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1 Alignment-free Dissimilarity Basics

The k-mer based alignment-free dissimilarity measures aim to compare two genome sequences G and G,
of length L") and L(®, respectively, based upon the occurrences of all k-mers of fixed length k for molecular
sequences.

Let N‘Ef) be the number of occurrences of a given k-mer w via a sliding window of length k over the sequence

) also takes into account the number of

i (i)
occurrences of the reverse complimentary k-mer. Further, the frequency of the k-mer f‘EJ) = ZNV}’V is defined

(i)
w HYw

G, where i = 1,2. When studying double-stranded sequences, N‘Sj

as its relative abundance.
For some of the dissimilarity measures such as dj and d3, the expected counts of the k-mers under a certain
model of the genomic sequences are needed. Here we use Markov models as the generative models of the

sequences. Specifically, assuming an r-th order Markov model (r < k) with transition probabilities (4, ) and

)

stationary probabilities p(i) with i € A", j € A, the expected occurrences ]ENS can be calculated as:

k—r
EN{ = (LY — k+ Dp(wl o)) [ w(wli i+ — 1], wli +7]) (1)
i=1
where the transition and stationary probabilities can be estimated from the sequence data.

2 k-mer Based Alignment-free Dissimilarity Measures

2.1 Conventional measures based on k-mer counts
2.1.1 Chebyshev
The Chebyshev (Ch) distance is defined as:

Ch = max |1 = £2)]. (2)

2.1.2 Euclidean
The Euclidean (Eu) distance is defined as:

Bu= | 3 (-2 3)

we Ak
2.1.3 Manhattan
The Manhattan (Ma) distance is defined as:
Ma= " |10 - 2| (4)
we Ak

2.1.4 Canberra

The Canberra distance is a variation of the Manhattan distance, defined as:

A = 12
Canberra = —_—
wzi MR

2.1.5 ds or Cosine [2]

The dy distance or equivalently Cosine distance is defined as:

S weur SR

_1
T o () S ()




2.1.6 Pearson

The Pearson distance is defined as:

e FO @ Swear févll;kz‘wef\k £
we

weak f(l) Zw k f(2)
(ZWEA’C f(l)f(l) ( E‘zﬂ ) > (ZweAk f\EVQ) \Sv2) - ( ijk‘ )

2.1.7 Feature frequency profiles (FFP) [13]

The feature frequency profiles (F'FP) dissimilarity is defined as:

1 w

FFP = > Y 1og2 + > Y 1og2f (8)
weAk fw we Ak f

2.1.8 Jensen-Shannon divergence (J5) [4]

Given two sequences fitted with r-th order Markov models M; and Mg, respectively, the Jensen-Shannon
divergence between the two sequences is defined as:

Mp+M 1 1
JS =h <1+2) — SR (My) = 5h (M) (9)

2 2 2
where h(M;) denotes the Shannon entropy for Markov model M;, where ¢ = 1,2. That is, h(M;) =
— > wear féj) Y oweA fsl)w log fi}il)w, where fg‘)w = 1]\\/;(”) and ww represents the concatenating word of w and w.

The length of ww is (r +1). 28EM2 denotes the average Markov model between M; and Mo

2.1.9 Co-phylog [15]

Different from the other dissimilarity measures, where the k-mer counts require an exact match, Co-phylog
focuses on an approximate match. Thus, Co-phylog defines a structure S = Cq, a5, ,a,, Oby b5, ,bn_1, Where a;
and b; are the lengths of the i-th consecutive 1s segment and the lengths of the i-th consecutive Os segment,
respectively. For example, the seed 1110111 has the structure S = C330;. CAFE uses the structure S =
C%}%Ol and S = Cg_L%Ol when k is odd and even, respectively.

Given a structure S = Cy, 4y, .an Oby ba, - b, aDd & k-mer w = 5159+ s, S divides w into 2n — 1 parts
from left to right of lengths ai, b1, as,bs, - - an,l, bn—1,an. Then the C-gram, denoted as Cs(w), is defined as
the concatenation of the first, the third, --- parts of w, whereas the O-gram, denoted as Og(w), is defined as
the concatenation of the second, the fourth, - -- parts of w. For example, given the structure S = C330; and
w = actgact, we have Cg(w) = actact and Og(w) = g.

For a given genome G, we can have all its k-mers and the corresponding C-grams. For any C-gram ¢, its
objects are defined as objecte s(c) = {Og(w) : w € G,Cg(w) = ¢}. Further, the C-gram c is called a context
if and only if the set objectq s(c) has only one element. Suppose we aim to compare two genome sequences
G and GP), given a structure S, we have their context C-gram sets Cs(G()) and Cs(G®), respectively.
Co-phylog only considers the context C-grams shared by both sets. Let R be the intersection of the two sets. For
the i-th context C-gram c;, i from 1 to |R|, define I; = 0 if objectga) g(ci) = objectge g(c;) and 1 otherwise.

IRl [
Finally, the Co-phylog distance is defined as Z:T:Tlll

2.2 Measures based on background adjusted k-mer counts
We first define the expected number of occurrences of k-mer w in the sequence S®) as IEN‘SVZ-), and denote

N = ND —ENS.

2.2.1 CVTree [9]
The CVTree dissimilarity is defined as:

zweAk R

C’VTree—1 e
B ST Y ST




NP -END
ENY
preliminary exploration of the relationship between CVTree dissimilarity and evolutionary distance calculated
based on maximum likelihood approaches, we propose to use the following transformation T'(z) = (log(1 — 2x))”
on CV'Tree so that the transformed dissimilarity is highly linearly related to the evolutionary distance calculated

using the maximum likelihood approach.

where f O = . CVTree assumes a (k — 2)-th order Markov chain for the background sequence. After

2.2.2 d} [10], 14]
The d5 dissimilarity is defined as:

1 S wens S 1S
\/ZweAk (1) \/ZweAk (2))

where f§) = \/]I% Similar to CVTree, we use the transformation T'(z) = (log(1 — 2x))° on dj.

2.2.3 d5 [10, [14]
The d5 dissimilarity is defined as:

Cwer fu F&
\/ZweAk (1) \/ZweAk fW)

d5 = 1 1- (12)

where f(i) = N T
(R +(wP)?)*

. Similar to CVTree, we use the transformation T'(z) = (log(1 — 2z))* on d5.

2.3 Measures based on presence/absence of k-mers

The presence/absence of k-mers are treated as binary data. Let b‘(,&) and bﬁf) be the presence/absence values of
the k-mer w in the two sequences G(!) and G, respectively.

2.3.1 Anderberg
The Anderberg dissimilarity is defined as:
Anderberg=1—(A/(A+B)+A/(A+C)+D/(C+ D)+ D/(B+D))/4 (13)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G1)
and absent in G®), C is the number of k-mers absent in G and present in G, and D is the number of
k-mers that are absent in both sequences, respectively.

2.3.2 Antidice
The Antidice dissimilarity is defined as:
Antidice=1—A/(A+2(B +(C)) (14)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G1)
and absent in G(?), and C is the number of k-mers absent in G(*) and present in G2, respectively.

2.3.3 Dice
The Dice dissimilarity is defined as:
Dice =1-2A/(2A+ B+ C) (15)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G(!)
and absent in G(®), and C is the number of k-mers absent in G(*) and present in G?), respectively.



2.3.4 Gower

The Gower dissimilarity is defined as:

Gower =1—Ax D/\/(A+B) x (A+C) x (D+ B x (D+C) (16)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in GV
and absent in G®, C is the number of k-mers absent in G and present in G, and D is the number of
k-mers that are absent in both sequences, respectively.

2.3.5 Hamman
The Hamman dissimilarity is defined as:
Hamman =1—[((A+ D) — (B + C))/N]? (17)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G1)
and absent in G, C is the number of k-mers absent in G and present in G, D is the number of k-mers
that are absent in both sequences, and NV is the total number of k-mers, respectively.

2.3.6 Hamming
The Hamming dissimilarity is defined as:
Hamming = (B+ C)/N (18)

where B is the number of k-mers present in G(!) and absent in G®), C' is the number of k-mers absent in G
and present in G(?), and N is the total number of k-mers, respectively.

2.3.7 Jaccard
The Jaccard dissimilarity is defined as:
Jaccard =1— A/(N — D) (19)

where A is the number of k-mers that are present in both vectors, D is the number of k-mers that are absent
in both sequences, and N is the total number of k-mers, respectively.

2.3.8 Kulczynski
The Kulczynski dissimilarity is defined as:
Kulczynski=1— (A/(A+B)+ A/(A+(C))/2 (20)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G1)
and absent in G(?), and C is the number of k-mers absent in G(*) and present in G(?), respectively.

2.3.9 Matching
The Matching dissimilarity is defined as:
Matching =1— (A+ D)/N (21)

where A is the number of k-mers that are present in both vectors, D is the number of k-mers that are absent
in both sequences, and N is the total number of k-mers, respectively.

2.3.10 Ochiai

The Ochiai dissimilarity is defined as:

Ochiai=1—A/\/(A+ B) x (A+C) (22)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G(!)
and absent in G(®)| and C is the number of k-mers absent in G(*) and present in G?), respectively.



2.3.11 Phi
The Phi dissimilarity is defined as:

Phi=1-[(AxBxCxD)/\(A+B)x (A+C)x (D+ B) x (D +C)}? (23)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in GV
and absent in G®, C is the number of k-mers absent in GV and present in G, and D is the number of
k-mers that are absent in both sequences, respectively.

2.3.12 Russel

The Russel dissimilarity is defined as:
Russel =1— A/N (24)

where A is the number of k-mers that are present in both vectors, and N is the total number of k-mers,
respectively.

2.3.13 Sneath
The Sneath dissimilarity is defined as:
Sneath =1—2(A+ D)/(2(A+ D) + (B +C)) (25)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G1)
and absent in G®, C is the number of k-mers absent in G() and present in G, and D is the number of
k-mers that are absent in both sequences, respectively.

2.3.14 Tanimoto

The Tanimoto dissimilarity is defined as:
Tanimoto=1— (A+ D)/((A+ D)+ 2(B+ C)) (26)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G(1)
and absent in G, C is the number of k-mers absent in GV and present in G, and D is the number of
k-mers that are absent in both sequences, respectively.

2.3.15 Yule

The Yule dissimilarity is defined as:
Yule=1—[(Ax D—BxC)/(Ax D+ B x C))? (27)

where A is the number of k-mers that are present in both vectors, B is the number of k-mers present in G(1)
and absent in G®, C is the number of k-mers absent in GV and present in G, and D is the number of
k-mers that are absent in both sequences, respectively.

3 Comparison between the clustering tree and the phylogenetic tree

3.1 Building the clustering tree using pairwise dissimilarity measures

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is an agglomerative hierarchical clustering
method for the creation of clustering trees. Specifically, the UPGMA algorithm builds a dendrogram based
upon a pairwise dissimilarity matrix. In each step, the closet two clusters are merged into a higher-level cluster.
The distance between any pair of clusters X and Y is defined as:

Wlm S d(ay), (28)

rzeX yey

where |X| and |Y'| indicate the size of clusters X and Y, respectively.



3.2 Robinson-Foulds distance between two trees

The Robinson-Foulds distance [12] is a widely used measure to compare two trees. It is defined as (A + B)
where A is the number of partitions of data implied by the first tree but not the second tree and B is the
number of partitions of data implied by the second tree but not the first tree. Therefore, the Robinson-Foulds
distance is symmetric.

The normalized Robinson-Foulds distance is the conventional Robinson-Foulds distance normalized by 2(N —

3), where N is the number of nodes in each tree, i.e., %.

3.3 The golden-standard tree for primates, vertebrates, and microbial organisms

Miller et al.[5] used the NCBI stand tree topology for the 28 vertebrate species that is in best agreement with
the interpretation of the published literature. They then estimated the branch lengths based on a two-state
phylogenetic hidden Markov model. We used the pairwise distances based on the tree and the resulting tree as
the golden-standard for the 28 vertebrate species.

Perelman et al.[8] constructed a tree for the 21 primates using a heuristic search algorithm with different
optimality criteria of the maximum likelihood (ML) and maximum parsimony (MP) based on nucleotide data
across many genomic regions. We used this tree as the golden-standard for the 21 primates.

For the golden-standard tree of the 27 E Coli and Shigella species, we used a tree constructed by a standard
multiple sequence alignment (MSA) followed by a widely used Bayesian tree building approach based on a set
of single-copy proteins. This tree was also used as the standard in Bernard et ol.[I].

4 Accelerate the calculation of di, d5, and CVTree

The computation of d}, d5, and CVTree is dominated by the calculation of IENS), where ¢ = 1,2 when the

sequence is relatively short while & is large. The acceleration of calculating IE]N‘&?) becomes possible based
upon the observation that some k-mers share common prefix strings. For example, tetramer w; = AAAA and
wy = AAAC share the longest common prefix AAA. Given the first order Markov model, in principle, we
don’t have to calculate IEN‘S) from the beginning as long as we have calculated EN‘EV? To be specific, EN&,lg =

2

IEN‘SQ X ig;ﬁg, where the transition probabilities P(A|A) = w(w1[3],w1[4]) and P(T|A) = w(wa2[3], wa[4]),
respectively.

Based on this observation, we organize all possible k-mers into a radix trie (Figure . To be specific,

the radix trie represents a full quadtree of height k. Each leaf node represents the IEN‘SJ) of the corresponding
k-mer w whereas every internal node stores the marginal probability of k-mers sharing the common prefix
corresponding to the node. Edges are labeled with respect to the alphabet A = {A,C,G, T}, denoting the
succeeding base of the current prefix. For example, in the radix trie illustrated in Figure (a), the leaf nodes
with id 65-68 represent the k-mers AAAA to AAAT, respectively. In the scenario of independent identically
distributed (i.i.d.) model, the internal nodes with id 1, 5 and 17 store the marginal probabilities of k-mers of
common prefix A, AA and AAA with value P(A), P(A)? and P(A)3, respectively. In the scenario of first order
Markov model, the internal nodes with id 1, 5 and 17 store the marginal probabilities of k-mers of common
prefix A, AA and AAA with value P(A4), P(A)P(A|A) and P(A)P(AJA)?, respectively. In the scenario of
second order Markov model, the internal nodes with id 1, 5 and 17 store the marginal probabilities of k-mers
of common prefix A, AA and AAA with value 1, P(AA) and P(AA)P(A|AA), respectively.

Then the calculation of IEN‘EJ) is reduced to the depth-first search on the radix trie, equivalent to the total
number of internal and leaf nodes. Therefore, the overhead is reduced to the complexity © (4k)

5 Applications to Real Data Analysis

5.1 Application to Primate and Vertebrate Genomic Sequences

We compared various alignment-free dissimilarity measures using CAFE on three real datasets. We first in-
vestigated the evolutionary relationship of 21 primates whose complete genome sequences are available in the
NCBI database [8]. For each dissimilarity measure, the calculated pairwise dissimilarity measures are directly
compared against the corresponding evolutionary distances identified by Ape (An R package) [7] as the bench-
mark, in terms of Pearson correlations. Similarly, we investigated the evolutionary relationship of 28 vertebrate
species and compared the alignment-free dissimilarity measures with the pairwise evolutionary distances giv-
en in [5]. Finally, we combined the two datasets to see how the alignment-free dissimilarity measures relate
to evolutionary distances calculated based on maximum likelihood approach from a large number of genomic
regions.

10
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Figure S1: The radix trie constructed for the calculation of the expected occurrences of tetramers, (a) i.i.d.
model, (b) the first order Markov model, and (c) the second order Markov model.

The comparison involves 3 dissimilarity measures based on background adjusted k-mer counts, including
CVTree, dj,and d3, 10 conventional measures based on k-mer counts, including Canberra, Ch, Cosine, Co-
phylog, da, Eu, FFP, JS, Ma, and Pearson, and 15 measures based on presence/absence of k-mers, including
Anderberg, Antidice, Dice, Gower, Hamman, Hamming, Jaccard, Kulczynski, Matching, Ochiai, Phi,
Russel, Sneath, Tanimoto, and Yule. We used k = 14 as in [II]. The Markov order 12 is used in CVTree,
ds, d5, and JS as most of the sequences have estimated order 12 based on BIC [6]. The comparison in terms
of Spearman correlations, Pearson correlations, and normalized Robinson-Foulds distance [12] are illustrated in
Figure Figure and Figure [B4] respectively. Consistent with previous studies, the background adjusted
dissimilarity measures outperform markedly the non-background adjusted measures.

The detailed result is depicted in Figure Figure [S6] and Figure [S7]showing the relationships between the
dissimilarity measures and the evolutionary distances based on alignment based approaches for the 21 primates,
28 vertebrates, and the combination of them, respectively.

In addition, we provide detailed result of d} (shown in Figure Figure and Figure respectively)
and d5 (shown in Figure Figure and Figure respectively) with respect to different choices of
Markov orders.

5.2 Application to Microbial Genomic Sequences

We applied CAFE to analyze 27 E.coli and Shigella genomes dataset [I]. These genomes are assigned to 6 E.coli
reference (ECOR) groups: A, B1, B2, D, E, and S. We investigated how well various alignment-free dissimilarity
measures can identify these groups. For each dissimilarity measure, we used UPGMA method to cluster the
samples based on the calculated pairwise dissimilarity matrix. The Markov order 1 is used for d} and d.

We used k = 14 for the comparison. The comparison involves 3 dissimilarity measures based on background
adjusted k-mer counts including CVTree, dj, and dj, 10 conventional measures based on k-mer counts, in-
cluding Canberra, Ch, Cosine, Co-phylog, do, Eu, FFP, JS, Ma, and Pearson, and 15 measures based
on presence/absence of k-mers, including Anderberg, Antidice, Dice, Gower, Hamman, Hamming, Jaccard,
Kulczynski, Matching, Ochiai, Phi, Russel, Sneath, Tanimoto, and Yule. The results are illustrated in
Figure Consistent with previous studies, for d5, each ECOR. is monophyletic except A and B2.

The normalized Robinson-Foulds distances [12] are also calculated, illustrated in Figure

5.3 Application to Metagenomic Samples

We then used CAFE to analyze a mammalian gut metagenomic dataset [3], comprised of NGS short reads
from 28 metagenomic samples. These samples further split into 3 groups: 8 hindgut-fermenting herbivores, 13
foregut-fermenting herbivores, and 7 simple-gut carnivores. We investigated how well various alignment-free
dissimilarity measures can identify these groups. For each dissimilarity measure, we used UPGMA method to
cluster the samples based on the calculated pairwise dissimilarity matrix.

We used k =5 as in [3]. The comparison involves 3 dissimilarity measures based on background adjusted
k-mer counts including CVTree, dj, and d5, and 9 conventional measures based on k-mer counts, including

11
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Figure S4: The normalized Robinson-Foulds distance between the clustering tree using various dissimilarity
measures and the phylogenetic tree derived based on the maximum likelihood approach across many genomic
regions for the 21 primate species (top) and 28 vertebrate species (bottom).

Canberra, Ch, Cosine, do, Fu, FFP, JS, Ma, and Pearson. Co-phylog and 15 measures based on pres-
ence/absence of k-mers are not achieving meaningful results because k = 5 is not large enough. The Markov
order 0 is used in d and d5. The results are illustrated in Figure

Consistent with previous studies, d5 achieves clear separations among 3 groups.
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Figure S5: The correlation to real evolutionary distanc;las using
1

on 21 primates dataset.
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Figure S6: The correlation to real evolutionary distances using multiple alignment-free dissimilarity measures
on 28 mammalian species dataset of herbivores and cativores.
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Figure S7: The correlation to real evolutionary distances using multiple alignment-free dissimilarity measures
on the integration of 21 primates dataset and 28 mamifalian species dataset of herbivores and carnivores.
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Figure S8: The correlation to real evolutionary distances using d dissimilarity measure on 21 primates dataset.
Since dj involves the specific Markov models, we employ different Markov order 0, 5, 9, 10, 11, 12. Meanwhile,
the best-fitting Markov order (auto) is also included by using the setting “-M -1” in the program.
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Figure S9: The correlation to real evolutionary distances using d5 dissimilarity measure on 28 mammalian
species dataset of herbivores and carnivores. Since d5 involves the specific Markov models, we employ different
Markov order 0, 5, 9, 10, 11, 12. Meanwhile, the best-fitting Markov order (auto) is also included by using the
setting “-M -1” in the program.
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Figure S10: The correlation to real evolutionary distances using d5 dissimilarity measure on the integration of 21
primates dataset and 28 mammalian species dataset of herbivores and carnivores. Since dj involves the specific
Markov models, we employ different Markov order 0, 5, 9, 10, 11, 12. Meanwhile, the best-fitting Markov order
(auto) is also included by using the setting “-M -1” in the program.
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Figure S11: The correlation to real evolutionary distances using d5 dissimilarity measure on 21 primates dataset.
Since d§ involves the specific Markov models, we employ different Markov order 0, 5, 9, 10, 11, 12. Meanwhile,
the best-fitting Markov order (auto) is also included by using the setting “-M -1” in the program.
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Figure S12: The correlation to real evolutionary distances using d5 dissimilarity measure on 28 mammalian
species dataset of herbivores and carnivores. Since d5 involves the specific Markov models, we employ different
Markov order 0, 5, 9, 10, 11, 12. Meanwhile, the best-fitting Markov order (auto) is also included by using the
setting “-M -1” in the program.
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Figure S13: The correlation to real evolutionary distances using d5 dissimilarity measure on the integration
of 21 primates dataset and 28 mammalian species dataset of herbivores and carnivores. Since ds involves the
specific Markov models, we employ different Markov order 0, 5, 9, 10, 11, 12. Meanwhile, the best-fitting
Markov order (auto) is also included by using the setting “-M -1” in the program.
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Figure S14: The clustering results of the 27 F.coli and Shigella genomes using measures based on background
adjusted 14-mer counts, conventional measures based on 14-mer counts as well as 15 measures based on pres-
ence/absence of 14-mers.
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Figure S15: The normalized Robinson-Foulds distance between between the clustering tree using various dis-
similarity measures and the evolutionary tree derived based on the maximum likelihood approach across many
genomic regions for the 27 E.coli and Shigella genomes.
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Figure S16: The clustering results of the mammalian gut samples using 3 measures based on background
adjusted k-mer counts: d3, dj, and CVTree, and 9 conventional measures based on k-mer counts, including
Canberra, Ch, Cosine, do, Eu, FFP, JS, Ma, and Pearson.
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