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Supplementary Figure Legends 

Fig. S1. Validation of the CRISPR/Cas9 – mediated genome editing of mouse Tspo gene in MA-

10 cell line(s). A - C, DNA sequencing chromatogram of each amplicon from each subcell line 

using Tspo-locus specific primers, in comparison to control wild-type (WT) cells. The covering 

area is as shown WT (A), nG1 (B), and G2G (C). D – G, Immunoblot analysis and RT-PCR of 

TSPO expression were performed using different anti-TSPO Abs and Tspo-specific primers, as 

indicated, where the G2G cells were confirmed to have no TSPO expression, where anti-HPRT 

(re-probing with the same membrane) was used as loading control (D); the size of Tspo locus-

specific PCR amplicons for G2G and nG1 cells were determined using primer sets: Exon2-

R/Exon2-F and Exon RR/FF (5’- TTGTAGAACTGCCCTCACCCCTACC-3’ and 5’-

ATTCCAGGGGCAACAGAGCACAGC-3’) (E); the nG1 cells with abnormal immunoblotting band 

indicate that the TSPO has been mutated at genome level, in comparison to WT cells: HH and 

G1 (F). M, Biotinylated protein ladder; HH, the Mito-H cells (derived from MA-10 cells) with mito-

roGFP; G1 and G2, the Mito-H cells transfected with gRNA1 and gRNA2, respectively; G1G and 
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G2G, the mito-H cells transfected with gRNA1 and gRNA2, respectively; MA-10, the MA-10 cells 

without any transfection; E.-I, E. coli cell with TSPO expression under IPTG induction. Arrow, 

indicate the expected missing band of TSPO in green, and unexpected band in red. The 

commercial RmAb, rabbit monoclonal antibody to TSPO. G. Immunoblot analysis of CYP11A1 

among sub-cell lines: G1, nG1, and WT MA-10. Re-probing of the same membrane with anti-

HPRT is indicated. M, Biotinylated protein ladder. 

 

Fig. S2. Immunofluorescence staining of TSPO in the CRISPR/Cas9- mediated mutant cells nG1 

and G2G, in comparison to their corresponding G1 and HH control cells. Immunofluorescence 

was evaluate using laser scanning confocal microscopy in control (A and C) and mutant cells (B 

and D). TSPO was labeled with rabbit monoclonal anti-TSPO Ab and Alexa Fluor® 546 Donkey 

Anti-Rabbit IgG in red for confocal images. Mitochondria were counterstained with MitoTrackerTM 

Deep Red FM and painted in green and also shown by mito-roGFP in blue for cell HH and G2G. 

Scale bar: 10 µm for confocal images.  

 

Fig. S3. Predicted putative mutant TSPO. A. Predicted peptides of the putative mutant TSPO in 

nG1, G2G and control cells. The 2nd likely methionine (M60) seems to be present in both mutant 

nG1 and G2G cells, as shown in the predicted secondary structure of TSPO in lipid membrane 

which shows the deletion occurred at the 1st transmembrane domain. The 2nd likely methionine: 

M60, indicated by red arrow, and the 2nd tyrosine involved in the formation of a covalent bond in 

the dual topology model is indicated in red circle. The predicted secondary structure of TSPO was 

produced using TMRPres2D. B. The molecular surfaces of wild-type TSPO (PDB: 2MGY) after 

removal of PK 11195 and minimized energy and predicted mutant TSPO (N-terminal sequence 

starting from the M60) with an electrostatic potential are colored by red – negative, blue – positive, 

and white – neutral. The mutant TSPO protein has a more neutral area in comparison with WT 

TSPO, which likely affects its interaction with other OMM partner, such as VDAC, and/or self 

aggregation or polymerization. The cholesterol recognition amino acid consensus (CRAC) 

sequence is indicated in green. 

 

Fig. S4. The live mitochondria in HH and G2G cells were stained with Mitotracker Red CMXRos 

before and after dbcAMP treatment, where the dye accumulation depends on Δψm. and fixed 

mitochondria in the same cells was shown under transmission electron microscopy. The “sticking” 
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mitochondria was observed in the G2G cells in comparison with that in HH cells (as highlighted 

in dotted rectangular line) (A and E). After the dbcAMP treatment, mitochondrial morphology of 

both cells have not dramatically changes from Mitotracker Red CMXRos staining (C and G). 

Overlapped images of Mitotracker Red CMXRos staining with mito-roGFP measuring 

mitochondrial redox status are shown (B, D, F and H).  

 

Fig. S5. Apoptosis and cell proliferation assays of control and Tspo-depleted cells. A – D. A 

representative confocal image of live cells double stained with CellEvent Caspase-3/7 Green 

detection reagent (white arrow; green) and Hoechst 33342 (blue). E. Bar graph of percentages of 

apoptotic cells per total live cells. There is a statistically significant lower amount of apoptotic cells 

under TSPO deficiency (n = average 1059.3 cells/group; Bars report mean ± SEM; Student’s t - 

test, *p < 0.05). F. A dot plot of relative proliferation of these two types of cells. No significant 

difference of the ratios of relative proliferation before and after dbcAMP treatment (Student’s t - 

test, n = 15 wells/cell line) between these two sub-cell lines. Scale bar, 100 µm. 

 

Fig. S6. Confocal images of STAR-DsRed fusion protein used for validation of the STAR protein 

mitochondrial import. STAR-DsRed protein is localized outside the mitochondria, stained with 

Mito-roGFP, in control HH cells (A and E) and TSPO-deficient G2G (C and G).  Following 1 mM 

dbcAMP treatment for 2 hours, the STAR-DsRed is imported into the mitochondria in control HH 

cells (B and F), but a lot remains outside of the mitochondria in the TSPO mutant G2G cells (D 

and H). The panels A – D are highlighted from the panels E – H, respectively. Scale bar, 10 µm. 

 

Fig. S7. A diagram of the proposed mechanism for TSPO-mediated steroidogenesis. The 

proposed mechanism involves the basic function of Δψm regulation via VDAC1, balanced 

polymerized and dimeric tubulin, and STAR mitochondrial import, both of which are involved in 

the transport of cholesterol into mitochondrial for steroidogenesis. In TSPO mutant nG1 cells, the 

STAR inhibition occurs after the dbcAMP stimulation; in the G2G cells, the STAR protein was 

blocked on the surface of the mitochondria; both cases were in consistent with previous proposal 

on the role of STAR protein on the mitochondrial surface involving in cholesterol flux into the 

mitochondria (1,2). Δψm that is needed for steroid biosynthesis after dbcAMP stimulation was 

reduced under TSPO deficiency, as shown in nG1 (middle) and G2G (right) cells.  
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