
Article
Transcriptome and DNA M
ethylome Analysis in a
Mouse Model of Diet-Induced Obesity Predicts
Increased Risk of Colorectal Cancer
Graphical Abstract
Highlights
d Obesity reprograms mouse colonic DNA methylome, leading

to gene expression changes

d Obesity triggers a metabolic switch favoring long-chain fatty

acids at young age

d Obesity induces a tumor-prone gene signature in the colonic

epithelium after aging

d Obesity-related changes are reversed after long-term, but not

short-term, weight loss
Li et al., 2018, Cell Reports 22, 624–637
January 16, 2018
https://doi.org/10.1016/j.celrep.2017.12.071
Authors

Ruifang Li, Sara A. Grimm,

Deepak Mav, ..., B. Alex Merrick,

Daniel Raftery, Paul A. Wade

Correspondence
wadep2@niehs.nih.gov

In Brief

Li et al. find that obesity-induced DNA

methylation changes reprogram the

colonic transcriptome, leading to a

metabolic switch favoring long-chain

fatty acid oxidation in young mice and a

more tumor-prone gene signature after

aging. Obesity-related changes are

substantially preserved after short-term

weight loss, but they are largely reversed

after long-term weight loss.
Data and Software Availability
GSE85731

GSE100276

mailto:wadep2@niehs.nih.gov
https://doi.org/10.1016/j.celrep.2017.12.071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.12.071&domain=pdf


Cell Reports

Article
Transcriptome and DNAMethylome Analysis
in a Mouse Model of Diet-Induced Obesity
Predicts Increased Risk of Colorectal Cancer
Ruifang Li,1 Sara A. Grimm,2 Deepak Mav,3 Haiwei Gu,5 Danijel Djukovic,5 Ruchir Shah,3 B. Alex Merrick,4

Daniel Raftery,5,6 and Paul A. Wade1,7,*
1Epigenetics and Stem Cell Biology Laboratory
2Integrative Bioinformatics

National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
3Sciome, LLC, 2 Davis Drive, Research Triangle Park, NC 27709, USA
4Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park,

NC 27709, USA
5NorthwestMetabolomics ResearchCenter, Department of Anesthesiology andPainMedicine, University ofWashington, 850Republican St.,
Seattle, WA 98109, USA
6Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
7Lead Contact

*Correspondence: wadep2@niehs.nih.gov
https://doi.org/10.1016/j.celrep.2017.12.071
SUMMARY

Colorectal cancer (CRC) tends to occur at older age;
however, CRC incidence rates have been rising
sharply among young age groups. The increasing
prevalence of obesity is recognized as a major risk,
yet the mechanistic underpinnings remain poorly
understood. Using a diet-induced obesity mouse
model, we identified obesity-associated molecular
changes in the colonic epithelium of young and
aged mice, and we further investigated whether the
changes were reversed after weight loss. Transcrip-
tome analysis indicated that obesity-related colonic
cellular metabolic switch favoring long-chain fatty
acid oxidation happened in young mice, while
obesity-associated downregulation of negative feed-
back regulators of pro-proliferative signaling path-
ways occurred in older mice. Strikingly, colonic
DNA methylome was pre-programmed by obesity
at young age, priming for a tumor-prone gene
signature after aging. Furthermore, obesity-related
changes were substantially preserved after short-
termweight loss, but they were largely reversed after
long-term weight loss. We provided mechanistic in-
sights into increased CRC risk in obesity.

INTRODUCTION

Colorectal cancer (CRC) is the thirdmost common cancer world-

wide (Ferlay et al., 2015). CRC tends to occur at a later age

(>50 years old), however, CRC incidence rates have been

increasing dramatically among young age groups (Siegel et al.,

2017). The increasing prevalence of obesity is recognized as a

major risk for CRC (Renehan et al., 2008), yet the molecular un-

derpinnings of the link remain incompletely resolved, and even
624 Cell Reports 22, 624–637, January 16, 2018
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less is known about the molecular events that initiate the pro-

cess. Mechanistic insights are urgently needed to pave the

way for effective prevention of CRC development in obese hu-

mans. Weight loss seems to be a logical strategy to reduce

CRC risk, but it is unclear whether obesity-associated changes

in the colonic epithelium can be reversed after weight loss.

Epigenetic mechanisms are fundamental to phenotypic

changes induced by environmental and lifestyle factors.

Regarding epigenetic mechanisms underlying the link between

obesity and CRC, DNA methylation is a prime candidate. First,

aberrant DNA methylation is observed in virtually all CRCs

(Lao and Grady, 2011); second, DNA methylation responds to

obesity and weight loss leading to gene expression changes

(Barres et al., 2013); and third, DNA methylation changes can

persist even after the original stress/stimulus is gone (Chen

et al., 2016).

To mimic human obesity, we employed a diet-induced obesity

mouse model, which exhibits metabolic dysfunctions (Collins

et al., 2004) and increased incidence of colon cancer (Tuominen

et al., 2013) as in obese humans. To understand themechanisms

of how obesity and weight loss shape the predisposition to CRC

in mice at physiologically relevant settings as in humans (Jack-

son et al., 2017), we examined molecular pathophysiologic

changes in the colonic epithelium at two time points that are

equivalent to human young (�30 years old) and older age

(�50 years old). Six-week-old male C57BL/6J mice were fed a

low-fat diet for 20 (or 43) weeks (LF: control mice), a high-fat

diet for 20 (or 43) weeks (HF: obese mice), or a high-fat diet

for 15 weeks and then switched to a low-fat diet for another 5

(or 28) weeks (HF-LF: formerly obese mice). To globally map

obesity-associated changes in DNA methylation and gene

expression, we performed whole-genome bisulfite sequencing

(WGBS) and RNA sequencing (RNA-seq) analyses in the colonic

epithelium from those mice (Table S1). We first compared young

and aged obese mice with their age-matched control mice to

gain insights into obesity-induced molecular pathophysiological

changes in the colon at different stages of life, and then we
commons.org/licenses/by/4.0/).
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explored data from formerly obese mice to investigate whether

those changes can be reversed after weight loss.

RESULTS

Dysregulation of Metabolic and Cancer-Related Genes
in Colonic Epithelium of Young Obese Mice
Comparing young obese mice with age-matched control mice,

287 differentially expressed genes (DEGs) were identified using

DESeq2 (Figure 1A; Table S2A). Gene expression changes

were validated using real-time RT-PCR (Figure S1A). To under-

stand the biological functions of obesity-associated DEGs, we

performed Ingenuity Pathway Analysis (IPA) and gene ontology

(GO) analysis. Obesity-associated DEGs were significantly en-

riched with genes involved in metabolic processes, such as lipid

metabolism, carbohydrate metabolism, and energy production,

and they were predominantly associated with cancer (249 of

287 DEGs) and gastrointestinal disease (220 of 287 DEGs) (Fig-

ure 1B; Table S2C). Since metabolic reprogramming is a hall-

mark of cancer (Hanahan and Weinberg, 2011), we asked

whether dysregulated metabolic genes in young obese mice

were related to cancer. Indeed, they largely overlappedwith can-

cer-related DEGs (Figures 1C and S1B). We further examined

whether those dysregulated metabolic genes were also differen-

tially expressed in human CRC. The majority showed the

same direction of change as in young obese mice in at least

one dataset comparing human CRC with normal colon/rectum

(Figure 1D). Taken together, we propose that obesity may

predispose individuals to CRC via reprogramming cellular meta-

bolism in the colonic epithelium.

A Metabolic Switch Favoring Long-Chain Fatty Acid
Oxidation in Colonic Epithelium of Young Obese Mice
Colonocytes normally use butyrate, a short-chain fatty acid

derived from colonic fermentation of dietary fiber, as a major en-

ergy source (Roediger, 1982). Since fecal butyrate production

was reduced in obese mice (data not shown), colonocytes in

obesemicemay switch to other energy sources. In concordance

with the decrease in butyrate, we observed obesity-related

downregulation of Acyl-CoA synthetases (Acss1, Acss2, and

Acsm3) and Acyl-CoA dehydrogenase (Acadsb) that are specif-

ically responsible for short- and medium-chain fatty acid activa-

tion and dehydrogenation during fatty acid oxidation (Table

S2A). In contrast, we noticed obesity-related upregulation of

Slc27a2 and Acaa1b (Table S2A), which are engaged in long-

chain fatty acid activation and thiolysis, respectively, implying

an increase in long-chain fatty acid oxidation; consequently,

the level of C12 acylcarnitine, an intermediate metabolite of

long-chain fatty acid oxidation, increased in the colonic epithe-

lium of young obese mice (Figure S1C). Consistent with the

notion that long-chain fatty acid oxidation inhibits glucose utiliza-

tion (Hue and Taegtmeyer, 2009), we saw concurrent downregu-

lation of glucose metabolism genes, such as Slc2a4 (glucose

transporter), Pfkm (phosphofructokinase), and Pdp1 (PDH phos-

phatase) (Table S2A). Collectively, our data indicate that obesity

triggered a metabolic switch favoring long-chain fatty acid

oxidation in the colonic epithelium. This likely reflects an adapta-

tion to nutrient availability; nevertheless, it can boost colonic
stem cell functions and promote colon tumorigenesis (Beyaz

et al., 2016), as normal and cancer stem cells benefit from active

fatty acid oxidation for their maintenance and function (Carra-

cedo et al., 2013). Moreover, diminished utilization of butyrate

and glucose in colonic epithelium of obese mice resembled

the changes of cellular energy metabolism during colon tumori-

genesis (Zhang et al., 1998).

Altered Colonic Cellular Metabolic Profile in Young
Obese Mice Resembles that of CRC
As a reflection of gene expression changes, the metabolome of

colonic epithelium was also altered in young obese mice. In line

with obesity-associated upregulation of Slc7a9, an amino acid

transporter (Table S2A), targeted metabolomics analysis re-

vealed significant increases in the levels of most amino acids

in the colonic epithelium of young obese mice (Table S3A), remi-

niscent of a metabolic trait observed in human colon cancer (Hir-

ayama et al., 2009). In addition, we detected a significant eleva-

tion in the level of acetylcholine (Figure S1D), which promotes

colon cancer cell proliferation, migration, and invasion (Belo

et al., 2011; Cheng et al., 2008). On the other hand, untargeted

lipidomics analysis showed that phospholipids of specific mo-

lecular species were significantly reduced in the colonic epithe-

lium from young obese mice (Table S3B), in keeping with

obesity-associated dysregulation of phospholipid metabolism

genes, such as Lpcat1 and Lpcat4 (Table S2A). Collectively,

our data demonstrate that obesity-associated gene expression

changes resulted in a cellular metabolic profile reminiscent of

that of colon cancer in many aspects.

Obesity-Related DNA Methylation Changes Occur at
Distal Regulatory Regions
To explore the epigenetic basis of obesity-associated gene

expression changes, we performedWGBS in the colonic epithe-

lium (average coverage >253 and �82.5% of CpGs with

coverage R103 per group; Table S1A). Additionally, we carried

out deep sequencing (>2,5003 coverage) of bisulfite PCR ampli-

cons (BSP-seq) containing 233 randomly selected CpG sites.

Methylation levels of those CpG sites showed a strong correla-

tion between WGBS and BSP-seq (Figure S2A), suggesting

that the WGBS data coverage is sufficient. Since non-CpG

methylation is rare in mouse colonic epithelium (data not shown),

we studied only CpG methylation in detail. In all three experi-

mental groups, the distribution of methylation level of single

CpG sites was largely bimodal (Figure S2B), and promoters

andCpG islandswere lowlymethylatedwhile repetitive elements

(LINE, SINE, and LTR) were highly methylated (Figure S2C), indi-

cating that no global differences in DNA methylation were

observed comparing the three groups.

Next, we used the Rao Scott Likelihood Ratio Test to identify

differentially methylated regions (DMRs); 4,123 regions gained

DNA methylation (hyper-DMRs) and 4,076 regions lost DNA

methylation (hypo-DMRs) in obese mice compared with con-

trol mice (Figure 2A; Table S4A). Although most DMRs are

outside of known gene promoters (Figure 2C), the underlying

DNA sequences of obesity-associated DMRs are conserved

across placental mammals (Figure 2B). We next examined

whether obesity-associated DMRs overlapped with annotated
Cell Reports 22, 624–637, January 16, 2018 625



Figure 1. Obesity-Related DEGs in Young Mice Are Significantly Enriched with Metabolic and Cancer-Related Genes

(A) The heatmap depicts the standardized expression levels of DEGs in young obese mice (HF) relative to control mice (LF). Red indicates overexpression and

blue indicates underexpression.

(B) IPA of obesity-related DEGs in young mice. The top five scoring hits in each functional category are shown, together with p values and the numbers of

dysregulated genes in the enriched terms.

(C) Overlap of dysregulated lipid and carbohydrate metabolism genes with dysregulated cancer-related genes in young obese mice.

(D) The expression changes (blue, underexpression; red, overexpression) of lipid, carbohydrate, and amino acid metabolism genes that were dysregulated in

young obese mice, in human CRC compared with normal colon/rectum. Left and right panels exhibit obesity-related down- and upregulated genes, respectively.

See also Figure S1 and Tables S2 and S3.
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Figure 2. Obesity-Related DNA Methylation Changes Occur at Distal Regulatory Regions

(A) The heatmaps depict DNA methylation levels of DMRs in young obese (HF) and control (LF) mice. Blue indicates unmethylated and red indicates fully

methylated.

(B) The underlying DNA sequences of DMRs are conserved across placental mammals. The average placental PhastCons score was plotted for a 10-kb window

centered at the midpoint of DMRs.

(C) Distance of DMRs to the nearest RefSeq gene transcription start site (TSS).

(D) The percentages of DMRs or matched control regions overlapping with cis-regulatory regions defined using mouse ENCODE data.

See also Figure S2 and Tables S1 and S4.
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genomic features and experimentally defined functional

genomic elements. Higher percentages of DMRs than control

regions coincided with regions marked by H3K4me1,

H3K4me3, and DNase-hypersensitive sites (DHSs), whereas

DMRs rarely occurred at CpG islands (Figure S2D). Further-

more, obesity-associated DMRs significantly overlapped with

cis-regulatory regions (DHSs, promoters, enhancers, and

TFBS) defined using mouse Encyclopedia of DNA Elements

(ENCODE) data from over 100 mouse cell types and tissues

(Figure 2D) (Yue et al., 2014). Notably, a larger number of

DMRs overlapped with enhancers and H3K4me1-marked re-

gions than with promoters and H3K4me3-marked regions (Fig-

ures 2D and S2D). Taken together, obesity-associated DNA

methylation changes in the colonic epithelium mainly occurred

at distal regulatory regions.

Obesity-RelatedDMRsAre Significantly Associatedwith
DEGs
Given that DMRs largely overlapped with regulatory regions in

the genome, we hypothesized that obesity-related DNA methyl-

ation changes may affect gene expression. To test this hypothe-

sis, we employed binding and expression target analysis (BETA)

(Wang et al., 2013). BETA integrates differentially bound/modi-

fied regions (user-defined regions) with differential gene expres-

sion data to determine whether user-defined regions have over-

all activating and/or repressing functions and to detect their

target genes. We ran BETA with hyper-DMRs and hypo-DMRs

separately. Both types of DMRs were significantly enriched

near both up- and downregulated genes, indicating that DNA

methylation at distal regulatory regions may have both activating

and repressing functions (Spruijt and Vermeulen, 2014); how-

ever, hyper-DMRs and hypo-DMRs were more significantly

associated with downregulated and upregulated genes, respec-

tively (Figure 3A). With a rank product (RP, equivalent to p value)

cutoff of less than 0.001, BETA found 321 DMR target genes. A

subset of them (108) were significantly differentially expressed

(Figure 3B), while the rest exhibited a clear trend toward differen-

tial expression, although they did not reach statistical signifi-

cance (Figures S3A and S3B), suggesting that obesity-associ-

ated DNA methylation changes are complementary to, but not

exclusively overlapping with, changes in gene expression. Other

than directly regulating transcription, altered DNA methylation

may reflect historical changes or prime for future changes in

gene expression.

To infer the biological impacts of obesity-associated DNA

methylation changes, we performed IPA of DMR target genes.

They were predominantly involved in cancer (267 of 321) and

gastrointestinal disease (229 of 321), and they were significantly

enriched with lipid and carbohydrate metabolism genes (Fig-

ure 3C). Correlations between DNA methylation and gene

expression were shown at several metabolic genes (Figures 3D

and S3C). Overall, obesity-associated DNAmethylation changes

were significantly associated with gene expression changes in

the colonic epithelium, especially at metabolic genes related to

cancer, in keeping with the notion that aberrant DNAmethylation

at distal regulatory regions regulates gene expression and mod-

ulates the predisposition to cancer (Aran and Hellman, 2013;

Aran et al., 2013).
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Obesity-Related DNA Methylation Changes Also Prime
for Future Changes in Gene Expression
To test whether obesity-related DNAmethylation changes prime

for future gene expression changes at a later stage of life, we ran

BETA with obesity-related DMRs from young mice and differen-

tial gene expression data from aged mice. We reasoned that, if

that is true, those DMRs should also show significant association

with obesity-related DEGs from aged mice. In fact, those DMRs

exhibited even more significant associations with DEGs from

aged mice, especially with downregulated genes, than with

DEGs from young mice (Figure 4).

Next, we explored the mechanistic explanation for that. Since

a substantial number of DMRs overlapped with regulatory re-

gions (Figures 2D and S2D) and DNA methylation changes

may affect transcription factor binding at those sites, we thus

searched for transcription factor motifs enriched at obesity-

associated DMRs using Hypergeometric Optimization of Motif

Enrichment (HOMER) motif analysis (Heinz et al., 2010) (Table

S4C). We then determined upstream regulators of obesity-

related DEGs from aged mice using Ingenuity upstream regu-

lator analysis (Table S5B). We found that obesity-associated

DMRs from young mice are enriched with motifs of transcription

factors that are upstream regulators of obesity-related DEGs

from aged mice (Tables S4C and S5B). For example, DMRs

are enriched with binding sites of ELK1, ELK4, and E2F

transcription factors (Figure S4A). E2F family members play

important roles in cell cycle progression, while ELK1 and ELK4

are cofactors of serum response factor (SRF) (Buchwalter

et al., 2004), which regulates many immediate early genes

(Schratt et al., 2001). Concordantly, we observed differential

expression of their target genes, such as immediate early genes

and genes related to cell cycle, in aged obese mice compared

with age-matched control mice (Figures S4B and S4C). Alto-

gether, our data suggest that obesity may imprint regulatory re-

gions at young age, priming for future changes in gene expres-

sion at a later stage of life.

A Tumor-Prone Gene Signature in the Colonic
Epithelium of Aged Obese Mice
Next, we explored the biological functions of dysregulated genes

in obesemice at a later stage of life, which is equivalent to the age

of a human when CRC incidence rate dramatically increases.

Obesity-associated downregulated genes in aged mice are

mainly related to signal transduction and transcriptional regula-

tion (Figure 5B; Tables S5A, S5D, S5E, and S5G). We observed

decreased expression of negative regulators of several signaling

pathways (Table S5A), including the EGFR/RTK-RAS-ERK/

MAPK cascade (Errfi1, Spry1, Rasa4, Dusp1, and Dusp5) (Ferby

et al., 2006; Hanafusa et al., 2002; Lockyer et al., 2001; Mandl

et al., 2005; Slack et al., 2001), nuclear factor kB (NF-kB) signaling

(Nfkbia, Nfkbiz, and Tnfaip3) (Renner and Schmitz, 2009; Shem-

bade et al., 2010), transforming growth factor b (TGF-b) signaling

(Smad6, Smad7, and Spsb1) (Imamura et al., 1997; Liu et al.,

2015; Nakao et al., 1997), JAK/STAT signaling (Cish) (Yoshimura,

1998), andmTORC1 (Mark4) (Li andGuan, 2013). These signaling

pathways control cell proliferation, differentiation, migration, and

survival; hence their dysregulations play important roles in tumor

development and progression.



Figure 3. Obesity-Related DMRs Are Significantly Associated with DEGs

(A) BETA with hyper-DMRs (left panel) or hypo-DMRs (right panel) and differential gene expression data (obese versus control) from young mice. The dotted line

represents background genes not differentially expressed, whereas the red and the blue lines represent up- and downregulated genes in obese mice,

respectively. The y axis indicates the proportion of genes in a category that are ranked at or better than the x axis value, which represents the rank on the basis of

the regulatory potential score from high to low. The p values listed on the top left represent the significance of the UP or DOWNgroup relative to the NON group, as

determined by Kolmogorov-Smirnov test.

(B) Overlap of DMR target genes with obesity-related DEGs from young mice.

(legend continued on next page)
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Figure 4. Obesity-Related DNA Methylation

Changes at Young Age Prime for Future

Gene Expression Changes after Aging

(A) BETA with obesity-related DMRs from young

mice and differential gene expression data from

aged mice.

(B) The enrichment scores of DMRs within 100 kb

of obesity-related up- or downregulated genes

from young and agedmice. In the box and whisker

plot, the box indicates the 25th to 75th percentile,

whiskers indicate 1.5 times the inter-quartile dis-

tance.

See also Figure S4 and Table S4.
Normally, intracellular signal transduction is kept under tight

control via negative feedback loops to ensure physiologically

appropriate signaling outcomes. With downregulation of nega-

tive feedback regulators (Table S5A), the braking system of

those signaling pathways were dampened in aged obese mice,

potentially leading to unrestrained signaling. In parallel with

this, the Jun N-terminal kinase (JNK) and p38 MAPK pathways,

which are also called stress-activated protein kinase (SAPK)

pathways, were likely attenuated in aged obese mice due to

reduced expression of key mediators of SAPK pathways

(Map4k2, Map4k5, and Mapk12) (Table S5A) (Chin et al., 1999;

Pombo et al., 1995; Shi et al., 1999). SAPK pathways are acti-

vated by various types of environmental and pathophysiological

stresses with anti-proliferative and pro-apoptotic effects.

Given that the colonic epithelium is under more cell-intrinsic

and -extrinsic stresses in obese mice than in control mice (Gul-

hane et al., 2016), the attenuation of SAPK pathways in aged

obese mice might be a result of cell-autonomous adaptation to

sustained stresses. Nevertheless, the insensitivity to anti-growth

signals likely provides an advantage for cells to survive and pro-

liferate under stressful conditions. In addition, downregulated

genes in aged obese mice were significantly enriched with tran-

scription factors (Table S5E), some of which are encoded by pri-

mary response genes. A total of 35 primary response genes were

downregulated in aged obese mice (Figure 5C), including both

immediate early genes and delayed early genes (Amit et al.,

2007; Tullai et al., 2007); the majority were also downregulated

in human CRC compared with normal colorectal tissue or colo-

rectal adenoma (Figures S5A and S5B), presumably reflecting in-

dependence of mitogenic signals—a hallmark of cancer. Since

delayed early genes are potential tumor suppressors (Amit

et al., 2007), we investigated whether downregulated genes

are enriched for tumor suppressor genes (Zhao et al., 2016). A

substantial number of tumor suppressor genes were repressed

in aged obese mice (Figure 5D). Collectively, downregulation of
(C) IPA of DMR target genes. The top five scoring hits in each functional category are shown, together with p

enriched terms.

(D) Correlation between DNA methylation and gene expression at several metabolic genes.

Error bars indicate SD. See also Figure S3.
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those genes in aged obese mice likely

weakens proliferation barriers, thus fa-

voring cell-autonomous growth.
Consistently, obesity-associated upregulated genes in aged

mice are significantly associated with cell cycle, DNA replication,

DNA repair, and chromatin organization (Figure 5A; Tables S5A,

S5C, and S5F), including genes with functions in nucleosome as-

sembly, centromeres, kinetochore organization, spindle assem-

bly checkpoint, and chromosome condensation and segregation

(Table S5C). In addition, we observed increased expression of

genes involved in amino acid biosynthetic process, aminoacyl-

tRNA biosynthesis, and deoxyribonucleotide biosynthetic pro-

cess in aged obese mice (Tables S5A and S5C), presumably ful-

filling the enhanced requirements for protein and DNA synthesis

during cell proliferation. Accordingly, subunits of complex I of the

respiratory chain (Ndufa3, Ndufa4, Ndufa8, and Ndufa12) and a

subunit of mitochondrial ATP synthase (Atp5g1) were also upre-

gulated (Table S5A), likely generating more energy to fuel the

enhanced biosynthetic reactions and cell division. Collectively,

upregulation of those genes may reflect increased cell prolifera-

tion of the colonic epithelium in aged obese mice compared with

age-matched controls (Beyaz et al., 2016), even though no colon

tumors were present in those mice.

Reversibility of Obesity-Related Colonic Changes after
Short- and Long-Term Weight Loss
To investigate whether obesity-related changes in the colonic

epithelium can be reversed after weight loss, we put mice on a

high-fat diet for 15 weeks to induce obesity, and then we

switched them to a low-fat diet for 5 weeks to trigger weight

loss. Body weights of these mice returned to normal by the

end of the study (Figure 6A). We then analyzed DNA methylation

and gene expression data from these formerly obese mice. We

clustered obesity-related DMRs into 6 groups (C1–C6) based

on their methylation levels in formerly obese mice; C1 retained

methylation changes, C2 lost methylation changes, while

C3 and C4 exhibited intermediate methylation levels after

weight loss (Figure S6A). Among obesity-related DMRs, 1,215
values and the number of DMR target genes in the



Figure 5. A Tumor-Prone Gene Signature in the Colonic Epithelium of Aged Obese Mice

(A and B) The results of Reactome pathway enrichment analysis are shown for up- (A) and downregulated genes (B) in aged obese mice. The Reactome hier-

archical pathway structure is shown with color corresponding to the significance of p values. The darker color is more significant.

(C) The heatmap depicts the standardized expression levels of the 35 primary response genes in aged obese and control mice.

(D) Overlap of tumor suppressor genes (TSGs) with downregulated genes in aged obese mice. Overlap p value was calculated using hypergeometric test.

See also Figure S5 and Table S5.
hyper-DMRs and 1,040 hypo-DMRs retained methylation

changes after weight loss (Figure 6B; Table S4B). Retained

DMRs were associated with genes primarily involved in cancer
and cellular functions pertinent to cancer, such as cell death

and survival, cell-to-cell signaling and interaction, cellular devel-

opment, and cellular growth and proliferation (Figure 6C). Two
Cell Reports 22, 624–637, January 16, 2018 631



examples (Hoxb13 and Spry1) with persistent changes after

weight loss were shown (Figure S3C). Altogether, our data re-

vealed an epigenetic memory of the previous obese state in

the colonic epithelium after short-term weight loss.

We used multiple approaches to assess the similarity of gene

expression changes in formerly obese mice and obese mice.

First, using overlap analysis, we found that 107 obesity-associ-

ated DEGs (51 upregulated and 56 downregulated) were also

significantly dysregulated in formerly obese mice in the same di-

rection as in obese mice (Figure S6B). These commonly dysre-

gulated genes were predominantly associated with cancer

(102 of 107) and gastrointestinal disease (96 of 107), and they

were significantly enriched for lipid and carbohydrate meta-

bolism genes (Figure S6C; Table S2E). Second, we performed hi-

erarchical clustering of samples on obesity-associated dysregu-

lated metabolic genes. Formerly obese mice were clustered

together with obese mice instead of control mice (Figure 6D),

indicating that the expression levels of those genes in formerly

obese mice were more close to those in obese mice than in con-

trol mice. Lastly, comparing enriched diseases and biological

functions in formerly obese mice with those in obese mice, we

noted that the two groups were significantly enriched with the

same terms, mainly related to intestinal tumor and lipid and car-

bohydrate metabolism (Figures 6E and S6D; Tables S2C and

S2D). Taken together, persistent changes in gene expression

were observed after short-term weight loss, primarily at genes

closely related to colon cancer.

Considering that those formerly obese mice just returned to

normal weight after 5 weeks of diet-switching, to investigate

whether obesity-related dysregulation of gene expression can

be completely reversed after long-term weight loss, we per-

formed RNA-seq in the colonic epithelium of mice with diet-

switching for 28 weeks. Body weights of these mice returned

to normal after 5 weeks of diet-switching, and they stayed at

the same level as control mice since then (Figure S6E). Using hi-

erarchical cluster analysis based on expression levels of obesity-

related DEGs, we found that, after long-term weight loss,

formerly obese mice were clustered together with control mice

instead of obese mice (Figure S6F), indicating that obesity-

related gene expression changes were also largely reversed.

Collectively, obesity-related changes in DNA methylation and

gene expression were substantially preserved after short-term

weight loss, but gene expression changes mostly went back to

normal after long-term weight loss.

Fatty Acid Metabolism Is Correlated with Clinical
Outcomes of CRC Patients
The genes altered in obese mice at both life stages are

involved in fatty acid metabolism (Figures S5C and S5D).

The best-known metabolic perturbation in cancer cells is the

Warburg effect, increased glycolysis even in the presence of

oxygen, while alterations in fatty acid metabolism in cancer

cells are less well studied. Therefore, we examined the

changes in fatty acid metabolism in CRC. Most genes involved

in short- and long-chain fatty acid oxidation exhibited signifi-

cantly lower expression in CRCs than in adjacent normal tis-

sues (Figure S7A). The heterogeneity of fatty acid metabolism

among CRCs (Figure S7A) prompted us to investigate whether
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metabolic features of CRCs are related to clinical outcomes of

CRC patients.

We characterized metabolic features of CRCs based on their

changes in fatty acid metabolism and glycolysis. Single-sample

gene set enrichment analysis (ssGSEA) (Barbie et al., 2009) was

used to assess gene set enrichment score, which represents

activation level of the corresponding biological process, for

380 primary CRCs along with 50 adjacent normal tissues from

The Cancer Genome Atlas (TCGA) database. CRC samples

were then stratified into four groups based on the degrees of

downregulation of fatty acid metabolism and upregulation of

glycolysis (Figures 7A and S7D). Decreased fatty acid meta-

bolism was significantly associated with poor overall survival of

CRC patients; however, increased glycolysis had no significant

impact on patient overall survival (Figures 7C, 7D, and S7B).

Moreover, CRC samples with decreased fatty acid metabolism

showedmore lymphatic invasion (Figures 7B and S7C). Although

it is the first and most common metabolic abnormality observed

in cancer, theWarburg effect might just reflect ametabolic adap-

tation associated with rapid cell proliferation (Figure S7E) (Shyh-

Chang et al., 2013). In contrast, since tumor cells generally retain

substantially the metabolic feature of corresponding normal tis-

sue (Hu et al., 2013), the degree of fatty acid metabolism decline

in CRC likely represents the extent of deviation from normal co-

lon, thus showing better clinical relevance.

DISCUSSION

Cellular metabolism was once thought to be a mere conse-

quence of cellular state; it is now recognized as a key player in

cell fate determination (Shyh-Chang et al., 2013). Colonic gene

expression changes in young obese mice suggest a metabolic

switch favoring long-chain fatty acid oxidation in the colonic

epithelium (Table S2A; Figure S1C). Active fatty acid oxidation

is important for themaintenance and function of normal and can-

cer stem cells (Carracedo et al., 2013). As butyrate, themajor en-

ergy source of differentiated colonocytes, inhibits intestinal

stem/progenitor cell proliferation (Kaiko et al., 2016), we

reasoned that long-chain fatty acid oxidation may be essential

to intestinal stem cells. Indeed, Beyaz et al. (2016) recently re-

ported that long-chain fatty acid treatment led to the increased

number and enhanced function of intestinal stem cells through

the induction of PPAR-d target genes that are involved in long-

chain fatty acid oxidation. Since enforced PPAR-d activation

also augmented stemness of intestinal progenitor cells and

boosted their capacity to initiate tumors (Beyaz et al., 2016),

we postulate that long-chain fatty acid oxidationmay play impor-

tant roles in intestinal cell fate determination and intestinal tumor

initiation. Therefore, our data suggest that obesity-associated

colonic cellular metabolic reprogramming at young age can be

an initiating event, which promotes colon tumor development

by increasing the number of cells with tumorigenic potential. In

addition, fatty acid metabolism was associated with clinical out-

comes of CRC patients (Figures 7B and 7C). Future research is

needed to elucidate the relationship between obesity and

cellular metabolism in CRC.

The epigenetic machinery is highly responsive to metabolic

cues, because it relies on intermediatemetabolites as substrates



Figure 6. Persistent Changes in DNA Methylation and Gene Expression after Short-Term Weight Loss

(A) Weekly body weight of control mice (LF), obese mice (HF), and formerly obese mice (HF-LF) after diet-switching. Data are represented as mean ± SEM (n = 5).

(B) The heatmaps depict DNA methylation levels of retained DMRs in each group. Blue and red indicate unmethylated and fully methylated, respectively.

(C) IPA of genes associated with retained DMRs. The top five scoring hits in each functional category are shown, together with p values and the number of retained

DMR-associated genes in the enriched terms.

(D) Hierarchical clustering of samples at obesity-associated dysregulated metabolic genes. Ward’s method was used with Euclidean distance calculated using

standardized gene expression levels.

(E) IPA comparison analysis showing the similarity between formerly obese mice and obese mice regarding the enriched diseases and biological functions.

See also Figure S6 and Table S2.
or cofactors (Sharma and Rando, 2017). Obesity-related dysre-

gulation of colonic cellular metabolism was accompanied by

comprehensive DNA methylation changes, which were enriched
at regulatory regions (Figure 2). Strikingly, these DNA methyl-

ation changes were significantly associated with future gene

expression changes (Figure 4). Epigenetic priming at enhancers
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Figure 7. Fatty Acid Metabolism Is Associated with the Clinical Outcomes of CRC Patients

(A) Stratification of CRC samples based on ssGSEA enrichment scores of two hallmark gene sets, FATTY_ACID_METABOLISM and GLYCOLYSIS.

(B) The percentages of CRC patients with lymphatic invasion in the two groups defined by the fatty acid metabolism signature of their tumor samples.

(C and D) Kaplan-Meier plots depict the overall survival of CRC patients stratified by either fatty acid metabolism (C) or glycolysis (D) in their tumor samples.

See also Figure S7.
was observed during developmental processes (Wang et al.,

2015). Presumably, it also plays roles in obesity-related patho-

logic processes. Hence, our data imply that, in addition to imme-

diate effects, obesity may have latent deleterious effects, which

are pre-programmed in the DNAmethylome and would manifest

over time, if the individual is continuously obese. Persistent

obesity led to the attenuation of proliferation barriers after aging.

A striking feature of colonic gene expression changes, in

aged obese mice compared with age-matched controls, is the

downregulation of integral components of SAPK pathways

and the downregulation of negative feedback regulators of

pro-survival and pro-proliferative signaling pathways, including

the EGFR/RTK-RAS-ERK/MAPK cascade, NF-kB signaling,

TGF-b signaling, JAK/STAT signaling, and mTORC1 (Table
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S5A). These comprehensive dysregulations of signaling net-

works could lead to extensive changes in vital cellular

processes, especially in cell proliferation and survival. In

supporting this hypothesis, intestinal crypts from aged obese

mice (�1 year old) exhibited niche-independent growth and

better survival and regeneration after irradiation (Beyaz et al.,

2016). The attenuation of feedback inhibition at multiple tiers

of pro-proliferative cascades and the diminishment of anti-pro-

liferative signaling break the balance for homeostatic regulation,

rendering the cells hypersensitive to otherwise limiting amounts

of growth factors and probably even capable of cell-autono-

mous proliferation independent of exogenous mitogenic

signals, and meanwhile resistant to stress signals. Hence, we

propose that cell-intrinsic rewiring of signal transduction



networks in response to long-term obesity may facilitate malig-

nant transformation of colonic epithelial cells.

Remarkably, obesity-related changes in DNA methylation and

gene expression were substantially preserved after short-term

weight loss, but gene expression changes were largely reversed

after long-term weight loss (Figures 6 and S6), suggesting that

obesity-related pathophysiological process in the colonic

epithelium can be prevented with long-term weight loss. Thus,

it is important for obese individuals to lose weight early.

In summary, we profiled colonic DNA methylome, transcrip-

tome, and metabolome to identify obesity-related molecular

pathophysiological changes in the colon. Those changes

were not due to alterations of cell composition in the colonic

epithelium, since no significant expression changes of cell-

type-specific marker genes were observed in obese mice

(Table S6). We provided novel mechanistic insights into how

obesity increases CRC risk at different stages of life. At young

age, obesity was associated with a colonic cellular metabolic

switch favoring long-chain fatty acids, which were previously

demonstrated to boost the numbers of intestinal stem/stem-

like cells (Beyaz et al., 2016). Consequently, the chance is

increased for an obese individual to gain oncogenic mutations

in colonic stem cells. After aging, obesity was associated with

decreased expression of tumor suppressor genes and negative

feedback regulators of pro-survival and pro-proliferation

signaling pathways. These changes prime for unrestrained

signaling to accelerate the initiation and progression of colon

tumorigenesis once oncogenic events occur. It should be noted

that, without additional oncogenic driving force, obesity-related

colonic molecular changes unlikely lead to colon cancer. Since

the mice in our study were raised in a specific pathogen-free

environment, no colon tumors were observed at the end of

the study. However, obesity-related colonic molecular changes

increase the odds of colon cancer development and progres-

sion, if they co-occur with oncogenic insults. Therefore, the life-

time risk of CRC increases in the obese.

Although colon tumors occur less frequently than small intes-

tine tumors in mice unlike humans (Newmark et al., 2009), we

used mouse colon as a proxy of human colon due to their simi-

larities in tissue structure, cell composition, and physiological

functions. One limitation of our study is that only male mice

were used. Since female obese mice exhibited similar patterns

of changes as male obese mice in colonic enhancer landscape

and intestinal stem/progenitor cell functions (Beyaz et al.,

2016; Li et al., 2014), we predict that it is also the case for DNA

methylation and gene expression changes.
EXPERIMENTAL PROCEDURES

Mice

Six-week-old male C57BL/6J mice were fed either a low-fat diet (10% fat

diet, D12450B; Research Diets) or a high-fat diet (60% fat diet, D12492;

Research Diets). The source of fat in the diets is lard. Specifically, five mice

were put on each dietary regimen as follows: (1) low-fat diet for 20 (or 43)

weeks; (2) high-fat diet for 20 (or 43) weeks; and (3) high-fat diet for an initial

15 weeks and then switched to a low-fat diet for another 5 (or 28) weeks. The

mice were housed in a specific pathogen-free facility. Body weight was

measured weekly after diet-switching. At the end of the study, the mice

were humanely euthanized and the colons were collected for further experi-
ments. All animal experiments were approved by the NIEHS Animal Care and

Use Committee, and they were performed according to NIH guidelines for

care and use of laboratory animals.

Isolation of the Colonic Epithelium and DNA/RNA Preparation

The colonic epithelium was isolated as previously described (Li et al., 2014).

Genomic DNA and total RNA were extracted from the cells using QIAGEN

AllPrep DNA/RNA/miRNA Universal Kit. See also the Supplemental Experi-

mental Procedures.

mRNA Sequencing and Data Analysis

mRNA sequencing libraries were prepared using the TruSeq Stranded

mRNA Sample Prep Kit (Illumina) and sequenced on HiSeq 2000 (paired-

end 50 bp). Sequencing reads were mapped against mm10 reference

genome using TopHat (Trapnell et al., 2009). Mapped read counts per an-

notated gene were collected with HTSeq-Count (Anders et al., 2015).

DESeq2 (Love et al., 2014) was then used to identify DEGs (jfold changej
> 1.2, p < 0.01, and adjusted p value < 0.25). See also the Supplemental

Experimental Procedures.

WGBS and Data Processing

Genomic DNA was sonicated to an average size of 200 bp using a Covaris

S220 instrument. DNA fragments were end-repaired, adenylated, and ligated

to Illumina-compatible adaptors using BIOO NEXTflex Bisulfite-Seq Kit. Bisul-

fite conversion was performed using EZ DNA Methylation-Lightning Kit (Zymo

Research). PCR was then carried out to enrich bisulfite-converted and

adaptor-ligated fragments. The libraries were sequenced on Nextseq 500

(paired-end 75 bp). According to the coverage recommendations for WGBS

(Ziller et al., 2015), we sequenced five biological replicates per group and

achieved an average coverage >53 per sample.

Sequencing reads were mapped to mm10 reference genome via Bismark

(Krueger and Andrews, 2011) with Bowtie as the underlying alignment tool. Du-

plicates were removed, and any redundant mapped bases due to overlapping

mates from the same read pair were trimmed. Furthermore, read cycles

showing methylation bias on M-bias plot were trimmed from each mapped

hit. The observed bisulfite conversion rate was >99%. See also the Supple-

mental Experimental Procedures.

DMR Detection

Rao Scott Likelihood Ratio Test (Rao and Scott, 1981, 1987) was used to

identify differentially methylated CpG sites. CpGs were considered differen-

tially methylated only if they had an RSLRT p value < 0.05, absolute methyl-

ation difference >10%, and total weighted coverageR10. Next, differentially

methylated CpGs within 5,000 bp were merged into discrete regions. Finally,

differential methylation analysis was repeated on the region level using

RSLRT. Differentially methylated regions were defined as having a

Benjamini-Hochberg adjusted DMR level RSLRT p value < 0.01, absolute

methylation difference >30% or fold change >5, and containing at least 2

differentially methylated CpGs. See also the Supplemental Experimental

Procedures.

Ribo-Zero RNA-Seq and Data Analysis

RNA-seq libraries were prepared using TruSeq Stranded Total RNA Library

Prep Kit with Ribo-Zero H/M/R Gold (Illumina) and sequenced on Illumina

NextSeq 500 (paired-end 76 bp). Read pairs were filtered by a mean base

quality score >20, followed by adaptor-trimming with CutAdapt, and then

they were mapped to mm10 reference genome with spliced transcripts align-

ment to a reference (STAR) (Dobin et al., 2013). Mapped hits per gene was

calculated with Subread featureCounts. DEGs were identified by DESeq2

(Love et al., 2014) with a cutoff of padj < 0.05 and jFCj > 1.2. See also the Sup-

plemental Experimental Procedures.

Statistics

Data analysis was performed using Partek and GraphPad Prism. The heat-

maps were prepared using Partek. Overlap significance was calculated using

hypergeometric test. Body weights and gene expression data were repre-

sented as mean ± SEM.
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Figure S1

overlap p-value = 3.336e-232 

Figure S1. Differentially expressed metabolic genes and altered metabolites in colonic epithelium of young
obese mice, related to Figure 1. (A) Validation of RNA-Seq data using real-time RT-PCR. Gene expression levels
were normalized to that of Gapdh. Data are represented as mean ± SEM (n=5). (B) Overlap of dysregulated 
genes involved in metabolic processes with dysregulated cancer-related genes in young obese mice. Overlap p-
value was calculated using hypergeometric test. (C and D) Levels of C12-carnitine and acetylcholine in colonic 
epithelium from young obese and control mice. Y-axis indicates the area of peak from targeted metabolome 
analysis.
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Figure S2, related to Figure 2. (A) WGBS and BSP-Seq showed strong correlation of the methylation levels of 233 
randomly selected CpG sites. (B) Bimodal distribution of DNA methylation at individual CpG sites. (C) Global 
methylation levels of promoters, CpG islands, and repetitive elements (LINE, SINE, and LTR). The blue and red dots 
represent the median and the mean, respectively. (D) Percentage of DMRs or matched control regions overlapping 
with annotated genomic features and experimentally defined functional genomic elements. Upper panel: hyper 
DMRs; lower panel: hypo DMRs.
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Figure S3. DMR-target genes without significant differential expression, related to Figure 3. (A) Heatmap depicts 
the standardized expression levels of 213 non-DEG-overlapping DMR-target genes in control mice (LF) and obese 
mice (HF). (B) Obese mice and control mice were well separated by Principal Components Analysis (PCA), based 
on expression levels of 213 non-DEG-overlapping DMR-target genes. (C) Examples of correlation between DNA 
methylation and gene expression. 
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p-value 
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enrichment) 

p-value  
(DEG upstream 

regulator) 
E2F4 GGCGGGAAAH 1.00E-08 2.14E-19 
E2f TTSGCGCGAAAA 1.00E-03 2.23E-08 
ELK4 NRYTTCCGGY 1.00E-13 2.62E-10 
ELK1 HACTTCCGGY 1.00E-06 1.62E-05 

Figure S4. Examples of transcription factors with binding motifs enriched at DMRs and also serving as upstream 
regulators of DEGs in aged obese mice, related to Figure 4. (A) The p-values from HOMER motif enrichment analysis 
and IPA upstream regulator analysis were shown for the following transcription factors: E2F, ELK1, and ELK4. (B and 
C) Differential expression of the target genes of E2F, ELK1 and ELK4. Red indicates up-regulation while Green 
indicates down-regulation of genes in aged obese mice relative to age-matched controls.
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Figure S5

Figure S5, related to Figure 5. (A and B) Heatmaps display relative expression of the 35 primary response genes in 
human colorectal cancer compared with normal colorectal tissue (A) and benign colorectal tumor (B). (C) 
Overlap of obesity-related DEGs in young and aged mice. (D) GO_BP terms enriched with consistently altered 
genes in both young and aged obese mice.   



Retained Reversed Intermediate Extreme

C1=1215 C2=944 C3=998 C4=934 C5=24

C1=1040

C6=8

C2=1025 C3=977 C4=1010 C5=14 C6=10

0.50

0.00

-0.50

0.50

0.00

-0.50

Name p-value #Molecules 
Diseases and Disorders 
Cancer 1.45E-02 - 2.76E-09 102 
Gastrointestinal Disease 1.50E-02 - 2.76E-09 96 
Organismal Injury and Abnormalities 1.50E-02 - 2.76E-09 102 
Developmental Disorder 1.50E-02 - 2.51E-05 15 
Hereditary Disorder 1.50E-02 - 2.51E-05 27 

 Molecular and Cellular Functions 
   Lipid Metabolism 1.50E-02 - 1.01E-06 31 
Small Molecule Biochemistry 1.50E-02 - 1.01E-06 38 
Molecular Transport 1.50E-02 - 1.72E-04 29 
Carbohydrate Metabolism 1.50E-02 - 2.33E-04 17 
Cell Morphology 1.50E-02 - 4.97E-04 29 

78    51    221

Up-regulated genes

HF-LF vs LF

HF vs LF

102    56    217 

Down-regulated genes

HF-LF vs LF
HF vs LF

GO:0032787 10.05 6.08 monocarboxylic acid metabolic process 
GO:0006629 8.56 6.73 lipid metabolic process 
GO:0019752 8.25 6.20 carboxylic acid metabolic process 
GO:0044255 7.88 7.69 cellular lipid metabolic process 
GO:0043436 7.46 6.87 oxoacid metabolic process 
GO:0006631 7.29 4.77 fatty acid metabolic process 
GO:0006082 7.28 7.06 organic acid metabolic process 
GO:0072330 5.99 2.27 monocarboxylic acid biosynthetic process 
GO:0044281 5.54 8.05 small molecule metabolic process 
GO:1901615 5.25 1.68 organic hydroxy compound metabolic process 
GO:0008610 4.91 3.46 lipid biosynthetic process 
GO:0042445 4.29 5.43 hormone metabolic process 
GO:0006639 4.26 3.31 acylglycerol metabolic process 
GO:0006638 4.18 3.22 neutral lipid metabolic process 
GO:0046394 4.14 1.47 carboxylic acid biosynthetic process 
GO:0016053 4.14 1.47 organic acid biosynthetic process 
GO:0010876 4.01 3.90 lipid localization 
GO:0033559 3.97 2.77 unsaturated fatty acid metabolic process 
GO:0006633 3.94 1.23 fatty acid biosynthetic process 
GO:0006641 3.85 2.42 triglyceride metabolic process 

-log10(p-value)

HF vs
 LF

HF-LF
 vs

 LF

A B

D

Figure S6

C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0

10

20

30

40

50

60

70

Time after switching diet (weeks)

Bo
dy

 w
ei

gh
t (

g)
LF

HF-LF
HF

E

Aged mice
F

Figure S6. Obesity-related changes in DNA methylation and gene 
expression were substantially preserved after short-term weight loss but 
were largely reversed after long-term weight loss, related to Figure 6. (A) 
Obesity-associated DMRs were clustered into 6 groups based on their 
methylation levels in formerly obese mice (short-term). The number of 
DMRs in each group was shown in the upper-right corner. (B) Overlap of 
DEGs in formerly obese mice (short-term) with DEGs in obese mice. (C) 
Ingenuity Pathway Analysis of commonly dysregulated genes. The top five 
scoring hits in each functional category are shown, together with p-values 
and the number of commonly dysregulated genes in enriched terms. (D) 
Comparison of enriched GO terms in formerly obese mice (short-term) 
with that in obese mice. Colors indicate the significance of p-values with 
darker red being more significant and white being non-significant. The 
numbers are -log10 of p values. (E) Weekly body weight of control (LF), 
obese (HF), and formerly obese (HF-LF) mice from the long-term weight 
loss study (diet-switching for 28 weeks). Data are represented as mean ± 
SEM (n=4 or 5). (F) Hierarchical clustering of samples on obesity-related 
differentially expressed genes in aged mice. Ward's method was used with 
Pearson’s Dissimilarity calculated using standardized gene expression levels.  
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Figure S7, related to Figure 7. (A) Heatmap displays normalized expression of short- and long-chain fatty acid 
oxidation genes in primary colorectal cancer and adjacent normal tissue. Red correlates with higher expression. The 
statistical track, which is displayed under the gene heatmap, shows the -log (p-value) for each gene comparing primary 
colorectal cancer with adjacent normal tissue. (B) Kaplan-Meier plot depicts the overall survival of CRC patients 
stratified by the metabolic features of their tumor samples. (C) The percentages of CRC patients in the four defined 
groups harboring lymphatic invasion. (D) Heatmap displays normalized ssGSEA enrichment scores of gene sets 
specific for SCFA and LCFA metabolism. (E) Average expression levels of PCNA and MKI67 in CRC samples of each 
group.  



Supplemental Experimental Procedures 

Isolation of Colonic Epithelium 

Colonic epithelium was isolated as previously described (Li et al., 2014). Briefly, the entire colon was removed from 
each mouse, flushed with PBS without calcium and magnesium, and then cut open longitudinally. After being 
washed two more times, the colon was placed in PBS with 5 mM EDTA to incubate at 37 °C for 15 min on a rotator. 
Finally, the colon tissue was removed and colonic epithelium was pelleted and washed twice with PBS. The cells 
were used immediately or snap frozen in liquid nitrogen and stored at -80 °C. 

DNA and RNA Preparation 

Genomic DNA and total RNA were isolated using the Qiagen AllPrep DNA/RNA/miRNA Universal Kit according 
to the manufacturer’s instructions. The concentrations of DNA and RNA were measured using the NanoDrop 
spectrophotometer. The quality of DNA and RNA was assessed by agarose gel electrophoresis and Bioanalyzer, 
respectively. 

Real-Time RT-PCR 

cDNA was generated using the iScript™ cDNA Synthesis Kit (Biorad, catalog #170-8890). Relative expression 
levels of Fabp6, Pfkfb3, Pck1, and Scd1 were determined by real-time PCR assays using TaqMan® Gene 
Expression Assay kits (Applied Biosystems). Gene expression levels were normalized to that of Gapdh.  

mRNA Sequencing and Data Analysis   

mRNA sequencing libraries were prepared using the TruSeq Stranded mRNA Sample Prep Kit (Illumina, #RS-122-
2103). Starting with 100 ng of total RNA, polyadenylated RNA (primarily mRNA) was selected and purified using 
oligo-dT conjugated magnetic beads. The mRNA was then chemically fragmented and converted into single-
stranded cDNA using reverse transcriptase and random hexamer primers, with the addition of Actinomycin D to 
suppress DNA-dependent synthesis. Double-stranded cDNA was created by removing the RNA template and 
synthesizing the second strand in the presence of dUTP in place of dTTP. A single ‘A’ nucleotide was added to the 3’ 
end of double-stranded cDNA to facilitate ligation of sequencing adapters, which contain a single ‘T’ nucleotide 
overhang. Adapter-ligated cDNA was amplified using polymerase chain reaction (PCR) to increase the amount of 
sequence-ready library. During PCR amplification, the polymerase stalls when it encounters a uracil, rendering the 
second strand a poor template. Accordingly, only the first strand was used as a template, thereby preserving the 
strand information. Final cDNA libraries were analyzed for size distribution using Agilent Bioanalyzer (DNA 1000 
kit, Agilent # 5067-1504), quantitated by qPCR (KAPA Library Quant Kit, KAPA Biosystems # KK4824), and then 
normalized to 2 nM prior to sequencing on HiSeq 2000 (paired-end 50 bp). 

General quality control checks were performed with FastQC v0.14.0 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Each dataset was filtered to retain only sequences for 
which both reads in a pair had an average base quality score of at least 20. Filtered datasets were mapped against the 
mm10 reference genome using TopHat (Trapnell et al., 2009) v2.0.4 (parameters --b2-sensitive --library-type fr-
firststrand -g 10 --mate-inner-dist 40 --mate-std-dev 50). Mapped read counts per annotated gene were collected 
with HTSeq-Count (Anders et al., 2015); the gene models were generated from RefSeq annotations downloaded 
from the UCSC Genome Browser as of April 6, 2014. DESeq2 (Love et al., 2014) v1.2.10 was then used to identify 
differentially expressed genes (|fold change| > 1.2, p < 0.01, and adjusted p-value < 0.25). 

Bisulfite PCR Deep Sequencing  

Bisulfite PCR primers were designed using website: http://www.urogene.org/methprimer/. Genomic DNA was 
bisulfite converted using EZ DNA Methylation-Lightning™ Kit (Zymo Research Corporation) before PCR 
amplification. Amplicons from a single sample were pooled and individually indexed using TruSeq™ RNA Sample 
Preparation kit (Illumina) to create a multiplex library prior to sequencing (250 bp PE) on an Illumina MiSeq 
instrument using v3 chemistry. 

WGBS Data Processing   

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.urogene.org/methprimer/


General quality control checks were performed with FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Filtered sequencing datasets were mapped to a 
reference genome via Bismark (Krueger and Andrews, 2011) v0.14.0 (parameters -X 10000 --non_bs_mm -n 2 -l 50 
-e 70 --chunkmbs 1024), using Bowtie (Langmead et al., 2009) v0.12.8 as the underlying alignment tool. The 
reference genome contains the genome sequence of Enterobacteria phage λ in addition to all chromosomes of the 
mm10 assembly (GRCm38).  Mappings for all datasets generated from the same library were merged, and 
duplicates were removed via the deduplication tool included in the Bismark package. Mapped reads were then 
separated by genome (mouse or phage λ) and by source strand (plus or minus). Any redundant mapped bases due to 
overlapping mates from the same read pair were trimmed to avoid bias in quantification of methylation status. 
Furthermore, read cycles where methylation bias was observed (typically at the 5’ end and sometimes also at the 3’ 
end of reads) were trimmed from each mapped hit.  Precise boundaries of the trim positions were gleaned from the 
M-bias plot generated by Bismark’s bismark_methylation_extractor tool; the M-bias plot for each 
sample/sequencing run combination was evaluated independently. Read pairs mapped to phage λ were used as a QC 
assessment to confirm that the observed bisulfite conversion rate was > 99%. Read pairs mapped to the mouse 
reference genome were used for downstream analysis. 

DMR Detection 

Pairwise comparison was first carried out on a single CpG level. For each CpG in the mouse genome (mm10), we 
obtained methylated and unmethylated cytosine counts from the aligned WGBS data and performed Rao Scott 
Likelihood Ratio Test to identify statistically significant differential methylation. This statistical test, typically used 
for association analysis in complex sampling survey analysis (Rao and Scott, 1981, 1984, 1987), is simply a design-
corrected version of the standard likelihood ratio test used in multinomial contingency tables, but it allows design-
based reweighting of the observed counts. Compared to alternative parametric techniques designed for over-
dispersed data such as beta-binomial regression, this test is not computationally intensive, making it feasible to use 
with the millions of CpGs resulting from whole genome studies. The sampling weight for each replicate was 
computed using the total number of methylated/unmethylated base counts across all CpG dinucleotides. CpGs were 
considered differentially methylated only if RSLRT P-value < 0.05, absolute methylation difference > 10%, and 
total weighted coverage ≥ 10 in at least one cohort. Subsequently, differentially methylated CpGs within 5000 bp 
were merged into discrete regions. Next, differential methylation analysis was repeated on the region level using 
RSLRT. Differentially methylated regions were defined as having a Benjamini-Hochberg adjusted DMR level 
RSLRT P-value less than 0.01, absolute methylation difference more than 30% or fold change more than 5, and 
containing at least 2 differentially methylated CpGs. 

BETA Analysis and functional annotation of DMRs 

Binding and expression target analysis (BETA) (Wang et al., 2013) was run on the web server 
(http://cistrome.org/ap/) using default parameters. Overlap of DMRs with annotated genomic features and 
experimentally defined functional genomic elements was performed using EpiExplorer (Halachev et al., 2012), 
which is a web tool allowing users to explore large-scale genomic datasets in search of interesting functional 
associations with user-defined regions. When custom region set was uploaded, EpiExplorer automatically generated 
randomized control regions, simply by reshuffling the genomic positions of all regions in the user-uploaded dataset. 
The randomized control set was automatically included as a reference (in grey) in all bar charts to assess whether the 
association between custom region set and an annotation attribute is biologically relevant. Genomic coordinates of 
DMRs were converted from mm10 to mm9 by CrossMap (Zhao et al., 2014), since EpiExplorer currently supports 
only mm9. The selected overlap criterion is any overlap. The results did not change with at least 10% overlap or at 
least 50% overlap. 

HOMER Motif Analysis 

Each individual CpG site within DMRs was extracted and extended on both sides for 10bp; the resulting regions 
were subsequently merged, if there was any overlap. The HOMER (v4.9.1) motif analysis tool (Heinz et al., 2010) 
was used to identify known transcription factor motifs enriched at the query sequences relative to a size and GC-
matched genomic background. 

Untargeted Lipidomics Analysis 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cistrome.org/ap/


After 100 µL 1x PBS was added to the cell pellets, the mixture was sonicated in an ice/water bath for 15 min. Then 
500 µL chloroform:methanol (2:1, V:V) was added and the mixture was incubated on dry ice for 30 min. After 
centrifuging at 14,000 RPM for 5 min, the lower phase was collected for lipidomics analysis. The lipidomics data 
were collected using a standard metabolic profiling MS method in the NW-MRC (Buas et al., 2016). LC-QTOF-MS 
experiments were performed using an Agilent 1200 SL LC system coupled online with an Agilent 6520 Q-TOF 
mass spectrometer (Agilent Technologies, Santa Clara, CA). Each prepared sample (8 μL for positive ESI ionization, 
12 μL for negative ESI ionization) was injected onto an Agilent Zorbax 300 SB-C8 column (2.1× 50mm, 1.8-μm), 
which was heated to 50 °C. The flow rate was 0.4 mL/min. Mobile phase A was 5 mM ammonium acetate and 0.1% 
formic acid in water, and mobile phase B was 5% water in ACN containing 5 mM ammonium acetate and 0.1% 
formic acid. The mobile phase composition was kept isocratic at 35% B for 1 min, and was increased to 95% B in 
19 min; after another 10 min at 95% B, the mobile phase composition was returned to 35% B. The ESI voltage was 
3.8 kV. The Q-TOF MS spectrometer was calibrated prior to each batch run and a reference channel infusing the 
standard reference mixture (G1969-85001, Agilent Technologies, Santa Clara, CA) was used during the experiments 
to ensure mass accuracy. The mass scan range was 100–1600 Da, and the acquisition rate was 1.5 spectra/s. The Q-
TOF data were extracted using Agilent MassHunter Qualitative Analysis (version B.07.00) and Mass Profiler 
Professional (MPP, version B.13.00) software. The absolute intensity threshold for the LC–Q-TOF data extraction 
was 1000, and the mass accuracy limit was set to 10 ppm. 

Targeted Metabolomics Analysis 

We used methanol:H2O (8:2) to extract aqueous metabolites. The LC-MS/MS data were collected using a standard 
targeted metabolic profiling MS method developed in the NW-MRC that has been used in a growing number of 
studies (Carroll et al., 2015; Gu et al., 2015; Reyes et al., 2014; Sood et al., 2015; Sperber et al., 2015). Briefly, the 
LC-MS/MS experiments were performed on an Agilent 1260 LC (Agilent Technologies, Santa Clara, CA) AB Sciex 
QTrap 5500 MS (AB Sciex, Toronto, Canada) system. Each sample was injected twice, 15 µL for analysis using 
negative ionization mode and 5 µL for analysis using positive ionization mode. Both chromatographic separations 
were performed using hydrophilic interaction chromatography (HILIC) on the Waters XBridge BEH Amide column 
(150 x 2.1 mm, 2.5 µm particle size, Waters Corporation, Milford, MA). The flow rate was 0.3 mL/min. The mobile 
phase was composed of Solvents A (10 mM ammonium acetate in 90% H2O/ 5% acetonitrile/ 5% methanol + 0.3% 
acetic acid) and B (10 mM ammonium acetate in 85% acetonitrile/ 10% H2O / 5% methanol+ 0.3% acetic acid). 
After the initial 1.5 min isocratic elution of 90% B, the percentage of Solvent B was decreased to 45% at t=5 min. 
The composition of Solvent B was maintained at 45% for 5 min (t=10 min), and then the percentage of B was 
gradually increased to 90%, to prepare for the next injection. The metabolite identities were confirmed by spiking 
the pooled serum sample used for method development with mixtures of standard compounds. The extracted MRM 
peaks were integrated using MultiQuant 2.1 software (AB Sciex, Toronto, Canada).  

Metabolomics Data Analysis 

Targeted metabolomics and untargeted lipidomics datasets were first filtered by applying the 80% rule to keep only 
features present in most samples; the retained features were further filtered by variations between QC samples and 
among biological replicates (CV% of QCs <= 30% or CV% of biological replicates < 50%). Missing values were 
replaced with the median of the group. Finally, the data were log2 transformed and two-sample t-test was performed 
to detect differential metabolites.  

Ribo-Zero RNA-Seq and Data Analysis  

RNA sequencing libraries were prepared using the TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero 
H/M/R Gold, following the manufacturer’s instructions. The libraries were sequenced as paired-end 76-mers on an 
Illumina NextSeq 500. Read pairs were filtered based on a mean base quality score more than 20, followed by 
adapter-trimming with CutAdapt (v1.2.1) (parameters –O 5 –q 0). Filtered and trimmed read pairs were mapped to 
the mm10 reference genome with STAR (Dobin et al., 2013) (v2.5) (parameters --outMultimapperOrder Random --
outSAMattrIHstart 0 --outFilterType BySJout --alignSJoverhangMin 8 --limitBAMsortRAM 55000000000). 
Quantification of mapped hits per gene was calculated with Subread featureCounts v1.5.0-p1 (parameters -s2 -Sfr). 
Differentially expressed genes were identified by DESeq2 (Love et al., 2014) (v1.10.1) with a cutoff of padj<0.05 
and |FC|>1.2. The RefSeq gene models downloaded from the UCSC Genome Browser on April 11, 2014, were used 
with gene Rn45s excluded for the analysis.  



Functional Annotation of Obesity-Related Differentially Expressed Genes 

VLAD (Visual Annotation Display; http://proto.informatics.jax.org/prototypes/vlad/) is a tool for visualizing GO 
annotations. VLAD (Version 1.5.1) was run with default parameters. 

IPA core analysis was performed to interpret gene sets in the context of diseases and bio functions (molecular and 
cellular functions). To compare changes in biological states across conditions, IPA comparison analysis was 
performed on two core analyses, HF vs LF and HF-LF vs LF.   

Reactome pathway enrichment analysis (Fabregat et al., 2016) was performed to determine which events (pathways 
and/or reactions) are statistically enriched in obesity-related differentially expressed genes. Reactome 
(http://reactome.org) is a free, open-source, curated and peer-reviewed knowledge-base of biomolecular pathways. 
Pathways in Reactome are organized hierarchically, grouping related detailed pathways into larger domains of 
biological function. This hierarchical organization largely follows that of the Gene Ontology (GO) biological 
process hierarchy. The results of the over-representation analysis are provided as a color-coded interactive list of 
events on the ‘pathways overview’ of the entire Reactome event hierarchy. Each event is colored according to the 
probability (from a hypergeometric test) of seeing a given number or more genes in this event by chance. The darker 
the color, the more significant of the over-representation for a given pathway. 

Single-sample GSEA (ssGSEA)  

ssGSEA (Barbie et al., 2009), an extension of Gene Set Enrichment Analysis (GSEA), calculates separate 
enrichment scores for each pairing of a sample and gene set. Each ssGSEA enrichment score represents the degree 
to which the genes in a particular gene set are coordinately up- or down-regulated within a sample. We used 
ssGSEAProjection (v7) in the GenePattern modules to calculate the enrichment scores of hallmark gene sets 
(Liberzon et al., 2015) (FATTY_ACID_METABOLISM and GLYCOLYSIS) for each sample in the TCGA Colon 
and Rectal Cancer (COADREAD) dataset, which was downloaded from UCSC Xena (http://xena.ucsc.edu/).  
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