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Table S1. Features computed by PyMut. 
Description of the 215 features computed by PyMut. The sequence conservation features require 
PSI-BLAST searches and Kalign2 multiple sequence alignments to be computed. These have been 
precomputed for all human sequences in UniRef100 and can be found in the PMut Web portal in their 
respective protein page. 

Type of features Number 
of features Description 

Substitution matrix 
score 5 

Score of the amino acid substitution in the BLOSUM50, 
BLOSUM62, BLOSUM80 (1), PAM60 (2), and Miyata (3) 
matrices. 

Physical properties 
difference 8 

Relative and absolute difference in volume (4), hydrophobicity 
(5) and free energy transfer octanol-water (6); Kyte-Doolittle 
hydropathy index (7) and position in the protein sequence. 

Protein interactome 
graph topology 6 

Descriptors of the protein in the interactome graph: degree and 
five measures of centrality: betweenness, cross-clique, 
closeness, eigenvector and degree centrality. 

Sequence 
conservation 196 

Sequence conservation features are extracted from 4 different 
sources: two PSI-BLAST (8) searches over UniRef100 and 
UniRef90 clusters (9), and two multiple sequence alignments by 
Kalign2 (10) of the sequences found by PSI-BLAST. 
 
Each of these 4 alignments is filtered in 4 different ways: 1) 
taking all the sequences, 2) keeping only the human 
sequences, 3) excluding all the human sequences and 4) (only 
in PSI-BLAST) taking the matches under an stricter e-value 
threshold. 
 
From each of these 14 conservation sources, a set of 14 
features is computed, which you can find in the Table S2. 

 
 
  



 

Table S2. Conservation features computed by PyMut. 

Number 
of features Description 

2* Number of sequences in the alignment. 

2* Number of amino acids in the aligned position (no gaps). 

4* Total and relative number of aligned wild type amino acids. 

4* Total and relative number of aligned mutated amino acids. 

2* 
Position Weight Matrix score, defined as: 
 

**WM log  P wt→mt =  ( Freq[mt]
number of  mt) og  − l ( Freq[wt]

number of  wt)  

* Each of these features is computed both in a weighted and unweighted fashion. The weighted features                 
give more importance to the most similar sequences in the alignment. Matches in the PSI-BLAST               
searches are weighted using the BLAST score and matches in the multiple sequence alignment are               
weighted using the sequence similarity. 
** and are the relative presence of the mutated and the wild type amino acids in the req[mt]F   req[wt]F                
complete Swiss-Prot (11) database. 
  



 

Table S3. Selected features for the PMut2017 predictor. 

# Alignment Database Filter Value Weighted 

1 PSI-BLAST UniRef100 E-value < 0 1 −75  Number of amino acids 
in the aligned position. No 

2 PSI-BLAST UniRef100 E-value < 0 1 −75  Position Weight Matrix score. No 

3 PSI-BLAST UniRef100 E-value < 0 1 −75  Proportion of wild type amino 
acids in the aligned position. 

BLAST 
score 

4 PSI-BLAST UniRef90 E-value < 0 1 −45  Number of amino acids 
in the aligned position. No 

5 MSA (Kalign2) UniRef100 All Number of sequences in the 
alignment. No 

6 MSA (Kalign2) UniRef100 All Number of wild type amino 
acids in the aligned position. No 

7 MSA (Kalign2) UniRef100 All Position Weight Matrix score. Sequence 
similarity 

8 MSA (Kalign2) UniRef100 Human Number of amino acids 
in the aligned position. No 

9 MSA (Kalign2) UniRef90 All Number of amino acids 
in the aligned position. 

Sequence 
similarity 

1
0 MSA (Kalign2) UniRef90 All Number of wild type amino 

acids in the aligned position. 
Sequence 
similarity 

1
1 MSA (Kalign2) UniRef90 Human Number of amino acids 

in the aligned position. 
Sequence 
similarity 

1
2 Miyata substitution matrix score. 

 
  



 

Table S4. Performance comparison of classifiers for PMut2017. 
Comparison of the six classifiers included in PyMut using the PMut2017 training set (SwissVar (15) 
October 2016).  

Classifier Accuracy Sensitivity Specificity AUC MCC 

Random Forest (12) 0.81 0.75 0.86 0.81 0.62 

AdaBoost (13) 0.81 0.75 0.86 0.80 0.61 

Extremely Randomized Trees (14) 0.80 0.72 0.86 0.79 0.59 

Logistic Regression 0.77 0.70 0.83 0.76 0.53 

Stochastic Gradient Descent 0.77 0.69 0.82 0.76 0.52 

Gaussian Naive Bayes 0.67 0.91 0.49 0.70 0.42 

The metrics are the result of a 10-fold cross-validation on protein families with 50% sequence identity                
exclusion (no sequence in the testing set shares more than 50% sequence identity with any protein in                 
the training set). AUC is the Area under the Receiver Operating Characteristic curve and MCC is the                 
Matthews correlation coefficient. 

Random Forest is chosen as the PMut2017 classifier, as it outputs the best predictions, followed by                
AdaBoost, and is computationally more efficient than the later. 

 
  



 
Table S5. Functions and variables of the PyMut module. 
List of the most important functions and variables exported by the PyMut module. Other helper functions 
are provided to perform input/output tasks such as reading SwissVar files, FASTA files, or parsing 
common mutation formats. 

Function or variable Description 

CLASSIFIERS Variable containing the six available classifiers, their name, function 
and default parameters. 

FEATURES List of all 215 features that can be computed by PyMut. 

PMUT_FEATURES List of the 12 features selected in the PMut2017 predictor. 

FOLDS List of different fold generation strategies for cross-validation: k-fold, 
stratified k-fold, label-exclusive k-fold, etc. 

compute_features Compute features for the given variants. 

features_distribution Plot features histograms, separating Neutral and Disease mutations. 

iterative_features_ 
selection Select features using the iterative algorithm described in Figure S1. 

cross_validate Perform a cross-validation with the provided variants, classifiers and 
fold generation technique. 

evaluate Evaluate a prediction using a standard set of metrics: accuracy, 
precision, sensitivity, specificity, ROC AUC and MCC. 

roc_curve Plot a ROC curve using evaluation data. 

train Train a predictor. 

predict Predict the pathology of variants using a given predictor. 

get_learning_curve Plot learning curve (to estimate how better a predictor can be 
expected to get by making the training set bigger). 

. 
  



 

Table S6. PyMut software dependencies. 
List of dependencies of the PyMut Python 3 module.  

Python module URL Description 

NumPy (v1.10) numpy.org Fast numerical computing library. 

SciPy (v0.17) scipy.org Scientific computing library. 

Pandas (v0.17) pandas.pydata.org Python data analysis library. 

Matplotlib (v1.5) matplotlib.org Python plotting library. 

Seaborn (v0.8) seaborn.pydata.org Statistical data visualization library. 

Scikit-learn (v0.17) scikit-learn.org Machine learning methods. 

These dependencies are documented in the official repository package 
(​https://pypi.python.org/pypi/pymut​) and will be installed automatically by the standard Python package 
manager (pip). 
 
  

https://pypi.python.org/pypi/pymut
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Figure S1. Iterative feature selection algorithm. 
Features are added to the selected set until the performance increase in terms of the Matthews                
correlation coefficient (MCC) is negligible. At each step, the two features that increase the MCC the                
most are added and then the least important feature is removed. This approach is intended to skip local                  
minima in performance. 

 

  



 
 
Figure S2. Feature selection for PMut2017. 
Feature selection algorithm run for the PMut2017 classifier. The predictor performance increased with             
each feature added to the selection, and it matched the performance of the predictor using all 215                 
features with 12 selected features. Note that the variation of the target MCC at each step is due to a                    
change in the cross-validation folds, which are different and randomly chosen at each step. 
 



 
Figure S3. ROC Curves comparison of classifiers for PMut2017. 
ROC curves of the classifier comparison in Table S4. Random Forest presents the best performance, 
closely followed by AdaBoost. 

  



 
 

 
 
Figure S4. Reliability score regression for PMut2017. 
We plot the Negative Predictive Value, (left) and the Precision or Positive Predictive      PVN = TN

TN+FN         
Value, (right) for different thresholds of the Random Forest score; where PVP = TP

TP+FP            
are the True Negatives, False Negatives, True Positives and False Positives in theN, FN, TP, FPT                 

predictions of a 10-fold cross-validation with 50% sequence identity exclusion. 
 
We map the Random Forest score to and using an univariate spline regression. The       PVN   PVP       PVN
and the give us the probability that a prediction is correct for the Neutral and Disease cases  PVP                
respectively. 
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