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Figure S1

overlap p-value = 3.336e-232 

Figure S1. Differentially expressed metabolic genes and altered metabolites in colonic epithelium of young
obese mice, related to Figure 1. (A) Validation of RNA-Seq data using real-time RT-PCR. Gene expression levels
were normalized to that of Gapdh. Data are represented as mean ± SEM (n=5). (B) Overlap of dysregulated 
genes involved in metabolic processes with dysregulated cancer-related genes in young obese mice. Overlap p-
value was calculated using hypergeometric test. (C and D) Levels of C12-carnitine and acetylcholine in colonic 
epithelium from young obese and control mice. Y-axis indicates the area of peak from targeted metabolome 
analysis.
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Figure S2, related to Figure 2. (A) WGBS and BSP-Seq showed strong correlation of the methylation levels of 233 
randomly selected CpG sites. (B) Bimodal distribution of DNA methylation at individual CpG sites. (C) Global 
methylation levels of promoters, CpG islands, and repetitive elements (LINE, SINE, and LTR). The blue and red dots 
represent the median and the mean, respectively. (D) Percentage of DMRs or matched control regions overlapping 
with annotated genomic features and experimentally defined functional genomic elements. Upper panel: hyper 
DMRs; lower panel: hypo DMRs.
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Figure S3

Figure S3. DMR-target genes without significant differential expression, related to Figure 3. (A) Heatmap depicts 
the standardized expression levels of 213 non-DEG-overlapping DMR-target genes in control mice (LF) and obese 
mice (HF). (B) Obese mice and control mice were well separated by Principal Components Analysis (PCA), based 
on expression levels of 213 non-DEG-overlapping DMR-target genes. (C) Examples of correlation between DNA 
methylation and gene expression. 
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Consensus 
binding sites 

p-value 
(DMR motif 
enrichment) 

p-value  
(DEG upstream 

regulator) 
E2F4 GGCGGGAAAH 1.00E-08 2.14E-19 
E2f TTSGCGCGAAAA 1.00E-03 2.23E-08 
ELK4 NRYTTCCGGY 1.00E-13 2.62E-10 
ELK1 HACTTCCGGY 1.00E-06 1.62E-05 

Figure S4. Examples of transcription factors with binding motifs enriched at DMRs and also serving as upstream 
regulators of DEGs in aged obese mice, related to Figure 4. (A) The p-values from HOMER motif enrichment analysis 
and IPA upstream regulator analysis were shown for the following transcription factors: E2F, ELK1, and ELK4. (B and 
C) Differential expression of the target genes of E2F, ELK1 and ELK4. Red indicates up-regulation while Green 
indicates down-regulation of genes in aged obese mice relative to age-matched controls.
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Figure S5, related to Figure 5. (A and B) Heatmaps display relative expression of the 35 primary response genes in 
human colorectal cancer compared with normal colorectal tissue (A) and benign colorectal tumor (B). (C) 
Overlap of obesity-related DEGs in young and aged mice. (D) GO_BP terms enriched with consistently altered 
genes in both young and aged obese mice.   
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Figure S6. Obesity-related changes in DNA methylation and gene 
expression were substantially preserved after short-term weight loss but 
were largely reversed after long-term weight loss, related to Figure 6. (A) 
Obesity-associated DMRs were clustered into 6 groups based on their 
methylation levels in formerly obese mice (short-term). The number of 
DMRs in each group was shown in the upper-right corner. (B) Overlap of 
DEGs in formerly obese mice (short-term) with DEGs in obese mice. (C) 
Ingenuity Pathway Analysis of commonly dysregulated genes. The top five 
scoring hits in each functional category are shown, together with p-values 
and the number of commonly dysregulated genes in enriched terms. (D) 
Comparison of enriched GO terms in formerly obese mice (short-term) 
with that in obese mice. Colors indicate the significance of p-values with 
darker red being more significant and white being non-significant. The 
numbers are -log10 of p values. (E) Weekly body weight of control (LF), 
obese (HF), and formerly obese (HF-LF) mice from the long-term weight 
loss study (diet-switching for 28 weeks). Data are represented as mean ± 
SEM (n=4 or 5). (F) Hierarchical clustering of samples on obesity-related 
differentially expressed genes in aged mice. Ward's method was used with 
Pearson’s Dissimilarity calculated using standardized gene expression levels.  
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Figure S7, related to Figure 7. (A) Heatmap displays normalized expression of short- and long-chain fatty acid 
oxidation genes in primary colorectal cancer and adjacent normal tissue. Red correlates with higher expression. The 
statistical track, which is displayed under the gene heatmap, shows the -log (p-value) for each gene comparing primary 
colorectal cancer with adjacent normal tissue. (B) Kaplan-Meier plot depicts the overall survival of CRC patients 
stratified by the metabolic features of their tumor samples. (C) The percentages of CRC patients in the four defined 
groups harboring lymphatic invasion. (D) Heatmap displays normalized ssGSEA enrichment scores of gene sets 
specific for SCFA and LCFA metabolism. (E) Average expression levels of PCNA and MKI67 in CRC samples of each 
group.  



Supplemental Experimental Procedures 

Isolation of Colonic Epithelium 

Colonic epithelium was isolated as previously described (Li et al., 2014). Briefly, the entire colon was removed from 
each mouse, flushed with PBS without calcium and magnesium, and then cut open longitudinally. After being 
washed two more times, the colon was placed in PBS with 5 mM EDTA to incubate at 37 °C for 15 min on a rotator. 
Finally, the colon tissue was removed and colonic epithelium was pelleted and washed twice with PBS. The cells 
were used immediately or snap frozen in liquid nitrogen and stored at -80 °C. 

DNA and RNA Preparation 

Genomic DNA and total RNA were isolated using the Qiagen AllPrep DNA/RNA/miRNA Universal Kit according 
to the manufacturer’s instructions. The concentrations of DNA and RNA were measured using the NanoDrop 
spectrophotometer. The quality of DNA and RNA was assessed by agarose gel electrophoresis and Bioanalyzer, 
respectively. 

Real-Time RT-PCR 

cDNA was generated using the iScript™ cDNA Synthesis Kit (Biorad, catalog #170-8890). Relative expression 
levels of Fabp6, Pfkfb3, Pck1, and Scd1 were determined by real-time PCR assays using TaqMan® Gene 
Expression Assay kits (Applied Biosystems). Gene expression levels were normalized to that of Gapdh.  

mRNA Sequencing and Data Analysis   

mRNA sequencing libraries were prepared using the TruSeq Stranded mRNA Sample Prep Kit (Illumina, #RS-122-
2103). Starting with 100 ng of total RNA, polyadenylated RNA (primarily mRNA) was selected and purified using 
oligo-dT conjugated magnetic beads. The mRNA was then chemically fragmented and converted into single-
stranded cDNA using reverse transcriptase and random hexamer primers, with the addition of Actinomycin D to 
suppress DNA-dependent synthesis. Double-stranded cDNA was created by removing the RNA template and 
synthesizing the second strand in the presence of dUTP in place of dTTP. A single ‘A’ nucleotide was added to the 3’ 
end of double-stranded cDNA to facilitate ligation of sequencing adapters, which contain a single ‘T’ nucleotide 
overhang. Adapter-ligated cDNA was amplified using polymerase chain reaction (PCR) to increase the amount of 
sequence-ready library. During PCR amplification, the polymerase stalls when it encounters a uracil, rendering the 
second strand a poor template. Accordingly, only the first strand was used as a template, thereby preserving the 
strand information. Final cDNA libraries were analyzed for size distribution using Agilent Bioanalyzer (DNA 1000 
kit, Agilent # 5067-1504), quantitated by qPCR (KAPA Library Quant Kit, KAPA Biosystems # KK4824), and then 
normalized to 2 nM prior to sequencing on HiSeq 2000 (paired-end 50 bp). 

General quality control checks were performed with FastQC v0.14.0 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Each dataset was filtered to retain only sequences for 
which both reads in a pair had an average base quality score of at least 20. Filtered datasets were mapped against the 
mm10 reference genome using TopHat (Trapnell et al., 2009) v2.0.4 (parameters --b2-sensitive --library-type fr-
firststrand -g 10 --mate-inner-dist 40 --mate-std-dev 50). Mapped read counts per annotated gene were collected 
with HTSeq-Count (Anders et al., 2015); the gene models were generated from RefSeq annotations downloaded 
from the UCSC Genome Browser as of April 6, 2014. DESeq2 (Love et al., 2014) v1.2.10 was then used to identify 
differentially expressed genes (|fold change| > 1.2, p < 0.01, and adjusted p-value < 0.25). 

Bisulfite PCR Deep Sequencing  

Bisulfite PCR primers were designed using website: http://www.urogene.org/methprimer/. Genomic DNA was 
bisulfite converted using EZ DNA Methylation-Lightning™ Kit (Zymo Research Corporation) before PCR 
amplification. Amplicons from a single sample were pooled and individually indexed using TruSeq™ RNA Sample 
Preparation kit (Illumina) to create a multiplex library prior to sequencing (250 bp PE) on an Illumina MiSeq 
instrument using v3 chemistry. 

WGBS Data Processing   

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.urogene.org/methprimer/


General quality control checks were performed with FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Filtered sequencing datasets were mapped to a 
reference genome via Bismark (Krueger and Andrews, 2011) v0.14.0 (parameters -X 10000 --non_bs_mm -n 2 -l 50 
-e 70 --chunkmbs 1024), using Bowtie (Langmead et al., 2009) v0.12.8 as the underlying alignment tool. The 
reference genome contains the genome sequence of Enterobacteria phage λ in addition to all chromosomes of the 
mm10 assembly (GRCm38).  Mappings for all datasets generated from the same library were merged, and 
duplicates were removed via the deduplication tool included in the Bismark package. Mapped reads were then 
separated by genome (mouse or phage λ) and by source strand (plus or minus). Any redundant mapped bases due to 
overlapping mates from the same read pair were trimmed to avoid bias in quantification of methylation status. 
Furthermore, read cycles where methylation bias was observed (typically at the 5’ end and sometimes also at the 3’ 
end of reads) were trimmed from each mapped hit.  Precise boundaries of the trim positions were gleaned from the 
M-bias plot generated by Bismark’s bismark_methylation_extractor tool; the M-bias plot for each 
sample/sequencing run combination was evaluated independently. Read pairs mapped to phage λ were used as a QC 
assessment to confirm that the observed bisulfite conversion rate was > 99%. Read pairs mapped to the mouse 
reference genome were used for downstream analysis. 

DMR Detection 

Pairwise comparison was first carried out on a single CpG level. For each CpG in the mouse genome (mm10), we 
obtained methylated and unmethylated cytosine counts from the aligned WGBS data and performed Rao Scott 
Likelihood Ratio Test to identify statistically significant differential methylation. This statistical test, typically used 
for association analysis in complex sampling survey analysis (Rao and Scott, 1981, 1984, 1987), is simply a design-
corrected version of the standard likelihood ratio test used in multinomial contingency tables, but it allows design-
based reweighting of the observed counts. Compared to alternative parametric techniques designed for over-
dispersed data such as beta-binomial regression, this test is not computationally intensive, making it feasible to use 
with the millions of CpGs resulting from whole genome studies. The sampling weight for each replicate was 
computed using the total number of methylated/unmethylated base counts across all CpG dinucleotides. CpGs were 
considered differentially methylated only if RSLRT P-value < 0.05, absolute methylation difference > 10%, and 
total weighted coverage ≥ 10 in at least one cohort. Subsequently, differentially methylated CpGs within 5000 bp 
were merged into discrete regions. Next, differential methylation analysis was repeated on the region level using 
RSLRT. Differentially methylated regions were defined as having a Benjamini-Hochberg adjusted DMR level 
RSLRT P-value less than 0.01, absolute methylation difference more than 30% or fold change more than 5, and 
containing at least 2 differentially methylated CpGs. 

BETA Analysis and functional annotation of DMRs 

Binding and expression target analysis (BETA) (Wang et al., 2013) was run on the web server 
(http://cistrome.org/ap/) using default parameters. Overlap of DMRs with annotated genomic features and 
experimentally defined functional genomic elements was performed using EpiExplorer (Halachev et al., 2012), 
which is a web tool allowing users to explore large-scale genomic datasets in search of interesting functional 
associations with user-defined regions. When custom region set was uploaded, EpiExplorer automatically generated 
randomized control regions, simply by reshuffling the genomic positions of all regions in the user-uploaded dataset. 
The randomized control set was automatically included as a reference (in grey) in all bar charts to assess whether the 
association between custom region set and an annotation attribute is biologically relevant. Genomic coordinates of 
DMRs were converted from mm10 to mm9 by CrossMap (Zhao et al., 2014), since EpiExplorer currently supports 
only mm9. The selected overlap criterion is any overlap. The results did not change with at least 10% overlap or at 
least 50% overlap. 

HOMER Motif Analysis 

Each individual CpG site within DMRs was extracted and extended on both sides for 10bp; the resulting regions 
were subsequently merged, if there was any overlap. The HOMER (v4.9.1) motif analysis tool (Heinz et al., 2010) 
was used to identify known transcription factor motifs enriched at the query sequences relative to a size and GC-
matched genomic background. 

Untargeted Lipidomics Analysis 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cistrome.org/ap/


After 100 µL 1x PBS was added to the cell pellets, the mixture was sonicated in an ice/water bath for 15 min. Then 
500 µL chloroform:methanol (2:1, V:V) was added and the mixture was incubated on dry ice for 30 min. After 
centrifuging at 14,000 RPM for 5 min, the lower phase was collected for lipidomics analysis. The lipidomics data 
were collected using a standard metabolic profiling MS method in the NW-MRC (Buas et al., 2016). LC-QTOF-MS 
experiments were performed using an Agilent 1200 SL LC system coupled online with an Agilent 6520 Q-TOF 
mass spectrometer (Agilent Technologies, Santa Clara, CA). Each prepared sample (8 μL for positive ESI ionization, 
12 μL for negative ESI ionization) was injected onto an Agilent Zorbax 300 SB-C8 column (2.1× 50mm, 1.8-μm), 
which was heated to 50 °C. The flow rate was 0.4 mL/min. Mobile phase A was 5 mM ammonium acetate and 0.1% 
formic acid in water, and mobile phase B was 5% water in ACN containing 5 mM ammonium acetate and 0.1% 
formic acid. The mobile phase composition was kept isocratic at 35% B for 1 min, and was increased to 95% B in 
19 min; after another 10 min at 95% B, the mobile phase composition was returned to 35% B. The ESI voltage was 
3.8 kV. The Q-TOF MS spectrometer was calibrated prior to each batch run and a reference channel infusing the 
standard reference mixture (G1969-85001, Agilent Technologies, Santa Clara, CA) was used during the experiments 
to ensure mass accuracy. The mass scan range was 100–1600 Da, and the acquisition rate was 1.5 spectra/s. The Q-
TOF data were extracted using Agilent MassHunter Qualitative Analysis (version B.07.00) and Mass Profiler 
Professional (MPP, version B.13.00) software. The absolute intensity threshold for the LC–Q-TOF data extraction 
was 1000, and the mass accuracy limit was set to 10 ppm. 

Targeted Metabolomics Analysis 

We used methanol:H2O (8:2) to extract aqueous metabolites. The LC-MS/MS data were collected using a standard 
targeted metabolic profiling MS method developed in the NW-MRC that has been used in a growing number of 
studies (Carroll et al., 2015; Gu et al., 2015; Reyes et al., 2014; Sood et al., 2015; Sperber et al., 2015). Briefly, the 
LC-MS/MS experiments were performed on an Agilent 1260 LC (Agilent Technologies, Santa Clara, CA) AB Sciex 
QTrap 5500 MS (AB Sciex, Toronto, Canada) system. Each sample was injected twice, 15 µL for analysis using 
negative ionization mode and 5 µL for analysis using positive ionization mode. Both chromatographic separations 
were performed using hydrophilic interaction chromatography (HILIC) on the Waters XBridge BEH Amide column 
(150 x 2.1 mm, 2.5 µm particle size, Waters Corporation, Milford, MA). The flow rate was 0.3 mL/min. The mobile 
phase was composed of Solvents A (10 mM ammonium acetate in 90% H2O/ 5% acetonitrile/ 5% methanol + 0.3% 
acetic acid) and B (10 mM ammonium acetate in 85% acetonitrile/ 10% H2O / 5% methanol+ 0.3% acetic acid). 
After the initial 1.5 min isocratic elution of 90% B, the percentage of Solvent B was decreased to 45% at t=5 min. 
The composition of Solvent B was maintained at 45% for 5 min (t=10 min), and then the percentage of B was 
gradually increased to 90%, to prepare for the next injection. The metabolite identities were confirmed by spiking 
the pooled serum sample used for method development with mixtures of standard compounds. The extracted MRM 
peaks were integrated using MultiQuant 2.1 software (AB Sciex, Toronto, Canada).  

Metabolomics Data Analysis 

Targeted metabolomics and untargeted lipidomics datasets were first filtered by applying the 80% rule to keep only 
features present in most samples; the retained features were further filtered by variations between QC samples and 
among biological replicates (CV% of QCs <= 30% or CV% of biological replicates < 50%). Missing values were 
replaced with the median of the group. Finally, the data were log2 transformed and two-sample t-test was performed 
to detect differential metabolites.  

Ribo-Zero RNA-Seq and Data Analysis  

RNA sequencing libraries were prepared using the TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero 
H/M/R Gold, following the manufacturer’s instructions. The libraries were sequenced as paired-end 76-mers on an 
Illumina NextSeq 500. Read pairs were filtered based on a mean base quality score more than 20, followed by 
adapter-trimming with CutAdapt (v1.2.1) (parameters –O 5 –q 0). Filtered and trimmed read pairs were mapped to 
the mm10 reference genome with STAR (Dobin et al., 2013) (v2.5) (parameters --outMultimapperOrder Random --
outSAMattrIHstart 0 --outFilterType BySJout --alignSJoverhangMin 8 --limitBAMsortRAM 55000000000). 
Quantification of mapped hits per gene was calculated with Subread featureCounts v1.5.0-p1 (parameters -s2 -Sfr). 
Differentially expressed genes were identified by DESeq2 (Love et al., 2014) (v1.10.1) with a cutoff of padj<0.05 
and |FC|>1.2. The RefSeq gene models downloaded from the UCSC Genome Browser on April 11, 2014, were used 
with gene Rn45s excluded for the analysis.  



Functional Annotation of Obesity-Related Differentially Expressed Genes 

VLAD (Visual Annotation Display; http://proto.informatics.jax.org/prototypes/vlad/) is a tool for visualizing GO 
annotations. VLAD (Version 1.5.1) was run with default parameters. 

IPA core analysis was performed to interpret gene sets in the context of diseases and bio functions (molecular and 
cellular functions). To compare changes in biological states across conditions, IPA comparison analysis was 
performed on two core analyses, HF vs LF and HF-LF vs LF.   

Reactome pathway enrichment analysis (Fabregat et al., 2016) was performed to determine which events (pathways 
and/or reactions) are statistically enriched in obesity-related differentially expressed genes. Reactome 
(http://reactome.org) is a free, open-source, curated and peer-reviewed knowledge-base of biomolecular pathways. 
Pathways in Reactome are organized hierarchically, grouping related detailed pathways into larger domains of 
biological function. This hierarchical organization largely follows that of the Gene Ontology (GO) biological 
process hierarchy. The results of the over-representation analysis are provided as a color-coded interactive list of 
events on the ‘pathways overview’ of the entire Reactome event hierarchy. Each event is colored according to the 
probability (from a hypergeometric test) of seeing a given number or more genes in this event by chance. The darker 
the color, the more significant of the over-representation for a given pathway. 

Single-sample GSEA (ssGSEA)  

ssGSEA (Barbie et al., 2009), an extension of Gene Set Enrichment Analysis (GSEA), calculates separate 
enrichment scores for each pairing of a sample and gene set. Each ssGSEA enrichment score represents the degree 
to which the genes in a particular gene set are coordinately up- or down-regulated within a sample. We used 
ssGSEAProjection (v7) in the GenePattern modules to calculate the enrichment scores of hallmark gene sets 
(Liberzon et al., 2015) (FATTY_ACID_METABOLISM and GLYCOLYSIS) for each sample in the TCGA Colon 
and Rectal Cancer (COADREAD) dataset, which was downloaded from UCSC Xena (http://xena.ucsc.edu/).  
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