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Supplemental	Materials	and	Methods	
Animal	experiments	
8-14	 weeks	 old	 C57Bl/6	 mice	 have	 been	 purchased	 from	 Charles	 River	 Laboratory.	
Bmal1	 KO	mice	 have	 been	 previously	 described	 (Jouffe	 et	 al.	 2013).	Without	 further	
indications,	mice	are	kept	under	12	hours	 light/12	hours	dark	 regimen	and	ad	 libitum	
feeding.	All	animal	care	and	handling	was	performed	according	to	the	Canton	de	Vaud	
(Fred	Gachon,	authorization	no	VD	2720)	laws	for	animal	protection.	
	
RNA-seq	experiments	
To	complement	the	mouse	liver	WT	and	Bmal1	KO	RNA-seq	data	(GSE73554)	(Atger	et	
al.	 2015),	 transcriptomes	 of	 kidneys	 from	 Bmal1	 KO	 and	 WT	 littermates	 (12	 hours	
light/12	 hours	 regimen;	 night-restricted	 feeding)	 were	measured	 from	 polyA-selected	
mRNA	using	single-end	reads	of	length	100.	mRNA	levels	were	quantified	using	kallisto	
version	0.42.4	(mm10)	(Bray	et	al.	2015)	.	
	
Chromatin	conformation	experiments	
Liver	and	kidney	extraction	
C57Bl/6	mice	were	 sacrificed	at	 ZT08	and	ZT20	 to	extract	 liver	 and	kidneys.	 Liver	 and	
kidney	nuclei	were	prepared	as	previously	described	(Ripperger	and	Schibler	2006)	with	
some	 minor	 changes.	 In	 brief,	 liver	 and	 kidneys	 from	 individual	 animals	 were	
homogenized	and	 fixed	 in	4ml	of	PBS	 including	1.5	%	 formaldehyde	 for	10	minutes	at	
room	temperature.	Cross-linking	reaction	was	stopped	by	adding	25	ml	of	ice-cold	stop	
reaction	buffer	 (2.2	M	sucrose;	150	mM	glycine;	10	mM	HEPES	pH	7.6;	15	mM	KCl;	2	
mM	EDTA;	0.15	mM	spermine;	0.5	mM	spermidine;	0.5	mM	DTT;	0.5	mM	PMSF)	to	the	
homogenates	and	kept	5	minutes	on	ice.	Homogenates	were	then	loaded	on	top	of	10	
ml	cushion	buffer	(2.05	M	sucrose;	10	%	glycerol;	125	mM	glycine;	10	mM	HEPES	pH	7.6;	
15	mM	KCl;	2	mM	EDTA;	0.15	mM	spermine;	0.5	mM	spermidine;	0.5	mM	DTT;	0.5	mM	
PMSF)	and	centrifuged	for	45	minutes	at	105	g	at	4°C.	Nuclei	were	washed	twice	in	PBS	
and	immediately	frozen.	
4C-sequencing	assay	
4C-seq	assays	were	performed	as	in	(Gheldof	et	al.	2012).	Nuclei	were	resuspended	in	1	
ml	of	a	buffer	containing	10	mM	Tris-HCL	pH	8.0;	10	mM	NaCl;	0.2	%	NP-40;	1X	protease	
inhibitor	cocktail,	(cOmplete,	Mini,	EDTA-free	Protease	Inhibitor	Cocktail,	Sigma-Aldrich)	
kept	 for	 15	 minutes	 on	 ice	 and	 washed	 twice	 with	 1X	 DpnII	 buffer	 (New	 England	
Biolabs).	 Approximately	 30-million	 nuclei	 were	 resuspended	 in	 1X	 DpnII	 buffer	 (New	
England	Biolabs)	containing	0.1	%	SDS	and	 incubated	at	65°C	for	10	minutes.	Triton	X-
100	was	added	to	1	%	final	concentration.	Chromatin	was	digested	overnight	with	400	U	
DpnII	 (New	 England	 Biolabs)	 at	 37°C	 with	 shaking.	 Digestion	 was	 inactivated	 by	
incubation	at	65°C	for	30	minutes	in	presence	of	2	%	SDS	(final	concentration).	Digestion	
efficiency	was	evaluated	both	by	DNA	visualization	on	agarose	gel	and	by	quantitative	
PCR	using	primer	pairs	covering	multiple	restriction	sites	(Hagège	et	al.	2007).	Samples	
presenting	 reasonable	digestion	efficiency	 (greater	 than	65	%)	were	 then	 ligated	with	
3000	U	of	T4	DNA	ligase	(New	England	Biolabs)	in	8	ml	final	volume	for	4	hours	at	16°C,	
plus	1	hour	at	room	temperature.	Cross-linking	reaction	was	reverted	by	addition	of	50	
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μl	 (10	 mg/ml)	 proteinase	 K	 and	 incubation	 over-night	 at	 65°C.	 DNA	 was	 purified	 by	
multiple	phenol/chloroform	extractions	and	resuspended	in	TE	buffer	pH	8.0	containing	
RNase	A	and	incubated	30	minutes	at	37°C.	Ligation	efficiency	was	evaluated	by	loading	
DNA	 ligated	 products	 on	 an	 agarose	 gel.	 Libraries	 were	 digested	 with	 NlaIII	 (New	
England	 Biolabs)	 overnight	 at	 37°C	 and	 digestion	 controlled	 by	 visualization	 on	 an	
agarose	gel.	After	heat	inactivation,	digested	products	were	ligated	with	2000	U	T4	DNA	
ligase	 (New	 England	 Biolabs)	 for	 4	 hours	 at	 16°C	 in	 14	 ml	 final	 volume.	 Circularized	
products	were	purified	and	resuspended	 in	TE	buffer	pH	8.0.	600	ng	4C	 template	was	
used	 for	 PCR	 amplification	 using	 Sigma-Aldrich	 Long	 Template	 PCR	 System	 with	 bait	
specific	inverse	primers	conjugated	to	Illumina	sequencing	adaptors	(primer	sequences	
listed	 in	 Supplemental	 Table	 S5a)	 in	 a	 final	 volume	 of	 50	 μl	 in	 the	 following	 PCR	
program:	2	min	94°C,	 followed	by	30	cycles	of	15	sec	at	94°C,	1	min	at	55°C,	3	min	at	
68°C,	final	extension	7	min	at	68°C.	PCR	were	performed	in	parallel	reactions	as	6	x	100	
ng	template	for	each	sample.	PCR	products	were	purified	with	AMPure	XP	beads	system	
(Beckman	 Coulter)	 and	 amplification	 profiles	 analysed	 by	 fragment-analyser	 and	 then	
sequenced	on	 Illumina	HiSeq	2000	machines	using	single	end	100	bp	read	 length.	PCR	
products	from	2	animals	were	pooled	together,	resulting	in	the	sequencing	of	2	pooled	
samples.		
Mapping	of	4C-seq	data	
4C-seq	data	were	demultiplexed	and	mapped	to	 the	mouse	genome	(mm9)	using	HTS	
station	(http://htsstation.epfl.ch).	
Normalization	and	locally	weighted	linear	regression	
Raw	read	counts	for	each	sample	were	normalized	by	library	size	by	the	sum	of	the	read	
counts	on	 the	cis-chromosome	(excluding	10	 fragments	around	the	bait).	Read	counts	
were	log-transformed	using	the	formula:	

𝑌 = log!"
𝑐
𝑝 + 1 	

where	p=500,	the	pseudocount.		
	
A	weighted	linear	model	was	then	fit	locally,	using	a	Gaussian	window	(σ! = 2500	bp)	
centered	on	the	fragment	of	interest.	For	each	position,	nearby	4C-seq	signals	(Y)	were	
modeled	with	fragment	effects	a!	and	condition	effects	b!	(which	can	be	time,	tissue,	or	
genotype).	In	LWMR,	these	parameters	are	estimated	by	minimizing	the	weighted	sum	S	
of	squared	residuals	across	replicates	r:	
S = argmin!,! W!,! Y!,!,! − a! − b!

!
!,!,! , with	 weights	 	 W!,! 	are	 defined	 as	 W!,! =

w!,!×w!,!,	where w!,!	is	the	Gaussian	smoothing	kernel	at	position	i,	and	w!,!	a	condition	
weight	 based	 on	 the	 number	 of	 samples	 with	 non-zero	 counts	 on	 fragment	 i.	
Specifically,	we	used	w! = (0.5, 1.5, 2.5)	for	fragments	with	(0, 1, 2)	replicates	showing	
non-zero	counts,	which	down	weighs	positions	with	high	dropout	rates.	
	
To	 estimate	 statistically	 significance	 for	 differential	 contacts	 (liver	 vs	 kidney),	 we	
propagated	the	estimated	uncertainty	(standard	errors	for	locally	weighted	regression)	
in	the	corresponding	b’s		to	calculate	Z-scores,	and	used	regularized	t-statistics	with	N	–	
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p,	degrees	of	freedom	(DOF,	N	is	number	of	data	points	within	window,	p	is	number	of	
parameters).	For	each	set	of	samples,	we	computed	the	regularized	residual	variance	as	

 σ 
! = σ 

! + σ!"#! exp − !
!!

	with	σ 
!	the	 estimator	 of	 the	 squared	 residuals,	 and	b	the	

estimated	 signal	 across	 samples	 and  b!= log!"(2 ).	 	σ!"!! 	prevents	 artificially	 small	
variance	from	positions	of	high	dropout	rates,	and	is	estimated	from	the	distribution	of	
σ 
!	across	all	fragments.	σ!"# was	0.08,	0.02,	0.015,	0.018,	and	0.006	for	Mreg,	Slc44a1,	

Pik3ap1,	Slc45a3-short,	and	Slc45a3-long,	respectively	(same	units	as	Y).	
	
	
Analysis	of	Publicly	Available	Datasets	
	
Atlas	of	Circadian	Gene	Expression	
Raw	Processing	
Microarray	 .CEL	 files	 and	RNA-seq	 fastq	 files	were	downloaded	 from	Gene	Expression	
Omnibus	 database	 (GSE54652)	 (Zhang	 et	 al.	 2014).	 Microarray	 data	 were	 processed	
using	 the	 RMA	 method	 implemented	 by	 the	 oligo	 R	 package	 (Release	 3.4)	 with	
background	correction	and	quantile	normalization	(Carvalho	and	Irizarry	2010).	RNA-seq	
fastq	files	were	mapped	to	the	mouse	genome	(mm10)	using	STAR	(Version	2.4.0)	and	
normalized	counts	were	calculated	using	DESeq2	 (Dobin	et	al.	2013;	 Love,	Huber,	and	
Anders	2014).	Quantification	of	transcript-level	expression	was	calculated	using	kallisto	
(version	0.42.4)	(Bray	et	al.	2015).	We	removed	WFAT	from	downstream	analysis	due	to	
concerns	with	 contamination	with	 adjacent	 epididymal	 tissue	 because	 GO	 analysis	 of	
variable	 genes	 in	 WFAT	 showed	 enrichment	 of	 epididymal	 tissue	 function	 and	 this	
temporal	variance	did	not	have	rhythms	of	24	hours	of	in	other	harmonics.	
Merging	Microarray	and	RNA-seq	
Since	microarray	 data	 and	 RNA-seq	 data	 came	 from	 the	 same	 biological	 samples,	we	
integrated	the	microarray	and	RNA-seq	data	together	by	modeling	the	background	level	
and	 saturation	 level	 of	microarray	 probes	 using	 a	 nonlinear	model.	We	modeled	 the	
microarray	signal	M	as	a	function	of	the	RNA-seq	signal	R	with	a	background	level	b,	a	
maximum	saturation	level	s,	and	a	parameter	K	 indicating	the	RNA-seq	signal	at	which	
the	microarray	signal	is	at	its	midpoint	(s	+	b)	/	2:	
	

𝑀 = 𝑏 +
𝑠𝑅

𝐾 + 𝑅 + 𝑛𝑜𝑖𝑠𝑒.	
	
We	used	microarray	and	RNA-seq	data	 from	8	 technical	 replicates	 (CT22,	CT28,	CT34,	
CT40,	CT46	CT52,	CT58,	CT64)	across	all	12	tissues	to	fit	our	model.	We	fit	the	function	
using	weighted	 nonlinear	 regression,	with	weights	 estimated	 from	 a	 LOESS	 fit	 on	 the	
variance	 and	 mean	 microarray	 signal	 for	 each	 gene	 across	 12	 time	 points.	 We	
constrained	b	and	s	such	that	adjusted	values	were	not	too	close	to	the	background	or	
saturation	levels,	which	would	become	sensitive	to	noise;	𝑏!"# = 0.8min 𝐸! , 𝑠!"# =
1.2max(𝐸!).	
Nuclear	Proteomics	
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Processed	 nuclear	 proteomics	 data	 of	 WT	 liver	 along	 the	 circadian	 cycle	 was	
downloaded	from	Supplemental	Table	S1	of	Wang	et	al.	2016.	
	
ENCODE	DNase	I	Hypersensitivity	Assays	
Raw	Processing	
FASTQ	 files	 of	 liver	 and	 kidney	 DNAse-seq	 was	 downloaded	 from	 the	mouse	 encode	
project	(https://www.encodeproject.org)	(Yue	et	al.	2014)	and	mapped	to	the	mouse	
genome	(mm9)	and	the	signal	was	binned	in	500	bp	windows	across	the	genome.	Each	
isogenic	replicate	was	assessed	for	quality	by	distribution	of	the	log	signal.	We	kept	only	
samples	 that	 showed	 clear	 bimodal	 distribution	 in	 the	 binned	 log	 signal	 and	merged	
replicates	together	for	downstream	analysis	(Supplemental	Table	5b).		
Post	Processing	
The	binned	log	DHS	signal	was	converted	to	a	z-score.	A	peak	was	specific	to	the	liver	if	
the	zscore_liver	>	3	and	zscore_kidney	<	0.	
	
ChIP-exo	data	
FASTQ	 files	 from	 ChIP-exo	 data	 targeting	 FOXA2,	 ONECUT1,	 and	 REV-ERBα	 were	
downloaded	 from	 data	 repositories	 GSE57559	 (GEO),	 PRJEB4933	 (ENA),	 GSE67973	
(GEO),	respectively	and	mapped	to	mouse	genome	(mm9).	Normalized	bigwig	files	were	
visualized	on	UCSC	track.		
	
Data	Analysis	
Model	selection	(MS)	method	
We	 enumerated	 possible	multiple	 harmonic	 regression	models	 to	 identify	 rhythms	 in	
multiple	 tissues	 or	 genotypes	 and	 penalized	 models	 by	 model	 complexity.	 For	 each	
condition,	 the	 log	 mRNA	 abundance	 was	 fit	 with	 either	 a	 flat	 model	 or	 a	 rhythmic	
model:		
	

𝑌!,! 𝑡 = 𝜇!,! + 𝜖	
𝑌!,! 𝑡 = 𝜇!,! + 𝛽!!,! cos 𝜔𝑡 +  𝛽!!,! sin 𝜔𝑡 + 𝜖	

	
Importantly,	 we	 allowed,	 for	 each	 model,	𝑌 = 𝑋! 𝛽! + 𝜖,	 the	 possibility	 for	 rhythmic	
parameters	 in	 different	 conditions	 to	 be	 shared.	We	 used	 a	 g-prior	 for	 the	 rhythmic	
parameters	𝛽	(Liang	et	al.	2008),	
	

𝛽~ 𝑁(0,𝑔𝜎!(𝑋!𝑋!!)	
which	allows	the	marginal	likelihood	of	the	gene	expression	E	given	the	model	M	to	be	
expressed	in	closed	form	and	the	Bayes	factor	K	can	be	expressed	as:	

𝐾 𝑀! |𝑔 =
1+ 𝑔

!!!!!!
!   

1+ 𝑔 1− 𝑅!
!!!
!
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Where	𝑅! is	 the	 coefficient	 of	 determination.	 We	 used	 a	 biased	 estimator	 of	 the	
variance	𝜎! = !""

!
	where	𝑅𝑆𝑆 is	 the	 residual	 sum	 of	 squares.	 The	 parameter	 g,	 which	

controls	the	spread	of	the	prior	over	the	models,	was	set	to	g=1000.		
	
The	 liver	 and	 kidney	 RNA-seq	 dataset	 consisted	 of	 4	 conditions	 (WT	 liver,	 Bmal1	 KO	
liver,	WT	kidney,	Bmal1	KO	kidney),	which	allow	52	possible	rhythmic	combinations.	For	
every	 gene,	 we	 assigned	 a	 probability	 for	 each	 of	 the	 52	 models.	 The	 number	 of	
rhythmic	 combinations	 k	 scales	 as	 a	 function	 of	 the	 number	 of	 conditions	 n	 as	
𝑘(𝑛) = 𝐵!!!	where	B	is	the	Bell	number	used	in	combinatorial	mathematics.		
	
In	 the	 11	 tissues	 dataset,	 we	 reduced	 the	 initial	 number	 of	 possible	 models	 from	
4213597	 to	 700075	 by	 restricting	 the	models	 to	 have	 up	 to	 3	 independent	 rhythmic	
parameters,	which	can	be	shared	amongst	the	11	tissues.	We	used	g=1000	and	used	an	
amplitude	 cutoff	 of	 0.15	 to	 assign	 low	 amplitude	 rhythms	 as	 nonrhythmic.	 Assigning	
each	gene	to	one	of	700075	models,	3919	models	contained	at	least	one	gene.	
	
To	 label	 tissue-wide	 rhythmic	 transcripts	 as	 clock	 or	 system-driven	 (Figure	 2C),	 we	
assigned	genes	that	were	rhythmic	in	Bmal1	KO	as	system-driven	and	genes	that	were	
rhythmic	in	WT	only	as	clock-driven.	One	exception	were	genes	that	oscillated	in	Bmal1	
KO	but	with	 low	amplitudes	compared	to	WT,	which	we	assigned	as	clock-driven	 (e.g.	
Npas2).	
	
Complex	singular	value	decomposition	(SVD)	representation	of	gene	and	tissue	module	
Gene	 expression	 over	 time	 and	 across	 tissues	 can	 be	 represented	 as	 a	 3-dimensional	
array.	However,	since	SVD	of	a	tensor	does	not	have	all	the	properties	of	a	matrix	SVD,	
we	 first	 transformed	 the	 time	 domain	 to	 the	 frequency	 domain	 corresponding	 to	 24-
hour	rhythms	for	all	genes	g	and	conditions	c:	

 𝐸!,! = 𝐸!,!,!𝑒!"#

!∈!

	

where	𝐸!,! 	is	a	complex	value	 representing	 the	amplitude	and	phase	of	expression	 for	
gene	g	in	condition	c	and 𝜔 = 2𝜋/24.	
The	 resulting	matrix	 was	 decomposed	 using	 SVD	 and	 the	 first	 left	 -and	 right-singular	
values	were	visualized	in	separate	polar	plots.	To	ensure	the	first	component	recovered	
most	of	the	original	signal,	the	SVD	representation	was	performed	separately	for	each	
gene	module	identified	by	model	selection.		
	
Predicting	Activities	of	Transcriptional	Regulators	
Predictions	of	transcription	factor	binding	site	(TFBS)	
For	TFBS	predictions	near	promoters,	we	used	motevo	version	1.03	(Arnold	et	al.	2012)	
to	scan	+/-	500	bp	around	the	promoter.	We	used	promoters	(Balwierz	et	al.	2009)	and	
weight	matrices	of	transcription	factors	defined	by	SwissRegulon	(Pachkov	et	al.	2013)	
(http://swissregulon.unibas.ch/fcgi/sr/downloads).For	 distal	 regions,	 we	 scanned	 the	
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genome	for	TFBSs	in	500	bp	windows	in	genomic	regions	within	40	kb	of	an	annotated	
gene.	
Penalized	regression	model	
We	applied	a	penalized	regression	model	as	previously	described	(Balwierz	et	al.	2014)	
using	 an	 L2	 penalty	 for	 penalization,	 which	 allows	 a	 direct	 estimate	 of	 the	 standard	
deviation.	 Rhythmic	 activities	 of	 transcription	 factor	 motifs	 were	 summarized	 using	
complex-valued	 singular	 value	 decomposition.	 We	 projected	 the	 activities	 to	 an	
amplitude	 and	 phase	 and	 calculated	 the	 zscore	 of	 the	 amplitude.	 We	 considered	
activities	with	zscore	>	1.25	as	rhythmic	TF	activities.	Time	of	peak	temporal	activities	of	
transcription	factors	were	subtracted	by	3	hours,	to	account	for	an	average	3	hour	shift	
between	peak	transcription	and	peak	mRNA	accumulation	(Le	Martelot	et	al.	2012).	
Enrichment	of	pairs	of	motifs	
We	applied	log-linear	models	to	test	for	statistical	significance	between	pairs	of	motifs	
across	rhythmic	versus	nonrhythmic	modules.	For	each	motif,	we	ordered	DHS	sites	by	
the	posterior	sitecount	of	the	motif	(decreasing	order)	and	considered	the	motif	to	be	
present	 in	 the	 DHS	 site	 if	 the	 sitecount	 was	 in	 the	 top	 300	 (Myšičková	 and	 Vingron	
2012).	We	considered	liver-specific	DHS	sites	that	were	annotated	to	a	clock-dependent	
liver-rhythmic	 gene	or	 to	 a	nonrhythmic	 gene.	 For	 each	annotated	 label	 and	 for	 each	
pair	 of	motifs,	we	 constructed	a	 2	by	2	 contingency	 table	by	 counting	 the	number	of	
DHS	 sites	 that	 contain	 one	 of	 the	 motifs,	 both	 motifs,	 or	 none,	 resulting	 in	 a	 3-way	
contingency	 table	 (motif	 1,	 motif	 2,	 and	 annotated	 label).	We	 assessed	 whether	 the	
resulting	contingency	 table	was	 statistically	 significant	 to	a	null	model,	where	 the	null	
model	was	 the	expected	 counts	 if	 the	pair	 of	motifs	were	 jointly	 independent	on	 the	
rhythmicity.	
	
Functional	Analysis	by	GO	terms	
We	used	Fisher’s	exact	test	to	assess	statistical	significance	of	gene	enrichment	for	each	
GO	 term.	 Foreground	 genes	 were	 genes	 with	 phases	 within	 6	 hours	 window	 (e.g.,	
phases	 between	 ZT0	 to	 ZT6).	 Background	 genes	 were	 all	 genes	 assigned	 to	 a	 model	
(above).	For	each	GO	term,	we	slid	 the	6-hour	window	with	a	step	size	of	1	hour	and	
calculated	 the	p-value	at	 every	hour	of	 the	day.	GO	 terms	were	 chosen	by	 visualizing	
statistically	 significant	GO	 terms	 in	 the	 directed	 acyclic	 graph	 and	 choosing	GO	 terms	
that	were	comparably	deep	in	the	tree.		
	
Alternative	promoter	analysis	
Abundances	of	transcripts	(quantified	by	kallisto)	with	overlapping	5’UTRs	were	merged	
together	as	a	single	transcript,	 loosely	defining	them	as	having	a	"common	promoter”.	
For	each	gene,	we	compared	alternative	promoter	usage	between	rhythmic	tissues	and	
nonrhythmic	 tissues	 by	 calculating	 the	 Euclidean	 distance	 in	 n-dimensional	 space	
defined	by	the	number	of	transcripts	n	with	nonoverlapping	5’UTRs.	
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