)/(np log p) = 2 log f(Y, λ̂M | δ, ρ)/(np log p) = 1 + oP (1).

Proof. We first show that

2 log fG(y | λ̃M)/(np log p) = 1 + oP (1).

Using (30), 2 log fG(y | λ̃M)/(np log p)

=1 − 1
log p

∑p
d=1 log(Σ0)dd

p
− log 2π

log p
− 1

log p

∑n
i=1

∑p
d=1 y

2
id/(Σ

0)dd

np
−∑

(d,j)∈M λ̃2
dj/(Σ

0)dd

p log p
+ 2

∑
(d,j)∈M λ̃djλ

0
dj/(Σ

0)dd

p log p

=1 − 1
log p

∑p
d=1 log(Σ∗)dd

p
+ oP (1) − o(1) − 1

log p

∑n
i=1

∑p
d=1 y

2
id/(Σ

∗)dd

np
OP (1)−∑

(d,j)∈M λ∗
2

dj /(Σ
∗)dd

p log p
OP (1) + 2

∑
(d,j)∈M λ2∗

dj /(Σ
∗)dd

p log p
OP (1),

where the last equality follows because (Σ0)dd and λ̃dj are consistent estimators of (Σ∗)dd

and λ∗dj (d = 1, . . . , p; j = 1, . . . , k). SinceE(y2
id) ≤ D0 andD1 ≤ (Σ∗)dd ≤ D2 (i = 1, . . . , n;
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d = 1, . . . , p) using Assumption A.1 in the main paper,
n∑

i=1

p∑
d=1

(Σ∗)−1
dd y

2
id/(np) = OP (1)

by an application of Markov’s inequality and

logD1 ≤
p∑

d=1

log(Σ∗)dd/p ≤ logD2,

0 ≤
∑

(d,j)∈M

(Σ∗)−1
dd λ

2∗
dj /(p log p) ≤ tr(Ω∗)/(D1p log p) ≤ D0/(D1 log p).

Therefore,

2 log fG(y | λ̃M,Σ0)
np log p

= 1 + oP (1) +
OP (1)
log p

+
OP (1)
log p

= 1 + oP (1).

Proceeding similarly,

2 log fG(y | λ̂M)
np log p

= 1 + oP (1)

using the consistency of λ̂M.
We complete the proof by showing that∑

(d,j)∈M log pgdP(λ̂dj)

np log p
= oP (1).

Using the analytic form of pgdP in (31),∑
(d,j)∈M

log pgdP(λ̂dj) =
∑

(d,j)∈M

log
αj

p1/2ηj
−

∑
(d,j)∈M

(αj + 1) log

(
1 +

|λ̂dj |
p1/2ηj

)
. (32)

The first term on the right hand side of (32) after scaling by np log p is

1
np log p

∑
(d,j)∈M

log
αj

p1/2ηj
=

1
p log p

∑
(d,j)∈M

[
logαj

n
−

log
{
(np)1/2ηj

}
n

+
log n
2n

]

= o(1)
|M |
p log p

= o(1)O(1) = o(1).

The last equality follows from Assumption A.5 in the main paper and using conditions that
|M | ≤ pk and k = O(log p). The second term on the right hand side of (32) after scaling by
np log p is

1
np log p

∑
(d,j)∈M

(αj + 1) log

(
1 +

|λ̂dj |
p1/2ηj

)
=

1
p log p

∑
(d,j)∈M

αj + 1
n1/2

log{(np)1/2ηj + n1/2λ̂dj}
n1/2

−

1
p log p

∑
(d,j)∈M

αj + 1
n1/2

{log (np)1/2ηj}
n1/2

=oP (1)
|M |
p log p

− o(1)
|M |
p log p

= oP (1).
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The last equality follows from Assumption A.5 in the main paper, from consistency of λ̂dj , and
using conditions that |M | ≤ pk and k = O(log p). The proof is completed by using (31) to
obtain that

2 log f(y, λ̂M | δ, ρ)
np log p

=
2 log fG(y | λ̂M)

np log p
+

2
∑

(d,j)∈M log pgdP(λ̂dj)

np log p
= 1 + oP (1).

3·5. Proof of Theorem 3
The proof consists of three steps: derive the asymptotic form of log πM; show that

−2 log πM/EBICγ(M) = 1 + oP (1); and show that the sufficient condition for model selection
consistency of EBICγ(M) holds under the assumptions of Theorem 3 in the main paper.

We use the following notation for ease of presentation. If B is a set of indices and X is a
matrix, then XB is a sub-matrix that contains columns of X with indices in B and XB,B is a
sub-matrix that contains rows and columns of X with indices in B.

Step 1. Using (29), the density of the prior for loadings that are estimated to be nonzero in M
is
∏

(d,j)∈M pgdP(λdj); see Section 3·4 also. Use the Gaussian scale mixture representation for
the density of generalized double Pareto prior to write |λdj | in form of differentiable functions
when λdj ̸= 0; see the equation for E-step in Section 4.4.1 of Armagan et al. (2013) for details
related to the Gaussian scale mixture representation for the generalized double Pareto density.
Define the diagonal matrix D as

D =
d2 log

{∏
(d,j)∈M pgdP(λdj)

}
dλMdλT

M
,

and let

D(d,j),(d,j) =
αj(δ) + 1

{p1/2ηj(ρ) + |λdj |}2

be the diagonal element of D corresponding to λdj such that (d, j) ∈ M. If f(y, λM | δ, ρ) is
the joint density of y and λM defined using (29), then define another diagonal matrix HM as

HM = −d
2 log f(y, λM | δ, ρ)

dλMdλT
M

= n(Σ0−1 ⊗ In)M,M −D. (33)

If ĤM represents HM in (33) evaluated at λ̂M, then the diagonal element of ĤM that corre-
sponds to the index (d, j) ∈ M is

n

σ20

d

− αj(δ) + 1

{p1/2ηj(ρ) + |λ̂dj |}2
=


n

σ2∗
d

{
1 + oP (n−1/2)

}
, (d, j) ∈ M∗,

n
σ2∗

d

{
1 + oP (n1/2)

}
, (d, j) /∈ M∗ .

(34)

The equality in (34) follows because λ̂dj = λ∗dj + oP (n−1/2), σ20

d = σ2∗
d + oP (n−1/2), and

αj(δ) = o(n1/2) from Theorem 2 in the main paper and Assumptions A.0–A.6 in the main paper.
The posterior probability of M, denoted as πM, equals

pr(M | Y, δ, ρ) ∝ m(Y | M) pr(M | δ, ρ), (35)

where m(Y | M) is the marginal likelihood of the factor model in (29) with the locations of
nonzero loadings contained in the set M,m(y | M) =

∫
f(Y, λM | δ, ρ) dλM, and pr(M | δ, ρ)
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is prior defined in Equation (9) in the main paper. Using Laplace approximation and (34),

2 logm(Y | M) = 2 log f(Y, λ̂M | δ, ρ) − |M| log n[1 + {c+ oP (log n)}/ log n], (36)

where c = log(2π) +
∑

(d,j)∈M σ2∗
d /|M | = O(1) using Assumption A.1 in the main paper.

Further, using (35),

−2 log πM = −2 logm(Y | M) − 2 log pr(M | δ, ρ).

Sterling’s approximation and Theorem 2 imply that log pr(M | δ, ρ) = −|M| log(pk){1 +
oP (1)}; therefore, the previous equation after using (36) reduces to

−2 log πM = −2 log f(Y, λ̂M | δ, ρ) + |M |{log n+ 2 log(pk)}{1 + oP (1)}. (37)

Step 2. The definition of EBICγ(M) in Chen & Chen (2008) for regression models implies
that

EBICγ(M) = −2 log fG(y | λ̃M) + |M | {log(np) + 2γ log(pk)} ,
= −2 log fG(y | λ̃M) + |M | {log n+ (2γ + 1) log p} {1 + oP (1)}, (38)

where λ̃dj is a root-n consistent estimate of λ∗dj (d = 1, . . . , p; j = 1, . . . , k) in (29), fG(y | λM)
is the Gaussian likelihood defined using (29), and 0 < γ < 1 is a tuning parameter such that
γ > 1 − 1/(2κ). Lemma 3·4 implies that there exists a universal constant b∗ such that

−2 log fG(y | λ̃M)/(np log p) = −2 log f(Y, λ̂M | δ, ρ)/(np log p) = b∗ + oP (1). (39)

Let r = −2 log πM/EBICγ(M). Then, Theorem 2 in the main paper and (39) imply that

r =
−2 log f(Y, λ̂M | δ, ρ)/(np log p) + |M |{log n+ 2 log(pk)}/(np log p){1 + oP (1)}
−2 log fG(y | λ̃M)/(np log p) + |M | {log n+ (2γ + 1) log p} /(np log p){1 + oP (1)}

=
b∗ + oP (1) + {|M∗ | + oP (1)}oP (1)
b∗ + oP (1) + {|M∗ | + oP (1)}oP (1)

= 1 + oP (1). (40)

Step 3. Let l be an upper bound on k∗ in (29) such that X ∈ ℜpn×pl. If (np)−1XTX has
positive eigen values for any l such that k ≤ l ≤ 2k, M ̸= M∗, and |M | ∈ {1, . . . , pk}, then
uniformly for any such M there is a universal positive constant C0 and a positive constant CM
depending on M such that

EBICγ(M) − EBICγ(M∗) ≥

{
C0 logn{1 + oP (1)}, M∗ ⊂ M,

CM log n, otherwise;
(41)

see the definition of asymptotic identifiability condition on pages 762–763 in Chen &
Chen (2008) and the proof of Theorem 1 in Chen & Chen (2008). Using (40) and (41),
2 log(πM∗/πM) = {EBICγ(M) − EBICγ(M∗)}{1 + oP (1)} → ∞ as n→ ∞ for any M such
that M ̸= M∗ and |M | ∈ {1, . . . , pk}. The proof is completed by showing (np)−1XTX has
positive eigen values for any l such that k ≤ l ≤ 2k. Assumption A.7 implies that Y TY/n has at
least 2k positive eigen values, so (np)−1XTX = Ip ⊗ (np)−1Z0T

Z0 = Ip ⊗ p−1Il, which has
pl positive eigenvalues equal to p−1 > 0 for any k ≤ l ≤ 2k.

4. MICROARRAY DATA ANALYSIS

The AGEMAP data (Zahn et al., 2007) were obtained from http://statweb.
stanford.edu/˜owen/data/AGEMAP/.
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The δ-ρ grid in expandable factor analysis had 20 different δ and 20 different ρ values:
δi = 10ai , where ai = log10 2 + (i− 1)(log10 10 − log10 2)/20 (i = 1, . . . , 20), and ρi = 10bi ,
where bi = log10 10−3 + (i− 1)(log 106 − log 10−3)/20 (i = 1, . . . , 20). Our estimation algo-
rithm estimated Λ at grid points (δr, ρs) (r = 1, . . . , 20; s = 1, . . . , 20). The results of our esti-
mation algorithm were stable in that the estimated rank of Λ was the same at most points on the
δ-ρ grid across 10 folds of cross-validation (Table 1).

Table 1: Estimated rank of loadings matrix in AGEMAP data analysis across δ-ρ grid. The re-
sults are averaged over 10 folds of cross-validation and the maximum Monte Carlo error is 0·52
across the 10 folds.

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 δ16 δ17 δ18 δ19 δ20

ρ20 10 10 10 10 10 10 10 9 9 8 8 7 7 7 6 6 6 6 6 5
ρ19 10 10 10 10 10 10 9 9 8 8 7 7 6 6 6 6 6 5 5 5
ρ18 10 10 10 10 9 9 8 8 7 7 6 6 6 6 6 5 5 5 5 4
ρ17 10 10 10 9 9 8 7 7 7 6 6 6 6 5 5 5 5 4 4 4
ρ16 10 10 9 8 8 7 7 6 6 6 6 5 5 5 4 4 4 4 4 4
ρ15 10 9 8 7 7 6 6 6 6 5 5 4 4 4 4 4 4 4 4 3
ρ14 8 7 7 6 6 6 6 5 4 4 4 4 4 4 4 4 3 3 3 3
ρ13 7 6 6 6 6 5 4 4 4 4 4 4 4 3 3 3 3 3 3 3
ρ12 6 6 5 4 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2
ρ11 5 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2
ρ10 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
ρ9 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
ρ8 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
ρ7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ρ6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 1: Density plots for the estimated factors in a test data for cerebrum tissue samples.
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Fig. 2: Density plots for the estimated factors in a test data for cerebellum tissue samples.

5. CODE FOR COMPETING METHODS

We used R package fanc to obtain the results for Hirose and Yamamoto’s method (Hirose et al.,
2015). Let Y ∈ ℜn×p be the simulated data matrix. The following R code was used to estimate
the loadings matrix, ΛHY , and its rank, rHY , using Hirose and Yamamoto’s method:

1. nfactor = 20; tol = 1e-5
2. ctrl = list(length.rho = 20, length.gamma = 20, maxit.em = 1000, maxit.cd = 1000, tol.cd =

tol, tol.em = tol)
3. fancfit = fanc(Y , factors = nfactor, control = ctrl, normalize = FALSE)
4. idx = which(fancfit$BIC == min(fancfit$BIC), arr.ind = TRUE)[1, ]
5. fancout = out(fancfit, rho = fancfit$rho[idx[1]], gamma = fancfit$gamma[idx[2]])
6. fancLoad = as.matrix(fancout$loadings)
7. fancIdx = which(colSums(abs(fancLoad)) > 0)
8. rHY = length(fancIdx)
9. ΛHY = as.matrix(fancLoad[ , fancIdx])

We used R package PMA to obtain the results for Witten et al.’s method (Witten et al., 2013).
Let Y ∈ ℜn×p be the simulated data matrix. The following R code was used to estimate the
loadings matrix, ΛW , and its rank, rW , using Witten et al.’s method:

1. nfactor = 20
2. spccv = SPC.cv(Y )
3. spcfit = SPC(Y , K = nfactor, sumabsv = spccv$bestsumabs)
4. rW = which(diff(spcfit$prop.var.explained) < 0.05)[1]
5. spcLoad = spcfit$v * matrix(sqrt(spcfit$d), nrow = ndim, ncol = length(spcfit$d), byrow =

TRUE)
6. ΛW = spcLoad[ , 1:rW ]

The R function FACTOR ROTATE implemented the first version of Ročková and George’s
method in Table 1 of Ročková & George (2016). It also had an option for varimax rotation
of the loadings matrix in the second version of Ročková and George’s method. The R code
was provided to us by Veronika Ročková. There were two tuning parameters in Ročková and
George’s method: λ0 and λ1. We used λ1 = 0.001 and λ0 = 30 for both versions of Ročková
and George’s method. These choices were based on the empirical results reported in Ročková
& George (2016). Let Y ∈ ℜn×p be the simulated data matrix. The following R code was used
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to estimate the loadings matrix, ΛRG, and its rank, rRG, using the first version of Ročková and
George’s method:

1. n = nrow(train); G = ncol(train); p = 10; K = 20; alpha = 1/G; epsilon = 0.05
2. lambda1 = 0.001; startB = matrix(rnorm(G*K),G,K)
3. start = list(B = startB, sigma = rep(1,p), theta = rep(0.5, K))
4. lambda0 = 5; result 5 = FACTOR ROTATE(Y , lambda0, lambda1, start, K, epsilon, alpha,

TRUE, TRUE, 100, 0)
5. lambda0 = 10; result 10 = FACTOR ROTATE(Y , lambda0, lambda1, result 5, K, epsilon,

alpha, TRUE, TRUE, 100, 0)
6. lambda0 = 20; result 20 = FACTOR ROTATE(Y , lambda0, lambda1, result 10, K, epsilon,

alpha, TRUE, TRUE, 100, 0)
7. lambda0 = 30; result 30 = FACTOR ROTATE(Y , lambda0, lambda1, result 20, K, epsilon,

alpha, TRUE, TRUE, 100, 0)
8. rRG = sum(colSums(abs(result 30$B)) > 0)
9. ΛRG = result 30$B[, rev(order(sqrt(colSums((result 30$B)2))))]

The following R code was used to estimate the loadings matrix, ΛRG+, and its rank, rRG+, using
the second version of Ročková and George’s method:

1. n = nrow(train); G = ncol(train); p = 10; K = 20; alpha = 1/G; epsilon = 0.05
2. lambda1 = 0.001; startB = matrix(rnorm(G*K),G,K)
3. start = list(B = startB, sigma = rep(1,p), theta = rep(0.5, K))
4. lambda0 = 5; result 5 = FACTOR ROTATE(Y , lambda0, lambda1, start, K, epsilon, alpha,

TRUE, TRUE, 100, 1)
5. lambda0 = 10; result 10 = FACTOR ROTATE(Y , lambda0, lambda1, result 5, K, epsilon,

alpha, TRUE, TRUE, 100, 1)
6. lambda0 = 20; result 20 = FACTOR ROTATE(Y , lambda0, lambda1, result 10, K, epsilon,

alpha, TRUE, TRUE, 100, 1)
7. lambda0 = 30; result 30 = FACTOR ROTATE(Y , lambda0, lambda1, result 20, K, epsilon,

alpha, TRUE, TRUE, 100, 1)
8. rRG+ = sum(colSums(abs(result 30$B)) > 0)
9. ΛRG+ = result 30$B[, rev(order(sqrt(colSums((result 30$B)2))))]

The complete R code used for data analysis, including the code for FACTOR ROTATE func-
tion, are available online.
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