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Supplement

Supplemental text, figures, and tables.

S1 Supplemental Text

Calculating Read Depth

We used sequencing data from a recent study of single nucleotide polymorphisms in geo-

graphically widespread freshwater and marine stickleback populations (Jones et al. 2012b).

The reads are single-end and 36bp in length. We mapped these reads to the stickleback

reference genome (Jones et al. 2012b) with BWA (Li and Durbin 2010). Reads that could

not be uniquely mapped to the genome were randomly placed at one of the top scoring lo-

cations. We counted matches and mismatches towards read depth at a given base position,

but alignment gaps in the read or reference were not counted towards read depth.

Model notation

• i = index over all base positions in the genome

• s = the number of samples

• n = index over samples such that n ∈ {1, 2, · · · , s− 1, s}

• k = length of read

• j = index over all reads that could cover a base position, j ∈ {1, 2, · · · , k − 1, k}

• r = (r1, r2, · · · , rs) = the total number of reads used to sequence each sample

• d = (d1, d2, · · · , ds) = the read depth for each sample at a base position. Each base

position will have a separate instance of d.
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• t = total number of positions in the genome where a k-mer could begin (approximately

the size of the genome assembly)

• b = (b1, b2, · · · , bk) = the number of times each k-mer that overlaps a base position

appears elsewhere in the genome. Each base position in the genome will have a separate

instance of b.

• G = a matrix of correction factors for how likely a k-mer is to appear as a sequencing

read based on GC content. Gnj is the GC correction for the jth read that overlaps a

base position for sample number n. Each base position has its own G matrix.

Definition of model states

The transducer has 25 states representing all combinations of canonical copy numbers for

the two sample groups (named marine and freshwater in this study): homozygous deletion,

heterozygous deletion, consistent with reference, heterozygous duplication, homozygous du-

plication (Figure 2). We denote these 25 states as ψm,f , where m represents the canonical

copy number of marine fish m ∈ {0, 1, 2, 3, 4} and f represents that of the canonical freshwa-

ter fish f ∈ {0, 1, 2, 3, 4}. Each state can be parameterized by: a vector c that is comprised

of the copy number for each sample such that cn = {m, f}, a vector r, which contains the

total number of reads for each sample, and a value t that holds the number of positions in

the genome where a read of length k could begin: ψm,f = (c, r, t).

The transducer has both input tapes, x, and output tapes, y. xi is a tuple of length

s · k + k representing the values in all the input tapes at base i. Of these input tapes, k

are used to encode b for each base and s · k are used to encode G for each base. A single

position in the output tapes yi uses s tapes to encode a tuple representing d for each base.

Each state ψm,f has a set of emission probabilities. The probability of emitting the entire

column of depths d encoded by yi can be expressed as the joint probability of emitting each
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depth individually.

Pr(yi|xi, ψm,f ) =
s∏

n=1

Pr(dn|xi, ψm,f ) (S1)

The read depth for each sample is modeled using the binomial distribution, which has

parameters for the number of trials and the probability of success in each trial. The number

of trials is different for each sample and is equal to the number of mapped reads for that

sample, rn. The probability of success, pn, is the chance that a randomly chosen read

will cover the base of interest. The equation for pn is described in detail leading up to

equation Equation (6), but with the current annotation can be written as follows:

pn =
k∑

j=1

1
2
· cn + (bj + 0.01)

t
· 1

(bj + 0.01) + 1
· gnj (S2)

The number of trials for the binomial is equal to the number of mapped reads for the

sample, and the probability of the entire tuple of depths being emitted is the joint probability

of the depth for each sample.

Pr(yi|xi, ψm,f ) =
s∏

n=1

Binom(trials = rn, p = pn) (S3)

Simulating main data set

For understanding mismapping probabilities, optimizing model parameters, and quantifying

model performance, we repeatedly simulated data analogous to our main data set. We used

the stickleback genome assembly as the ancestral state and evolved this sequence, using

only substitutions, to recapitulate the divergences seen in our data set. To estimate the

probability of mismapping or false positives with the model, we mutated the genomes no

further. However, to assess the model’s ability to detect consistent copy number differences

between marine and freshwater genomes, we created 1000 randomly placed deletions or
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duplications of lengths between 30bp and 2500bp in all freshwater or marine genomes. We

then simulated reads from each of the 21 evolved genomes with ART (Huang et al. 2012),

using the default parameters specific to Illumina sequencing technology. The reads were

36 bases long and were mapped to the genome with BWA (Li and Durbin 2010). To have

the same coverage, we then downsampled the number of mapped reads for each of the 21

libraries to match the number of mapped reads in our sample for that individual.

To estimate the mapping and mismapping rates in our data set we calculated the fraction

of mapped reads that mapped back to either the same locus from which they were created

(0.91), or a location different from which they were created (0.09).

Optimizing transition probabilities

Even though we allow all states to transition to all other states, we have reduced the number

of free parameters in the model to 14. We will first describe the transition parameters out of

the state consistent with the reference genome, ψ2,2 (Figure 2). We have a similar number of

samples for marine and freshwater populations so we use the same transition probabilities to

state ψx,y as we do to ψy,x. This reduces the number of free parameters describing transitions

to off diagonal states from 20 to 10. We then have four other states on the diagonal (ψ0,0,

ψ1,1, ψ3,3, and ψ4,4), which gives us 14 free parameters. The self-transition to state ψ2,2 is not

free because the probabilities must sum to one. We use the same parameters for transitioning

out of the models start state.

We then use the same 14 parameters to define the transitions from an off-diagonal state

without introducing any new variables. From an off-diagonal state we expect the model to

stay in a state for 50bp, which defines the self-transition probability ( 1
50

). We then use the 14

already defined parameters as weights to define the remaining transition probabilities from

an off-diagonal state to any of the other states.

We simulated data sets in order to calculate the transducer’s ability to detect copy
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number variation correlated with the ecological variable of marine or freshwater habitat

while constraining the expected number of false positives to be less than or equal to 0.2 for a

genome-wide analysis. To understand the expected number of false positives, we simulated a

data set analogous to the actual data set, but with no copy number variation (see Simulating

main data set). We did this for five different simulated data sets lacking copy number

variation and only considered parameter sets that had zero or one false positives cumulatively

across these five data sets.

Staying within the set of parameters that satisfies the constraint on false positives, we

maximized the number of true positives detected in the simulated data sets. Similar to

how we generated the data sets with no copy number variation, we generated data sets with

known copy number variation by making deletions or duplications across all simulated marine

or freshwater genomes (see Simulating main data set). We made 1000 of these mutations

across the genome of various lengths (30bp, 50bp, 100bp, 150bp, 200bp, 300bp, 400bp,

500bp, 750bp, and 1000bp). We then maximized the area under the curve (AUC) for the

length of the mutation versus sensitivity functions while maintaining an expectation of 0.2

false positives or less. To maximize the AUC we randomly selected a transition penalty and

adjusted it up or down by 10 (in log space). If the new parameterization had a greater AUC

and did not return more than one false positive on the five data sets with no copy number

variation, this adjustment was accepted and otherwise rejected. This search repeated until

convergence. Evaluating the sensitivity of the model and verifying that the false positive

rate in the absense of copy number variation is less than or equal to 0.2 was performed on

similated data sets that were generated with the same methods as the training data, but had

not previously been seen by the transducer (Figure 3). These parameters that were learned

on the training data sets and evaluated on the test data sets are the same parameters used

in the true data set of sequenced stickleback fish.

New parameterizations should be used for entirely new data sets, but small changes to
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the data set such as using different read mapping software or adding an individual to a group

should not require a new parameter search (Figure S4).

Binomial Mixture Model

A strength of the described method is that we do not expect the same distribution of read

depths for every base; we tailor the distribution to the uniqueness and GC-content of reads

that would cover the base. However, to compare to other methods that look at coverage over

large regions, we expect the read depth to follow a mixture model where each base position

contributes an equally weighted component to the model that is a binomial with a probability

of success described by Equation (6). Where pi is the evaluation of equation Equation (6) at

base position i and reads is the number of mapped reads for the sample, the mixture model

over a set of n bases would be:

Pr(depth) =
1

n

n∑
i=1

Binom(p = pi, trials = reads) (S4)

Comparison to existing descriptions of read depth

When comparing to the binomial distribution, we calculate the probability of success in the

binomial using the genome-wide mapping (0.91) and mismapping (0.09) rates, the number

of ungapped bases in the assembly, sizeOfGenome, and the copy number of the locus in a

diploid genome.

binomialProb = 0.91 ·
1
2
· copies

sizeOfGenome
·+0.09 · 1

sizeOfGenome
(S5)

This equation compensates for mismapping, but as a genome-wide average and not at

per-base resolution. The trials of the binomial is the number of mapped reads times the read

length.

7



We parameterize the negative binomial based on the mean and size parameters. The

mean is calculated as the above binomial probability, times the number of mapped reads,

times the read length. To be conservative, we directly calculate the size parameter from

moment matching with the read depth variance seen in simulated data.

Comparison to other methods

We compared the transducer’s performance on simulated data sets to analyses using CNVna-

tor (Abyzov et al. 2011), rSW-seq (Kim et al. 2010), cnMOPS (Klambauer et al. 2012), and

Genome STRiP (Handsaker et al. 2015). We tested these programs on both individuals and

pseudo-individuals created by pooling all marine samples into a single file and all freshwater

samples into a different file. We tuned parameters on one simulated data set and evaluated

the performance of all models on a second never-before-seen data set. We tuned parameters

with the goal of keeping the number of false positives to 0.2 per genome-wide analysis (1 per

5 simulated data sets with no copy number variation present). When we evaluated method

sensitivity on new data sets, we also generated new data sets with no copy number variants

to ensure that not more than one false positive was annotated per five genome-wide runs.

We note the methods we are comparing against were primarily designed and optimized

to detect copy number variants larger than 1kb and with greater sequencing coverage, so are

being tested on simulated data that is quite different from their intended use case. However,

these comparisons are likely to illustrate how existing methods may perform in detecting re-

peated copy number variation less than 1kb in length when there is low sequencing coverage.

When running CNVnator, we tuned the window size so that the mean was greater than

the standard deviation by a factor of four to five, as advised by the supplement of that

publication (Abyzov et al. 2011). When analyzing individual fish we adjusted the window size

for each library to be as close as possible to four-and-a-half. The window sizes for freshwater

fish were as follows: BEPA 575bp, BIGL 300bp, FTC 300bp, HUTU 250bp, MATA 325bp,
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MUDL 500bp, NOST 1350bp, PAXB 375bp, SCX 600bp, SHEL 450bp, TYNE8 325bp. For

marine fish: ANTL 950bp, BDGB 500bp, BIGR 450bp, GJOG 375bp, GORT 425bp, JAMA

325bp, NEU 2000bp, RABS 350bp, SALR 600bp, TYNE1 725bp. The lack of reads mapping

to gaps in the assembly caused those regions to often be marked as deletions by CNVnator, so

we filtered out all calls overlapping an assembly gap. We then identified continuous genomic

regions where, using Fisher’s exact test, there was a difference in the number of individuals

with copy number variants between the two groups. We searched for a p-value threshold that

would allow us to reliably detect mutations less than 1kb, while yielding no more than 10

false positives, but we were unable to find such a threshold. We believe that the sequencing

coverage in our data set is too sparse to allow for current methods to call deletions and

duplications of less than 1kb, when considering individuals in isolation.

Both cnMOPS (Klambauer et al. 2012) and Genome STRiP (Handsaker et al. 2015), while

providing individual copy number variation calls, process all samples together and leverage

the knowledge of other samples when annotating an individual. We maximized the area

under the curve for the functions plotting size of deletions and duplications (30bp to 1kb)

compared to sensitivity of the method. The final parameterization we used for cnMOPs was

a window length of 125, a prior impact of 0.1, and a minimum width of 1. Genome STRiP

needed the most modification since a 1kb lower limit for deletions and a 2kb lower limit

for duplications is hard-coded into the software pipeline. We reduced both of these limits

to 700 so that we could test the method against 750bp and 1kb mutations without greatly

changing the program’s intended use. We kept tiling window size equal to the maximum

reference gap length, both the tiling window overlap and minimum refined length at half

of this value, and the boundary precision at 100. These constraints were based on reading

the online documentation which maintained these ratios in the most sensitive suggested

parameterization and stated that boundary precisions below 100 would have a limited effect.

Our final parameterization was a tiling window size of 700, maximum reference gap length
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of 700, tiling window overlap of 350, and minimum refined length of 350. Genome STRiP

has also been optimized for the human genome, so we added an artificial Y chromosome to

the stickleback genome assembly when mapping simulated reads so that the pipeline could

compare coverages on chrX and chrY to infer a male or female sample and continue the

analysis.

Pooling many individuals into one pseudo-individual has drawbacks for real data sets,

such as a single individual duplicating a region many times appearing the same as all indi-

viduals duplicating the same region to a lesser extent. However, pooling all individuals from

one group, pooling all individuals from the other group, and identifying copy numbers that

are different between the two pools is a way to detect copy variants correlated with group

membership using current methods. After pooling the reads we ran CNVnator (Abyzov et al.

2011) on each pool. We kept the window size equal for both the marine and freshwater pools

since they have similar sequencing coverage and changing the window size may create region

of differing copy number as an artifact of the window starts and stops not occurring at the

same genomic locations. We used a window size of 280 to maximize sensitivity while limiting

the number of false positives to 0.2 per genome-wide analysis. We also used rSW-seq (Kim

et al. 2010) to analyze both pools at once since it is limited to analyzing two samples at

once and detecting differences. We found that the performance was quite different when the

sample order was swapped. Because of this we found that we achieved the best performance

when we ran the software once to detect deletions and then again with the sample order

switched to detect duplications. We used parameters of 45 and 325 after optimizing both

input orders. See Table S1 for a summary of parameters used for all methods.

Multi-species alignment and cross-species comparison

We created a multi-species alignment referenced on the threespine stickleback (gasAcu1)

including the following other species: medaka (oryLat2), tetraodon (tetNig1), fugu (fr2),
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zebrafish (danRer5), human (hg18), mouse (mm9), cow (bosTau4), chicken (galGal3), and

opossum (monDom4). We created pairwise alignments with LASTZ (Harris 2007), filtered

the initial alignments for regions showing conserved synteny (Kent et al. 2003), and used

Multiz (Blanchette et al. 2004) to construct a multi-species alignment. We identified regions

of the alignment that were evolving under constraint, based on frequency of substitutions

using a phylo-HMM (Siepel et al. 2005). The evolutionary history of these regions in stickle-

back is similar to other teleosts and shares many characteristics with mammals (Lowe et al.

2011).

Sequencing individuals from the Little Campbell River and Fish Trap Creek

To investigate signatures of selection near consistent, derived deletions in marine stickleback,

we sequenced additional fish from the mouth of the Little Campbell River in British Columbia

(marine) and Fish Trap Creek in Washington State (freshwater). The reads are paired-end

and 76bp in length. We mapped the reads to the stickleback assembly (Jones et al. 2012b)

using BWA (Li and Durbin 2010) and removed duplicates with Picard. This resulted in 9x

coverage for both fish. To identify heterozygous sites, we used GATK (McKenna et al. 2010;

DePristo et al. 2011) according to the published best practices (Van der Auwera et al. 2013).

Simulating selective sweeps

We estimated how long ago the selective sweeps in marine populations occurred by simulating

selective sweeps and the return to normal levels of heterozygosity. To accomplish this, we

used Cosi2, which allows for coalescent simulation and positive selection (Shlyakhter et al.

2014).

We used a mutation rate estimate of 2.5 · 10−8 from humans (Nachman and Crowell

2000), a genome-wide recombination rate from stickleback (Roesti et al. 2013), and assumed

a single population with constant size. We used the population size as a free parameter
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to fit the observed genome-wide level of heterozygosity in our marine fish from the Little

Campbell River. A population size of 40,000 closely fits the observed data, with an intersec-

tion distance (Swain and Ballard 1991) of 0.12 (Figure S10). We then repeatedly simulated

20kb windows with the advantageous mutation in the center. For each repetition of the

simulation, the 20kb fragment was randomly assigned to have the recombination rate of a

segment containing a derived marine deletion. After each repetition, we randomly selected

one individual from the population of 40,000 and calculated the number of heterozygous

sites in that individual.

We have used a mutation rate estimate that is two times higher than other reported

rates in humans (Kong et al. 2012) to be conservative when dating the likely age of the

deletions. There is a report of stickleback having an even lower mutation rate by a factor of

10 (Colosimo et al. 2005); however, this was estimated before whole-genome sequencing was

widely available. If the true mutation rate in stickleback is lower, this will only increase the

number of generations needed to restore a baseline level of heterozygosity after it has been

lost due to a sweep. This makes it even more unlikely that these selective sweeps in marine

populations would have occurred more recently than the last glacial maximum.

The population size that fits the observed heterozygosity is two orders of magnitude

higher than what has previously been reported for marine stickleback in northern Europe,

although there was noise in the data that caused many of the confidence intervals for effective

population size to include infinity (DeFaveri and Merila 2015). The effective population size

of 40,000 is in line with what has been seen for other ocean fish, even those experiencing

high levels of fishing (Therkildsen et al. 2010). An effective population size of 40,000 is also

more in line with Ne

Nc
ratios reported for other wild animal populations (Frankham 1995).
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Analyzing the 1000 Genomes data set

To investigate the performance of the transducer method on a well-studied human data

set, we selected 10 individuals from the 1000 Genomes Project for which the consortium

has recently annotated copy number variants (Sudmant et al. 2015). We defined one group

as consisting of five east Asian individuals (NA18623, NA18624, NA18632, NA18984, and

NA19058) and a second group consisting of five African individuals (NA18498, NA18867,

NA18912, NA19474, NA19901).

A current method to identify CNVs differing between these two groups is to observe

where the current annotation (Sudmant et al. 2015) shows a CNV that is significantly more

prevalent in one of the groups compared to the other (p < 0.01, uncorrected Fisher’s exact

test). There are 72 such regions with annotated beginning and end coordinates.

To run the transducer on this data set we treated all reads as single-end and reduced

each read to the 75 continuous basepairs with the highest sequencing quality. To identify

the most dramatic differences between these two groups we only consider copy numbers of

homozygous deletion, reference, and homozygous duplication, which leaves the model with 9

states, instead of the full 25. We reuse all the parameters from the stickleback data set with

the exception of recalculating a single penalty for transitioning into a deletion or duplication

state. We fit this parameter by simulating a data set with the same sequencing depth and

no copy number variation between the samples. We then make the penalty progressively

larger until no false positives were detected on the simulated data set. We use −5000 (in log

space) as the penalty.

We then ran the transducer method on the 10 individuals from the 1000 Genomes data

set. The transducer identified 368 regions where the canonical copy number of the two

groups is annotated as being different. These 368 regions overlap 29 of the 72 (40%) that

we would expect from the current annotation. A 40% overlap is slightly higher than what

was observed between the methods used by the consortium to annotate CNVs, where on
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average the larger set would cover 35% of the smaller set (median of 31% coverage). There

is a significant amount of disagreement between the existing methods for CNV calling, so it

is difficult to estimate the transducer’s false negative rate. However, the slightly higher than

expected overlap between the transducer and the existing set of annotations suggests that

the method is likely not missing more true positives than the other existing methods, and

may in fact have a lower false negative rate.

Due to the transducer calls at times being fragmented compared to the evolutionary

events (see Main Text) the 368 regions overlap 29 of the expected calls, but the expected

calls overlap 31 of the transducer regions. This leaves 337 CNVs found by the transducer

that were not found by applying Fisher’s exact test to the allele counts from the consortium.

Most of these 337 CNVs, while not passing the Fisher’s exact test threshold, do overlap CNVs

found by the consortium, either in the 10 individuals or the other 2494 genomes. However,

there are 157 regions annotated by the transducer that are not identified as existing in any

individuals by the consortium. These regions may be false positives of the transducer, or

CNVs that the transducer detects, but were missed by existing methods. To further test this

experimentally, we designed primers and verified two of these regions by PCR amplification

and Sanger sequencing (Table S16 and Figure S11). While these data do not address the

exact false positive rate, our results do demonstrate that some common copy number variants

are missed by existing methods, yet can be discovered by the transducer method.

After sequencing, both of these newly detected regions appear to be not only deletions,

but to also have sequence inserted at the deletion breakpoints. It is possible that this pairing

of a deletion and an insertion makes these events more difficult for some other methods to

detect. There will be no sequencing reads that span the expected junction of the deletion

ends because of the inserted sequence. The insertion will also reduce, or even eliminate, the

apparent change in insert size of paired-end reads flanking a deletion. The verified deletion

on chr14 was also likely not in the existing data set because it is located in a region of the
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genome associated with CNVs found in DNA isolated from lymphoblast cell lines (Sudmant

et al. 2015). However, we also see presence or absence of this deletion in DNA samples

isolated from whole blood (Figure S11), so it is unlikely to be an artifact of cell culture.

It is possible that these two newly verified deletions are functionally important in hu-

mans. The deletion on chr15 overlaps a DNase hypersensitivity site in villous mesenchymal

fibroblast cells from human placentas at P0 (Thurman et al. 2012). DNase hypersensitivity

sites are used to identify tissue-specific regulatory elements. The loss of a regulatory element

may increase or decrease the expression of a nearby gene, likely SMAD3. SMAD3 expres-

sion is associated with increased proliferation in vascular-related tissues (Tsai et al. 2009),

raising the possibility that the polymorphic deletion of a villous regulatory region may affect

placental development.
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Figure S1: The binomial mixture model shows modest improvements for modeling
depth in duplications. The binomial mixture model accounts for the fact that bases in repetitive
regions, when duplicated, will not show as dramatic of a read depth increase since some of the
reads will mismap to other identical regions of the genome. However, this improvement is modest
compared to the improvement seen in deleted regions (Figure S2).
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Figure S2: Performance of the binomial mixture model. We compare the performance of
our binomial mixture model to previously used methods of modeling read depth: the binomial
distribution and the negative binomial distribution (see Supplemental Methods). (A) Our method
provides a closer fit to the distribution of simulated read depths occurring across 1000 randomly
placed 2.5kb deletions (see Supplemental Methods). While other methods often apply the same
distribution to all bases, the model we present adapts with single-base resolution, which is advanta-
geous when a number of the reads potentially covering a base are either (B) unique in the genome
or (C) repetitive. Both the (D) mean squared error and the (E) likelihood are calculated for each
model over the 1000 randomly placed deletions, with the mixture model having a much closer fit
to the read depth seen in simulated data.
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Figure S3: Effect of changing specificity. We performed the main analysis with a false positive
rate of 0.2 per genome-wide run. By increasing the expected rate of false positives, we are able to
recover more true positives for both (A) duplications and (B) deletions.
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Figure S4: Performance with ten percent more reads. We added ten percent more reads to
the simulated data sets without modifying transition parameters that had been learned on the lower
depth data set. The parameterization is not highly-sensitive to the data set, and the performance
of the model improves with the additional reads. There is an increased ability to detect both
(A) duplications and (B) deletions. There is no noticeable decrease in specificity with the model
detecting no false positives on a simulated data set with no copy number variants, but ten percent
more reads.
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Figure S5: Validation of proposed deletions and duplications. (A) We designed PCR
primers flanking five teleost conserved regions that were usually present in freshwater stickleback,
but appeared consistently deleted in marine fish, as we initially believed this pattern of evolution
to be unlikely and therefore anticipated possible false positives. However, the experimental amplifi-
cations validated the model’s predictions by giving large bands in freshwater fish (blue arrows) and
shorter bands in marine fish (red arrows). To ensure that we could detect heterozygotes, we mixed
marine and freshwater DNA samples in a 1:1 ratio to create an artificial heterozygote, which gave
both the large and small bands, as well as non-specific background bands in four reactions (gray
arrow), which did not limit our ability to detect heterozygous individuals. (B) We used qPCR
to validate four genomic regions that the transducer annotated as having greater copy number in
freshwater fish. We performed the assay on three marine (red symbols) and four freshwater (blue
symbol) fish. Each point on the graph represents three reactions that were averaged and then nor-
malized against a control region (Table S3). The results are consistent with the model’s prediction
that freshwater fish have increased copy number relative to marine fish.21
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Figure S6: Genomic locations of repeated marine/freshwater copy number variation.
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Figure S7: Complex transducer states and transitions. This region of the genome illustrates
what could be an insertion in the reference assembly fish, or a deletion in all other populations,
that breaks up an otherwise larger region of copy number difference between marine and freshwater
populations. The outer edges are regions where both freshwater and marine individuals are consis-
tent with the reference genome. Within those boundaries, there is a region that is present in many
freshwater individuals, but none of the marine individuals (green). This green region of differing
copy number is broken in two by a region where both freshwater and marine individuals appear
to have a deletion relative to the reference assembly, possibly due to an insertion in the reference
individual.
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Figure S8: Copy number correlating with both ecotype and geography. In this region
of the genome, marine individuals have a deletion, while freshwater individuals near the Pacific
Ocean have an intact allele. The intact allele may not be found in Europe either due to limited
gene flow between Pacific and European freshwater populations, or because the intact allele is not
advantageous in Europe. This region is identified in both the Pacific-Atlantic and marine-freshwater
analyses.
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Figure S9: Regions flanking marine deletions show signatures of selection. There are
86 regions where marine populations have repeatedly deleted an element of the genome showing
cross-species conservation, implying that the marine fish are derived with respect to the freshwater
stickleback and other teleosts. We sequenced a marine fish to high coverage, identified breakpoints
of the deletions, and summed the number of heterozygous sites within 10kb for each deletion (see
Supplemental Methods). (A) These flanking regions had significantly less heterozygosity than
windows either randomly placed in the genome or flanking other conserved elements (p ≤ 0.003
and p ≤ 0.002). This was not the case for the freshwater fish, whose regions flanking the marine
deletions showed a possible increase in heterozygosity compared to the genome-wide distribution
or other regions flanking other conserved elements (p ≤ 0.11 and p ≤ 0.09). This is consistent with
selective sweeps occurring in marine populations while freshwater fish maintain ancient, ancestral
alleles at these positions. (B) To estimate how long ago the selective sweeps may have occurred,
we compared the decreased level of heterozygosity that we observed to that which we would expect
from sweeps of varying ages. Boxes in the graph show first quartile, median, and third quartile,
while the mean is depicted by dots and connecting lines. It is likely that many of the sweeps
happened around 100,000 generations ago (200,000 years).
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Figure S10: Fitting a population genetic model to heterozygosity in marine stickleback.
(A) We compare the number of heterozygous sites in 20kb windows (analogous to looking at the
10kb upstream and 10kb downstream of an allele of interest) observed in a marine fish from the
mouth of the Little Campbell River to that from our population genetic model with a population
size of 40,000. The intersection distance (Swain and Ballard 1991) between these distributions is
0.12. The majority of the disagreement is in the tail, representing windows of high heterozygosity;
the observed data have more windows of high heterozygosity than would be expected from the
simulation. This tail is likely to be caused, at least in part, by the fact that the model does not
incorporate migration. The marine fish near the mouth of the Little Campbell River have constant
gene flow with the freshwater population located upstream, where there are likely to be a number
of genomic regions that are highly differentiated (Jones et al. 2012b). (B) Since we are not sure
of the strength of selection that acted on the deletion alleles, we tested how sensitive the model
is to changes in that parameter. Changing the selection coefficient by two orders of magnitude
did not create a difference in how quickly the flanking heterozygosity returns at the time scales we
investigated.
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Figure S11: Human deletions verified by sequencing. We verified two deletions that were
predicted by the transducer method to be largely present in five African samples, but largely absent
from five east Asian samples. Both the deletion on chr15 (A) and chr14 (B) also had small insertions
at the site of the deletion (Table S16). We show the mapped reads for the five African and five
east Asian samples used in the analysis. For the samples on chr14, which is located in a region
often associated with CNVs in cultured lymphobast cell lines, we also show sequencing reads from
whole blood samples, instead of cell lines, where one individual appears to have the intact allele
and the other a deletion. Neither of these deletions appear in the recent analysis of CNVs in the
1000 Genomes individuals (Sudmant et al. 2015).
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Figure S12: Limited sensitivity to changes in epsilon. The transducer method has a parame-
ter, epsilon, which is used as a pseudocount when estimating the probability of mismapping a read.
In the Methods section of the main text we set this parameter to 0.01 so that the genome-wide
mismapping rate will be equal to that which is seen in simulations. However, the performance of
the method is not heavily influenced by perturbing this value. An increase or decrease by an order
of magnitude, while holding all other parameters constant, did not have a large effect on the ability
of the method to detect 50bp deletions or 200bp duplications. The largest effect was a ten fold
increase in epsilon leading to a 0.044 fold decrease in the ability of the method to detect 200bp
deletions, which was not a significant change when tested with Fisher’s exact test (uncorrected
p ≈ 0.4). We chose these mutation sizes since they represent places where the method is able to
detect some, but not all, mutations, which should enable us to detect a decrease in performance.
We do not believe these order of magnitude changes of epsilon had a large effect on the false positive
rate either since running on a simulated data set with no copy number variation yielded no false
positives.
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Figure S13: Fraction of reads by GC content. The fraction of reads for each bin of GC content
is shown for all sequencing libraries as well as the stickleback assembly, which has an overall GC-
content of 43% (red line). The data is visualized on both a (A) linear axis and (B) log axis to show
differences at the GC extremes. To correct for GC content in our model, we calculate the coverage
bias, which is the fraction of reads in a bin for a given sample divided by the fraction of k-mers in
that bin for the assembly. This too is visualized on both a (C) linear and (D) log scale.
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Table S1: Parameters used when optimizing software

Software Parameter Value

cnMOPS window length 125
prior impact 0.1
minimum width 1
pvalue threshold (Fisher’s exact) 0.01

Genome STRiP minimum deletion 700
minimum duplication 700
boundary precision 100
tiling window size 700
max reference gap length 700
tiling window overlap 350
minimum refined length 350
pvalue threshold (Fisher’s exact) 0.0001

CNVnator window size 280
rSW-seq threshold {47, 375}

We changed and optimized parameters of other software packages to compare performance
at a similar false positive rate to our method.

Table S2: Primers used to test for the presence or absence of a deletion

Region Location Nearby Primers
Name Gene

Derived marine chrXII:10795677-10796335 AVPR2 ACGTCACCACCCTTTCTGAC
deletion 1 TTCCTGCCCTTATCATCACC
Derived marine chrVII:16835340-16835668 PCDHGC5 TTCGCTACCTACTTCATATCAAAGG
deletion 2 TGATACTCTCCATGCCGTAGAA
Derived marine chrXI:5490849-5491226 CNTNAP1 CCGTCTTTACCTGCACATCA
deletion 3 TGCCAGTGCAGATTATCCAG
Derived marine chrXI:5847930-5848275 KCNH4 GGGAGGACAATTCTGAACCA
deletion 4 AAGGCCTTGGAGATGCTGTA
Derived marine chrIV:24697371-24697776 PSMC2 CTCTCATGCCCTCCTCGAT
deletion 5 AGTGGCATCAGAGATGTGTCA

We used these primers to interrogate the genomes of marine fish for the presence of the
freshwater allele. The primers flank the deletion breakpoints, so alleles with the deletion
produce a small band, and intact alleles produce a large band (Figure S5).
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Table S3: Primers used to test for additional copies of a genomic segment

Region Location Nearby Primers
Name Gene

Freshwater chrXXI:7992834-7992991 Similar to stonustoxin GGGCCTAATTGCCTTTCATT
duplication 1 subunit beta CAATTGTCTGTATTTTGTTCAAGC
Freshwater chrXI:15609248-15609432 APOL4 GCAGACCAGTAAAACGTCTACAAA
duplication 2 GGGATTGATTTTAGGGATCCTG
Freshwater chrXI:15632100-15632296 CAGNG2A CCTTTTCTCCGACTCGACAG
duplication 3 AGGGAAAGGAAAGGAAACGA
Freshwater chrI:2971330-2971513 VWA5A TTTGGCACAATCTAATGTGGT
duplication 4 ACTGGGGGATCAATACAAACA
Normalizer chrVI:12802874-12803047 EDA GCCGTACTGCAAACCAAAA

ATCGTCAGCACCACTCAGC

We used these primers in qPCR assays to assess the model’s prediction that regions were of
consistently greater copy number in the freshwater populations (Figure S5).

Table S4: Genome coordinates and additional information for CNVs that correlate with
ecotype
Table available as attached electronic spreadsheet.

Table S5: Genes showing deletions overlapping their protein-coding exons, relative to refer-
ence genome
Table available as attached electronic spreadsheet.

Table S6: Genes showing duplications overlapping their protein-coding exons, relative to the
reference genome
Table available as attached electronic spreadsheet.

Table S7: Functional enrichments for genes showing deletions overlapping their protein-
coding exons, relative to the reference genome
Table available as attached electronic spreadsheet.

Table S8: Functional enrichments for genes showing duplications overlapping their protein-
coding exons, relative to the reference genome
Table available as attached electronic spreadsheet.

Table S9: Functional enrichments for the genes closest to noncoding copy number variation
Table available as attached electronic spreadsheet.
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Table S10: Primers used to amplify deleted region

Name Primer

DCHS1 fwd TTACCTTTCCAGAATCCATGC
DCHS1 rev GACGCTGCCATCTCCATTA

We used these primers to clone a genomic region from an intron of DCHS1 into an expression
vector (Figure 4).

Table S11: Genome coordinates of marine-freshwater copy number differences that overlap
a region showing cross-species conservation.
Table available as attached electronic spreadsheet.

Table S12: Genome coordinates where freshwater populations completely remove a conserved
sequence
Table available as attached electronic spreadsheet.

Table S13: Genome coordinates where marine populations completely remove a conserved
sequence
Table available as attached electronic spreadsheet.

Table S14: Functional enrichments for genes closest to a marine deletion of conserved se-
quence
Table available as attached electronic spreadsheet.
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Table S15: Frequency of the freshwater allele in a marine population

Region Nearby Samples Marine Heterozygotes Freshwater FW Allele
Name Gene Called Homozygotes Homozygotes Frequency

Derived marine AVPR2 264 262 2 0 0.0038
deletion 1
Derived marine PCDHGC5 266 262 2 2 0.0113
deletion 2
Derived marine CNTNAP1 264 261 3 0 0.0057
deletion 3
Derived marine KCNH4 265 262 3 0 0.0057
deletion 4
Derived marine PSMC2 262 260 1 1 0.0057
deletion 5

EDA EDA 644 635 8 1 0.0078
ATP1A1 ATP1A1 651 582 64 5 0.0568

We used primers flanking the deletion breakpoints to assay for the presence of the intact allele
in hundreds of fish from Resurrection Bay, Alaska (Table S2 and Figure S5). We detected
the ancestral freshwater allele at low frequency in this marine population, but not at more
than 1%, which is significantly below the frequency seen for the ATP1A1 allele (Jones et al.
2012a); many of the frequencies were also below the frequency seen for the freshwater allele
at the EDA locus (O’Brown et al. 2014).

Table S16: Primers used to amplify deletion alleles in humans

Deletion Nearby Primers
Location (hg19) Gene

chr14:107174392-107174928 IGHV2-70 ACGTCACCACCCTTTCTGAC
TTCCTGCCCTTATCATCACC

chr15:67404504-67405592 SMAD3 TTCGCTACCTACTTCATATCAAAGG
TGATACTCTCCATGCCGTAGAA
CCGTCTTTACCTGCACATCA
TGCCAGTGCAGATTATCCAG
CTCTCATGCCCTCCTCGAT
AGTGGCATCAGAGATGTGTCA

We used these primers to amplify the deletion alleles from human DNA samples. We then
Sanger sequenced the PCR product. The primer pair for the deletion on chr14 will give a
larger band for the intact allele while the primer pairs for the deletion on chr15 will not
amplify the intact allele.

Table S17: Regions not overlapping previous CNV annotations
Table available as attached electronic spreadsheet.
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