Supplementary Figure 1

		cg16936953	cg12054453	cg01409343	cg18942579	cg02782634	cg14032089	cg27023597	cg04276626	cg02515217	cg15759721	cg07181702	Pearson r
cg16936953	VMP1 (Exon)	1,00	0,89	0,94	0,93	0,90	0,89	0,90	0,82	0,94	0,92	0,89	0,00
cg12054453	VMP1 (Exon)	0,89	1,00	0,88	0,87	0,74	0,73	0,82	0,67	0,82	0,76	0,75	0,10
cg01409343	VMP1 (Exon)	0,94	0,88	1,00	0,92	0,81	0,83	0,87	0,74	0,89	0,85	0,86	0,20
cg18942579	VMP1 (Intron)	0,93	0,87	0,92	1,00	0,83	0,79	0,89	0,72	0,87	0,85	0,83	0,30
cg02782634	VMP1 (Intron)	0,90	0,74	0,81	0,83	1,00	0,89	0,78	0,91	0,91	0,96	0,91	0,40
cg11032089	MIR21 (TSS1500)	0,89	0,73	0,83	0,79	0,89	1,00	0,81	0,87	0,91	0,91	0.87	0,50
cg27023597	MIR21 (TSS1500)	0,90	0,82	0,87	0,89	0,78	0,81	1,00	0,73	0,87	0,83	0,84	0,60
cg04276626	MIR21 (TSS200)	0,82	0,67	0,74	0,72	0,91	0,87	0,73	1,00	0,87	0,91	0,86	0,70
cg02515217	MIR21 (TSS200)	0,94	0,82	0,89	0,87	0,91	0,91	0,87	0,87	1,00	0,92	0,94	0,80
cg15759721	MIR21 (Body)	0,92	0,76	0,85	0,85	0,96	0,91	0,83	0,91	0,92	1,00	0,92	0,90
cg07181702	MIR21 (Body)	0,89	0,75	0,86	0,83	0,91	0,87	0,84	0,86	0,94	0,92	1,00	1,00

Supplementary Figure 1: Correlation between DNA methylation levels at 11 CpGs in the region. Analysis was performed on β -values from RR-MS, SP-MS and HC (n=32) using the Pearson correlation test and Pearson's r is displayed.

Supplementary Figure 1: Correlation between DNA methylation levels at 11 CpGs in the region.

154x64mm (600 x 600 DPI)

Supplementary Methods

Samples

Multiple Sclerosis cohorts

A discovery cohort comprised RR-MS, SP-MS and matched healthy controls (HC) recruited at the local Neurology clinic at the Karolinska University Hospital in Stockholm, Sweden. Detailed patient demographics are provided in Table 1. An independent cohort comprising RR-MS, SP-MS, inflammatory neurological disease controls (INDC) and HC was recruited at the same clinic and used for validation. Detailed patient demographics are provided in Table S1. All patients had given informed consent and the study was approved by the ethical review board of Stockholm (2009/2107-31/2 and 2010/879-31/1).

The GOLDN cohort

The Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study, aimed at investigating genetic and epigenetic determinants of response to interventions targeting blood lipid levels, recruited families with at least two siblings from the National Heart, Lung, and Blood Institute Family Heart Study sites at Minneapolis and Salt Lake City. The study obtained epigenome-wide DNA methylation data on CD4+ T-cells using the Illumina Infinium 450K Human Methylation Beadchip as described in previous publications¹⁻³. Genotyping of GOLDN participants was performed using the Affymetrix Genome-Wide Human 6.0 array⁴. After all quality control procedures were performed, 717 out of 994 participants had both genetic and epigenetic data and were included in this analysis. The Institutional Review Board (IRB) approved the GOLDN study (E160405007).

Preparation of CD4+ T cells

For the discovery cohort peripheral blood mononuclear cells (PBMCs) were isolated and collected in sodium heparin tubes using a standard Ficoll (GE Healthcare) procedure. Cells were separated using density gradient centrifugation, collected from the interphase, washed twice in Dulbecco's phosphate buffered saline and prepared for cell sorting. Sorting of the CD4⁺ T cell population was performed by adding fluorochrome-conjugated antibodies against human CD4 (Becton Dickinson) and CD3 (BD Bioscience) using a MoFlo high-speed cell sorter (Beckman Coulter).

For the validation cohort PBMCs were isolated from peripheral blood using sodium citratecontaining cell preparation tubes (BD Vacutainer[™] CPT[™] Tube, Becton Dickinson), Sorting of the CD4+ T cell population was performed by adding microbeads against human CD4 using an autoMACS® cell separator (Miltenyi Biotec).

Directly after sorting, cell pellets were frozen and kept at -80C° until DNA/RNA extraction.

DNA extraction

Extraction of genomic DNA was carried out using a Gen Elute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich). The amount and quality of DNA was accessed by NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies).

DNA methylation analysis

DNA methylation was profiled using the Infinium HumanMethylation450 BeadChip (Illumina) arrays at the bioinformatics and expression analysis core facility (BEA) at Karolinska Institutet. Methylation data was individually analyzed in R using the Minfi and ChAMP package, probes containing SNPs within 2 bp of the CpG were removed, and type 1 and type 2 probes were normalized using quantile normalization and BMIQ⁵. The sex of the patients was confirmed

using the GetSex function from the Minfi package and the cell type was confirmed using the cell type deconvolution method from Minfi based on the Houseman algorithm⁶. Significant cofounders were identified using PCA. Batch effects were corrected using ComBat from the SVA package⁷. Differentially methylated positions (DMPs) were determined by using the limma package⁸ applying a linear modeling that included MS status, age and sex as co-variates. Differences were calculated between HC and RR-MS and RR-MS and SP-MS. Additionally any significant differences between all three groups were identified using the moderated F-statistic test included in eBayes⁹.

Meta-analysis

Meta-analysis on the 11 CpG probes was performed by combining the outcomes of the analyses between RR-MS and HC using β -values from the cohorts from Sweden (n=24), Norway (n=30) and Australia (n=40). Comparison of RR-MS with HC was performed on β -values and corrected for age in the Norwegian and Australian cohort (comprising females only), and age and sex in the Swedish cohort. Due to the strong impact of age on the methylation in the *MIR21* region only individuals with available age information and age-matched HC where retained for analysis. Similar data were obtained with all individuals (data not shown). We used two different meta-analysis methodologies: (1) the "summation of p value" method for combining p-values¹⁰, and (2) the effect-size based meta-analysis using a fixed effect model (estimated by restricted maximumlikelihood) since there was no evidence of significant heterogeneity¹¹. Similar outcome to "summation of p value" was obtained using the Fisher's test for combining p-values (data not shown). To conduct the meta-analysis we used the R packages metaphor and metap.

Pyrosequencing

A representative CpG within miR21 locus exhibiting significant DNA methylation differences in the Illumina 450K array (cg07181702) was selected for pyrosequencing validation. Primers were designed using PyroMark Design software (Qiagen) (Fwd: GAA ATG TTT GGG TTT TTT TGG TTT G, Rev: ACC CAT CCA CTA ATA TTA CCA TAA AAT TCA, sequencing: ATT CAA CAA TCA ACA TCA AT). Genomic DNA (200 ng) was bisulfite-converted using an EpiTect Bisulfite Kit (Qiagen), bisulfite-converted DNA was eluted in 20 µl of elution buffer and ~15 ng was applied as a template in the PCR performed with the PyroMarks PCR kit (Qiagen) using 5'-biotinylated forward primer. The entire PCR product, 4 pmol of the sequencing primer, and streptavidin sepharose high-performance beads (GR Healthcare), were used for pyrosequencing on the PSQ 96 system and PyroMark Gold 96 reagent kit (Qiagen). The PyroMark CpG software 1.0.11 (Qiagen) served for data analysis.

RNA extraction

For subsequent qPCR analysis total RNA from the discovery and independent sample cohort was isolated using standard TRIzol protocol (Invitrogen) and Allprep Total RNA/DNA Kit (Qiagen), respectively, according to manufacturer's recommendations. RNA concentration and purity were determined by measurement of A260/A280 ratios with a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies). For subsequent transcriptome analysis RNA, was extracted using the miRNeasy Kit (Qiagen) according to manufacturer's recommendations. The RNA integrity was determined using Bioanalyzer (Agilent Technologies). All samples had an RNA integrity number (RIN) above 8. All RNA samples obtained from the different preparations were immediately frozen and stored at –80°C until further use.

Quantitative real-time PCR analysis

Expression levels of miR-21 were determined by quantitative real-time PCR (qRT-PCR) using TagMan MicroRNA Assay Kit specific for mature miR-21 (No: 000397, Applied Biosystems) following the manufacturer's protocol. Expression levels were quantified by the CFX384 Real-Time PCR Detection System and analyzed using CFX manager software (Bio-Rad). Relative quantification of miRNA was quantified using the $2-\Delta\Delta CT$ method and normalized against RNU48 for each sample. For VMP1 expression detection cDNA was converted from RNA using the Bio-Rad iScript cDNA sythesis Kit (Bio-Rad). VMP1 expression was accessed by qPCR (fwd 5'-GGT GCT GAA CCA AGA TGA-3'; rev 5'-GCA CTG TGT TGG CGT ACA G-3') using CFX384 Real-Time detection system and analyzed by CFX manager software (Bio-Rad). Cycling conditions were as follows 95C° for 2 min followed by 40 repeats at 95 C° for 20 s, 58C° for 20 s and 72C° for 30 s. VMP1 expression was normalized to beta actin reference gene (fwd 5'-GAC TTC GAG CAA GAG ATG G-3' rev 5'-GCA CTG TGT TGG CGT ACA G-3') for every sample and quantified using the $2-\Delta\Delta CT$ method. Statistical analysis between the groups was performed using Student's t-test (for two groups) and ANOVA with Bonferroni correction for selected groups (for more than two groups), and correlation between expression and methylation levels was assessed using Pearson's correlation test in GraphPad Prism 5 (GraphPad).

Genotyping

Allelic discrimination of rs8070345 (in the *VMP1* locus) was performed using a predesigned TaqMan SNP Genotyping Assay (Cat. No: 4351379, Applied Biosystems) according to the manufacturer's protocol. PCR amplification was done in a CFX384 Real-Time PCR Detection System (Bio-Rad) and results were read on a QuantStudio TM 7 Flex system (Applied Biosystems).

Association and correlation analysis

In the GOLDN cohort we used the *lmekin* function of the R *kinship* package to fit linear mixed effects models with the methylation β -value at each of the interrogated CpG sites as the outcome and the following predictors: SNP, age, sex, study site (Utah vs. Minnesota), current smoking (yes vs. no), body mass index, 4 principal components capturing T-cell purity³ (as fixed effects), and family (as a random effect). We additionally fit linear regression models with the methylation β -value at each CpG site as the outcome and the non-genetic predictors, namely age, smoking, and BMI, and the T-cell purity principal components.

In the Multiple Sclerosis cohort we fit linear regression model with the methylation β -value at each of the interrogated CpG sites as the outcome and the following predictors: SNP, age and sex. We additionally fit linear regression model with the methylation β -value at each of the interrogated CpG sites as the outcome and the following predictors: age, sex, Multiple Sclerosis Severity Score (MSSS) and lymphocyte count. All analyses were done in Rcmd.

Transcriptome analysis

Total RNA (500ng) with RIN above 8.0, was subjected to the Illumina TruSeq Stranded mRNA Library Preparation Protocol with Dual Indexes (Cat. No: RS-122-2013, Illumina). Libraries were quantified using the Kapa Library Quantification Kit (Cat. No: KK4824, Illumina). Sequencing was carried out on the Illumina HiSeq 2500 to generate 75bp Paired End Data with an average of 10M reads above Q30. The sequence reads were mapped to hg19 reference with Tophat2¹² and HTSeq¹³ was used to quantify counts-per-gene. The expression data from CD4⁺ cells (34 samples) were normalized with Conditional Quantile Normalization (CQN) method¹⁴ followed by batch reduction by ComBat⁷. Differential expression analysis was conducted using limma tool⁸ in order to identify differences between disease types.

Target gene enrichment analysis

Genes identified as miR-21 targets in Jurkat T cells by RIP-Chip (Czepiel *et al.*, ISBN 978-90-367-6788-0) and genes predicted and experimentally validated to be miR-21 targets by TarBase7.0¹⁵ were selected for further investigation. Deviation of up- and down-regulated miR-21 target genes from the expected ratio of up-and down-regulated genes in RNAseq analysis (for p-values of 0.1, 0.05 and 0.01) was calculated for both lists of miR-21 target genes using a Chisquared test. Enrichment of up- and down-regulated targets among differentially expressed targets in RNAseq analysis (for p-values of 0.1, 0.05 and 0.01) was calculated for both lists of miR-21 target genes using the Fisher's exact test in GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA). Similar results were obtained when predicted miR-21 target genes were based on being predicted by a minimum of the two of the following tools: miR-21 targets in Jurkat cells, miRTar, TarBase7.0, TargetScan7.1 and microT-CDS.

Ingenuity Pathways Analysis

Two list of genes, 1) differentially expressed genes between RR-MS and HC (p<0.05) and 2) TarBase7.0-predicted miR-21 target genes up-regulated in RR-MS compared to HC (p<0.05) from RNAseq analysis were uploaded to the Ingenuity Pathways Analysis platform (Qiagen). The first list was used to assess significant up-stream regulators that can explain observed gene expression changes estimated by the overlap p-value, which is calculated using Fisher's exact test and significance is generally attributed to p<0.01. The activation z-score is used to infer the activation states of predicted upstream regulators and z<-2 and z>2 indicate significantly inhibited and activated upstream regulators, respectively. The second list of genes was used to infer the affected by miR-21. Right-tailed Fisher's exact test was used to calculate a p-value determining the probability that each biological function assigned to

that data set is due to chance alone. Benjamini-Hochberg correction for multiple testing was used to calculate significant p-values.

References

1. Absher DM, Li X, Waite LL, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. *PLoS genetics*. 2013; 9: e1003678.

2. Zhi D, Aslibekyan S, Irvin MR, et al. SNPs located at CpG sites modulate genomeepigenome interaction. *Epigenetics*. 2013; 8: 802-6.

3. Irvin MR, Zhi D, Joehanes R, et al. Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study. *Circulation*. 2014; 130: 565-72.

4. Aslibekyan S, Kabagambe EK, Irvin MR, et al. A genome-wide association study of inflammatory biomarker changes in response to fenofibrate treatment in the Genetics of Lipid Lowering Drug and Diet Network. *Pharmacogenetics and genomics*. 2012; 22: 191-7.

5. Marabita F, Almgren M, Lindholm ME, et al. An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. *Epigenetics*. 2013; 8: 333-46.

6. Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. *BMC bioinformatics*. 2012; 13: 86.

7. Johnson WE, Li C and Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*. 2007; 8: 118-27.

8. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic acids research*. 2015; 43: e47.

 Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Statistical applications in genetics and molecular biology*.
2004; 3: Article3.

10. Edgington ES. An additive method for combining probability values from independent experiments. *J Psychol.* 1972; 80: 351-63.

11. Hedges LV and Olkin I. Statistical methods for meta-analysis. *San Diego: Academic Press.* 1985.

12. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R and Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome biology*. 2013; 14: R36.

13. Anders S, Pyl PT and Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinformatics*. 2015; 31: 166-9.

14. Hansen KD, Irizarry RA and Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. *Biostatistics*. 2012; 13: 204-16.

15. Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. *Nucleic acids research*. 2015; 43: D153-9.

Cohort	Status	Gender	Age	EDSS	MSSS
discovery	RR-MS remissior	F	37	3	2.91
discovery	RR-MS remission	F	40	0	0.67
discovery	RR-MS remission	М	44	1.5	
discovery	RR-MS remission	М	40	0.5	2.44
discovery	RR-MS remission	F	26	1	5.87
discovery	RR-MS remission	F	29	2	5.87
discovery	RR-MS remission	М	34	2	4.3
discovery	RR-MS remission	F	35	1	1.13
discovery	RR-MS remission	F	46	5	3.44
discovery	RR-MS remission	F	37	1.5	3.34
discovery	RR-MS remission	М	29	1	0.88
discovery	RR-MS remission	М	32	3	3.05
discovery	RR-MS remission	F	57	2.5	4.13
discovery	RR-MS remission	F	41	2	0.71
discovery	SP-MS	М	45	4	2.82
discovery	SP-MS	М	50	6.5	5.99
discovery	SP-MS	М	56	6.5	5.99
discovery	SP-MS	F	62	7	7.97
discovery	SP-MS	F	63	5	
discovery	SP-MS	F	56	8	8.75
discovery	SP-MS	F	35	5	7.32
discovery	SP-MS	F	60	5	5.82
discovery	SP-MS	М	44	6	5.43
discovery	SP-MS	F	53	6	6.01
discovery	SP-MS	F	53	6.5	5.61
discovery	SP-MS	F	50	3.5	4.55
discovery	HC	F	60		
discovery	HC	F	44		
discovery	HC	М	31		
discovery	HC	F	35		
discovery	НС	М	31		
discovery	НС	F	48		
discovery	НС	F	28		
discovery	НС	М	30		
discovery	НС	F	30		
discovery	НС	F	28		
discovery	НС	F	27		
discovery	НС	F	32		
discovery	НС	F	62		
discovery	НС	Μ	44		
discovery	НС	М	54		
Summarized d	iscovery cohort 4	50K; mean (range):			
RR-MS		9F (75%) / 3M (25%)	38 (26-57)	2,0 (0-5,0)	2,9 (0,7-5,9)
SP-MS		4F (50%) / 4F (50%)	50 (35-63)	5,2 (3,5-6,5)	5,4 (2,8-7,3)

нс		8F (67%) / 4M (33%)	42 (28-62)	N/A	N/A
Summarized di	scovery cohort R	NA-seq, mean (range):		·	·
RR-MS		6F (54%) / 5M (46%)	36 (26-46)	1,8 (0-5,0)	3,1 (0,7-5,9)
SP-MS		7F (64%) / 4M (36%)	52 (35-63)	6,0 (4,0-8,0)	6,2 (2,8-8,8)
нс		7F (58%) / 5M (42%)	40 (27-62)	N/A	N/A
validation	CIS - RR-MS	F	41		
validation	CIS - RR-MS	F	50		
validation	RR-MS relapse	F	54		
validation	RR-MS relapse	F	38		
validation	RR-MS remissior	F	36		
validation	RR-MS remission	F	33		
validation	RR-MS remissior	М	48		
validation	RR-MS remissior	F	34		
validation	RR-MS remissior	F	52		
validation	RR-MS remissior	F	31		
validation	RR-MS remissior	F	27		
validation	RR-MS remissior	F	73		
validation	RR-MS remission	М	23		
validation	RR-MS remission	М	37		
validation	RR-MS remission	М	52		
validation	RR-MS remission	М	36		
validation	RR-MS remission	Μ	45		
validation	RR-MS remission	F	29		
validation	RR-MS remission	F	32		
validation	RR-MS remission	F	29		
validation	RR-MS remission	Μ	34		
validation	RR-MS remissior	F	40		
validation	RR-MS remission	F	34		
validation	RR-MS remissior	F	27		
validation	RR-MS remission	Μ	28		
validation	RR-MS remission	F	31		
validation	RR-MS remissior	F	50		
validation	RR-MS remissior	F	35		
validation	RR-MS remissior	F	31		
validation	RR-MS remissior	F	24		
validation	SP-MS	F	54		
validation	SP-MS	М	47		
validation	SP-MS	М	57		
validation	SP-MS	F	41		
validation	SP-MS	F	51		
validation	SP-MS	F	65		
validation	SP-MS	F	36		
validation	SP-MS	F	51		
validation	SP-MS	F	52		
validation	SP-MS	F	59		

validation	SP-MS	М	59	
validation	HC	F	22	
validation	НС	F	23	
validation	HC	М	35	
validation	HC	М	28	
validation	HC	F	33	
validation	НС	М	35	
validation	HC	М	23	
validation	НС	М	21	
validation	НС	F	22	
validation	НС	F	34	
validation	нс	М	30	
validation	HC	М	40	
validation	INDC	F	47	
validation	INDC	М	53	
validation	INDC	F	32	
validation	INDC	F	64	
validation	INDC	F	40	
validation	INDC	М	51	
validation	INDC	F	68	
validation	INDC	F	53	
validation	INDC	F	74	
Summarized	validation Cohort			
RR-MS patier	nts	22F (73%) / 8M (27%)	38 (23-73)	
SP-MS patier	nts	8F (73%) / 3M (27%)	52 (36-65)	
HC		5F (42%) / 7M (58%)	29 (21-40)	
INDC		7F (78%) / 2M (22%)	54 (32-74)	

1.7 never Tx X X 1.8 never Tx X X 1.8 never Tx X X 1.8 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 1.6 IVIg X X 2.2 no Tx Fingolimod X X 1.6 IVIg X X X 1.6 no Tx IFN X X 1.6 no Tx IFN X X 1.6 never Tx X X X 1.6 never Tx X X X 2.3 no Tx IFN X X 2.3 no Tx IFN X X 2.0 no Tx IFN X X 1.8 no Tx IFN, Copaxone, IFN X	Lymphocytes	Treatment at sampling	Treatment prior to sampling	450K	RNAseq
1.8 never Tx X X 1.8 never Tx X X 2.4 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 2.2 no Tx Fingolimod X X 2.1 no Tx Fingolimod X X 1.6 IVlg X X X 2.7 study drug X X X 1.6 no Tx IFN X X 1.6 no Tx Study drug X X 1.6 never Tx X X X 2.3 no Tx Study drug X X 2.3 no Tx IFN X X 2.3 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Study drug X X 2.0 <td>1.7</td> <td>never Tx</td> <td></td> <td>Х</td> <td>Х</td>	1.7	never Tx		Х	Х
1.8 never Tx X X 2.4 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 1.6 IVIg X X 2.2 no Tx Fingolimod X X 1.6 IVIg X X X 2.7 study drug X X X 1.6 no Tx IFN X X 1.6 no Tx Study drug X X 1.6 never Tx X X X 2.7 no Tx Study drug X X 1.6 never Tx X X X 2.3 no Tx IFN X X 2.0 no Tx IFN X X 1.5 no Tx IFN, Copaxone X X 2.0 no Tx </td <td>1.8</td> <td>never Tx</td> <td></td> <td>Х</td> <td>Х</td>	1.8	never Tx		Х	Х
never Tx X 2.4 never Tx X X 1.7 never Tx X X 1.7 never Tx X X 1.6 IVIg X X 2.2 no Tx Fingolimod X X 1.6 IVIg X X X 2.7 study drug X X X 1.6 no Tx IFN X X 1.6 no Tx study drug X X 1.6 never Tx X X X 2.3 no Tx IFN X X 2.0 no Tx IFN X X 2.1 never Tx X X X 2.2 never Tx X X X 2.16 no Tx IFN X X 1.3 no Tx IFN, Study drug X X 1.4 no Tx IFN, Stud	1.8	never Tx		Х	Х
2.4 never Tx X X 1.7 never Tx X X never Tx X X 1.6 IVIg X X 1.6 IVIg X X 1.6 IVIg X X 2.7 study drug X X 1.6 no Tx IFN X X 2.7 no Tx IFN X X 1.6 no Tx IFN X X 1.6 never Tx X X X 1.6 never Tx X X X 2.0 no Tx study drug X X 2.0 no Tx IFN X X 1.8 no Tx IFN X X 1.8 no Tx IFN, Copaxone X X 2.0 no Tx IFN, Mitoxantrone X X 1.3 no Tx IFN, Mitoxantrone		never Tx			Х
1.7 never Tx X X 2.2 no Tx Fingolimod X X 1.6 IVIg X X 2.7 Study drug X X 1.6 no Tx IFN X X 2.7 study drug X X X 1.6 no Tx IFN X X 1.6 no Tx IFN X X 1.6 never Tx X X X 1.6 never Tx X X X 2.3 no Tx IFN X X 2.0 no Tx Study drug X X 2.1 never Tx X X X 2.2 never Tx X X X 1.8 no Tx IFN X X 1.8 no Tx IFN, Study drug X X 1.3 no Tx IFN, Study drug X <t< td=""><td>2.4</td><td>never Tx</td><td></td><td>Х</td><td>Х</td></t<>	2.4	never Tx		Х	Х
never Tx X 2.2 no Tx Fingolimod X X 1.6 IVIg X X 2.7 Study drug X X 1.6 no Tx IFN X X 2.7 no Tx IFN X X 1.6 no Tx IFN X X 1.9 no Tx study drug X X 1.6 never Tx X X X 2.0 no Tx study drug X X 2.0 no Tx IFN X X 2.0 no Tx IFN X X 2.3 never Tx X X X 2.3 never Tx X X X 1.3 no Tx IFN X X 1.5 no Tx IFN, Study drug X X 2.0 no Tx IFN, Mitoxantrone X X	1.7	never Tx		Х	Х
2.2 no Tx Fingolimod X X 1.6 IVIg X X X 2.7 study drug X X X 1.6 no Tx IFN X X 1.6 no Tx IFN X X 2.7 no Tx IFN X X 1.9 no Tx study drug X X 1.6 never Tx X X X 2.3 no Tx study drug X X 2.0 no Tx study drug X X 2.0 no Tx study drug X X 1.6 no Tx IFN X X 2.0 no Tx IFN X X 1.8 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, study drug X X <		never Tx			Х
1.6 IVIg X X 2.7 study drug X X 1.6 no Tx IFN X X 2.7 no Tx IFN X X 2.7 no Tx IFN X X 1.9 no Tx study drug X X 1.6 never Tx X X X 2.3 no Tx study drug X X 2.0 no Tx study drug X X 2.0 no Tx study drug X X 1.6 never Tx X X X 2.0 no Tx IFN X X 1.3 no Tx IFN X X 1.8 no Tx IFN, Mitoxantrone X X 1.5 no Tx IFN, Mitoxantrone X X 1.3 no Tx IFN, Mitoxantrone X X 1.4 no Tx	2.2	no Tx	Fingolimod	Х	Х
2.7 study drug X X 1.6 no Tx IFN X X 2.7 no Tx IFN X X 1.9 no Tx Study drug X X 1.6 never Tx X X X 2.3 no Tx IFN X X 2.0 no Tx Study drug X X 2.0 no Tx Study drug X X 2.0 no Tx IFN X X 2.1 never Tx X X X 1.3 no Tx IFN X X 1.5 no Tx IFN, Mitoxantrone X X 1.3 no Tx IFN, Study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4	1.6	IVIg		Х	Х
1.6 no Tx IFN X X 2.7 no Tx IFN X X 1.9 no Tx study drug X X 1.6 never Tx X X 2.3 no Tx IFN X X 2.0 no Tx study drug X X 2.0 no Tx study drug X X 2.2 never Tx X X X 1.6 no Tx IFN X X 2.2 never Tx X X X 1.1 no Tx IFN X X 1.8 no Tx IFN, Copaxone X X 1.5 no Tx IFN, study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 <	2.7	study drug		Х	
2.7 no Tx IFN X X 1.9 no Tx study drug X	1.6	no Tx	IFN	Х	Х
1.9 no Tx study drug X 1.6 never Tx X X 2.3 no Tx IFN X X 2.0 no Tx study drug X X 2.0 no Tx study drug X X 2.0 no Tx study drug X X 2.1 never Tx X X X 1.0 no Tx IFN X X 1.8 no Tx Copaxone, IFN X X 1.8 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Mitoxantrone X X 1.3 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx IFN X X 1.4	2.7	no Tx	IFN	Х	Х
1.6 never Tx X X 2.3 no Tx IFN X X 2.0 no Tx study drug X X 2.2 never Tx X X X 10 no Tx IFN X X 2.3 never Tx X X X 2.3 never Tx X X X 2.3 never Tx X X X 1.8 no Tx Copaxone, IFN X X 1.5 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, study drug X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx IFN X X 1.4	1.9	no Tx	study drug	Х	
2.3 no Tx IFN X X 2.0 no Tx study drug X X 2.2 never Tx X X 2.3 never Tx X X 2.3 never Tx X X 2.3 never Tx X X 1.4 no Tx Copaxone, IFN X X 1.8 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, Study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, Study drug X X 1.4 no Tx IFN X X 1.4 no Tx IFN <td< td=""><td>1.6</td><td>never Tx</td><td></td><td>Х</td><td></td></td<>	1.6	never Tx		Х	
2.0 no Tx study drug X X 2.2 never Tx X X no Tx IFN X X 2.3 never Tx X X no Tx Copaxone, IFN X X 1.8 no Tx Copaxone, IFN X X 1.5 no Tx IFN, Copaxone X X 2.0 no Tx IFN, Study drug X X 2.0 no Tx IFN, Study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, Study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx X	2.3	no Tx	IFN	Х	Х
2.2 never Tx IFN X X no Tx IFN X X 2.3 never Tx X X no Tx Copaxone, IFN X X 1.8 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, Mitoxantrone X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, Mitoxantrone X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx </td <td>2.0</td> <td>no Tx</td> <td>study drug</td> <td>Х</td> <td>Х</td>	2.0	no Tx	study drug	Х	Х
no Tx IFN X 2.3 never Tx X X no Tx Copaxone, IFN X X 1.8 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, study drug X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X </td <td>2.2</td> <td>never Tx</td> <td></td> <td>Х</td> <td>Х</td>	2.2	never Tx		Х	Х
2.3 never Tx X X no Tx Copaxone, IFN X 1.8 no Tx IFN, Copaxone X 1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, Study drug X X 1.3 no Tx IFN, Study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx IFN <td< td=""><td></td><td>no Tx</td><td>IFN</td><td></td><td>Х</td></td<>		no Tx	IFN		Х
no Tx Copaxone, IFN X 1.8 no Tx IFN, Copaxone X 1.5 no Tx IFN, Mitoxantrone X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, study drug X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx X	2.3	never Tx		Х	Х
1.8 no Tx IFN, Copaxone X X 1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx X X X 1.4 no Tx IFN X X 1.4 IFN IFN X X <td></td> <td>no Tx</td> <td>Copaxone, IFN</td> <td></td> <td>Х</td>		no Tx	Copaxone, IFN		Х
1.5 no Tx IFN, Mitoxantrone X X 2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx X X X 1.4 IFN IFN X X X 1.4 IFN IFN X X X </td <td>1.8</td> <td>no Tx</td> <td>IFN, Copaxone</td> <td>Х</td> <td>Х</td>	1.8	no Tx	IFN, Copaxone	Х	Х
2.0 no Tx IFN, study drug X X 1.3 no Tx IFN, Mitoxantrone X X 2.3 no Tx IFN, study drug X X 1.4 no Tx IFN, study drug X X 1.4 no Tx IFN X X 1.4 no Tx X X X 1.4 IFN IFN X X 1.4 IFN IFN X X 1.4 IFN IFN X X 1.4 IFN	1.5	no Tx	IFN, Mitoxantrone	Х	Х
1.3 no Tx IFN, Mitoxantrone X 2.3 no Tx IFN, study drug X 1.4 no Tx IFN X 1.4 no Tx IFN X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	2.0	no Tx	IFN, study drug	Х	Х
2.3 no Tx IFN, study drug X 1.4 no Tx IFN X X Image: I	1.3	no Tx	IFN, Mitoxantrone		Х
1.4 no Tx IFN X Image: Second structure X X <tr< td=""><td>2.3</td><td>no Tx</td><td>IFN, study drug</td><td></td><td>Х</td></tr<>	2.3	no Tx	IFN, study drug		Х
Image: style styl	1.4	no Tx	IFN	Х	
Image: state of the state				Х	Х
Image: state stat				Х	
Image: state of the state				Х	Х
XX				Х	Х
X X X X				Х	Х
Image: state of the state o				Х	Х
Image: style="text-align: center;">X Image: style="					Х
X X					Х
X X				Х	
x x x x x x x x x x x x x x x x x x x x x x x x x x				Х	
X X X X X X X X X X X X X X					x
x x x x x x x x x x				Х	x
				Х	x
				Х	Х
				Х	Х

2,0 (1,6-2,7)

1,9 (1,4-2,3)

	1	
N	1	А
	/	

1,9 (1,6-2,7) 2.0 (1,3-2,3)

N/A		
never Tx		
Avonex		
never Tx		
Rebif		
never Tx		
never Tx		
never Tx		
Avonex		
never Tx		
Avonex		
Avonex		
never Tx		
Avonex		
never Tx		
never Tx		
Avonex		
Copaxone		
no Tx	Avonex	
Betaferon		
never Tx		
Study drug		
Avonex		
never Tx		

never Tx		
never Tx		

miR-21qPCR
X
X
X
Х
×
X
X
X
Х
х
Х
×
× ×
^
Х
х
×
~
X
Х
Х
x
~
Х
Х
×
^
Х
х
x
~
X
Х

X
Х
Х
Х
Х
Х
Х
Х
Х
Х
X
X
X
X
X
X
X
X
×
×
×
x
X
X
X
х
х
х
Х
Х
Х
Х
Х
Х
Х
Х
Х
Х
Х

Х	
Х	
х	
Х	
х	
х	
Х	
Х	
х	
Х	
х	
Х	
Х	
Х	
Х	
Х	
Х	
х	
Х	
Х	
Х	
Х	

Supplementary Table 2: Differential expression in CD4+ T cells of predicted miR-21 target genes betwee

in Jurkat T cells by RIP-Chip and genes predicted and experimentally validated to be miR-21 targets by

Jurkat target ID	Gene Name	Description	logFC	AveExpr	P.Value	TarBase7.0 target ID
ENSG00000180667	YOD1	YOD1 deubiqui [.]	0.30	5.09	3.28E-04	ENSG00000164284
ENSG00000100354	TNRC6B	trinucleotide re	0.13	6.71	4.99E-03	ENSG00000180667
ENSG00000146676	PURB	purine rich eler	0.17	5.75	9.29E-03	ENSG00000113369
ENSG00000145715	RASA1	RAS p21 protei	0.17	6.59	1.23E-02	ENSG00000143753
ENSG00000110987	BCL7A	BCL tumor supp	0.63	2.13	2.20E-02	ENSG00000180979
ENSG00000197579	TOPORS	TOP1 binding a	0.12	5.20	3.33E-02	ENSG00000150753
ENSG00000152518	ZFP36L2	ZFP36 ring finge	0.18	11.05	3.64E-02	ENSG00000253719
ENSG00000131023	LATS1	large tumor sup	-0.07	5.87	3.88E-02	ENSG00000131381
ENSG00000124209	RAB22A	RAB22A, memb	0.11	4.57	4.50E-02	ENSG00000141582
ENSG00000138336	TET1	tet methylcytos	-0.26	1.57	4.81E-02	ENSG00000146676
ENSG0000076641	PAG1	phosphoprotei	0.18	8.28	7.03E-02	ENSG00000119844
ENSG00000165244	ZNF367	zinc finger prot	0.16	3.85	7.29E-02	ENSG00000118402
ENSG00000152520	PAN3	PAN3 poly(A) sj	0.09	7.10	7.60E-02	ENSG00000164466
ENSG00000166225	FRS2	fibroblast grow	0.08	4.97	9.50E-02	ENSG00000163629
ENSG00000171316	CHD7	chromodomain	0.14	5.57	1.10E-01	ENSG00000104643
ENSG00000107679	PLEKHA1	pleckstrin home	-0.12	5.70	1.25E-01	ENSG00000145907
ENSG00000171132	PRKCE	protein kinase (0.12	2.63	1.31E-01	ENSG00000196776
ENSG00000110848	CD69	CD69 molecule	-0.19	10.25	1.42E-01	ENSG00000110987
ENSG00000155640	-	-	0.16	4.26	1.46E-01	ENSG00000070214
ENSG00000174010	KLHL15	kelch like family	0.12	4.55	1.48E-01	ENSG00000173698
ENSG00000134698	AGO4	argonaute 4, RI	0.17	5.75	1.65E-01	ENSG00000109787
ENSG00000152601	MBNL1	muscleblind like	-0.06	9.23	1.86E-01	ENSG00000119778
ENSG00000197323	TRIM33	tripartite motif	0.04	6.56	1.95E-01	ENSG00000185658
ENSG00000138593	SECISBP2L	SECIS binding p	0.05	6.04	1.96E-01	ENSG00000158079
ENSG00000162599	NFIA	nuclear factor I	0.13	1.27	2.43E-01	ENSG0000096060
ENSG00000177189	RPS6KA3	ribosomal prote	0.06	7.43	2.83E-01	ENSG00000119899
ENSG00000188895	MSL1	male specific le	0.07	7.40	2.87E-01	ENSG00000196459
ENSG00000118922	KLF12	Kruppel like fac	0.05	7.01	2.98E-01	ENSG00000100664
ENSG00000181690	PLAG1	PLAG1 zinc fing	0.14	4.53	2.99E-01	ENSG00000143013
ENSG00000162378	ZYG11B	zyg-11 family m	0.05	5.21	3.05E-01	ENSG00000164190
ENSG00000204217	BMPR2	bone morphoge	0.06	4.33	3.20E-01	ENSG00000048471
ENSG0000081014	AP4E1	adaptor related	-0.04	4.62	3.29E-01	ENSG00000197579
ENSG00000185009	AP3M1	adaptor related	-0.04	5.67	3.68E-01	ENSG00000127337
ENSG00000107864	CPEB3	cytoplasmic po	0.07	2.84	3.74E-01	ENSG00000196262
ENSG00000150593	PDCD4	programmed ce	0.05	8.46	3.90E-01	ENSG00000092871
ENSG00000143756	FBXO28	F-box protein 2	0.04	5.30	3.91E-01	ENSG00000131023
ENSG00000182568	SATB1	SATB homeobo	0.09	7.64	4.06E-01	ENSG00000144909
ENSG00000119866	BCL11A	B-cell CLL/lymp	-0.35	-0.92	4.47E-01	ENSG0000066933
ENSG00000173281	PPP1R3B	protein phosph	0.09	3.82	4.58E-01	ENSG00000118971
ENSG00000171940	ZNF217	zinc finger prot	0.03	6.68	5.29E-01	ENSG00000169564

ENSG00000157933	SKI	SKI proto-onco	0.05	7.14	5.44E-01	
ENSG00000143878	RHOB	ras homolog fa	-0.19	5.49	5.62E-01	
ENSG00000102908	NFAT5	nuclear factor c	-0.03	5.84	5.65E-01	
ENSG00000163939	PBRM1	polybromo 1 [S	-0.02	5.89	5.65E-01	
ENSG00000165572	KBTBD6	kelch repeat an	-0.05	2.93	5.77E-01	
ENSG00000155744	FAM126B	family with seq	0.03	4.63	6.01E-01	
ENSG00000196937	FAM3C	family with seq	0.04	4.85	6.18E-01	
ENSG00000123124	WWP1	WW domain co	0.03	6.97	6.71E-01	
ENSG00000101972	STAG2	stromal antiger	0.01	6.93	6.78E-01	
ENSG00000204116	CHIC1	cysteine rich hy	0.02	5.46	6.97E-01	
ENSG0000095015	MAP3K1	mitogen-activa [.]	0.03	8.20	7.24E-01	
ENSG00000112739	PRPF4B	pre-mRNA proc	-0.01	7.52	7.66E-01	
ENSG00000157741	UBN2	ubinuclein 2 [Sc	-0.02	5.00	7.75E-01	
ENSG00000113300	CNOT6	CCR4-NOT tran	0.02	5.64	7.85E-01	
ENSG00000128923	FAM63B	family with seq	0.02	4.99	8.39E-01	
ENSG00000105810	CDK6	cyclin depende	0.02	5.82	8.84E-01	
ENSG00000138081	FBXO11	F-box protein 1	0.00	6.64	8.93E-01	
ENSG00000178177	LCORL	ligand depende	0.01	2.93	9.10E-01	
ENSG00000148730	EIF4EBP2	eukaryotic tran	0.00	7.12	9.40E-01	
ENSG00000103064	SLC7A6	solute carrier fa	0.01	8.52	9.45E-01	
ENSG00000115020	PIKFYVE	phosphoinositi	0.00	6.42	9.73E-01	
ENSG00000145675	PIK3R1	phosphoinositi	0.00	7.40	9.80E-01	
ENSG00000123472	ATPAF1	ATP synthase m	0.00	5.17	9.89E-01	
ENSG00000172575	RASGRP1	RAS guanyl rele	0.00	8.41	9.99E-01	

ENSG0000167548 ENSG00000125538 ENSG0000129128 ENSG0000124209 ENSG0000138336 ENSG00000153187 ENSG0000185246 ENSG00000109458 ENSG00000112159 ENSG00000135046 ENSG0000031691 ENSG00000196227 ENSG0000154518 ENSG0000048649 ENSG0000076641 ENSG0000169967 ENSG0000165244 ENSG00000140299 ENSG00000143614 ENSG00000163624 ENSG0000183508 ENSG0000008277 ENSG00000196591 ENSG0000080546 ENSG0000198855 ENSG00000140575 ENSG0000104343 ENSG00000166225 ENSG00000118263 ENSG0000102218 ENSG0000168807 ENSG0000025796 ENSG0000107036 ENSG00000120696 ENSG00000164916 ENSG0000136045 ENSG00000164039 ENSG0000186687 ENSG0000065613 ENSG0000019995 ENSG00000156735 ENSG00000157106 ENSG00000197147 ENSG0000090104

ENSG00000165219 ENSG00000164237 ENSG0000198743 ENSG0000174718 ENSG00000120868 ENSG00000101856 ENSG0000155640 ENSG00000151553 ENSG0000174010 ENSG00000153250 ENSG00000145604 ENSG00000111300 ENSG0000100422 ENSG0000134698 ENSG00000164252 ENSG0000079785 ENSG00000135318 ENSG00000116106 ENSG00000125430 ENSG00000119138 ENSG00000165929 ENSG00000110422 ENSG00000118762 ENSG00000182504 ENSG0000084093 ENSG0000156531 ENSG0000132912 ENSG00000197323 ENSG0000052795 ENSG0000211455 ENSG0000101665 ENSG0000103769 ENSG00000141034 ENSG00000172915 ENSG00000106780 ENSG0000156052 ENSG0000095139 ENSG0000145916 ENSG0000106692 ENSG0000188647 ENSG00000101126 ENSG0000165102 ENSG00000197111 ENSG0000136986

ENSG0000101367 ENSG00000183808 ENSG0000138430 ENSG0000136381 ENSG00000115183 ENSG0000013503 ENSG0000100030 ENSG0000066117 ENSG00000155850 ENSG00000129636 ENSG00000165943 ENSG00000135452 ENSG0000256223 ENSG00000120708 ENSG00000177189 ENSG0000156875 ENSG00000112394 ENSG00000144959 ENSG00000177200 ENSG0000177932 ENSG00000134318 ENSG00000180530 ENSG0000100916 ENSG00000130396 ENSG0000181690 ENSG00000170860 ENSG00000197329 ENSG00000101752 ENSG00000162378 ENSG0000099942 ENSG0000087448 ENSG0000153944 ENSG00000110047 ENSG0000204217 ENSG00000154114 ENSG0000086200 ENSG0000074603 ENSG0000106415 ENSG00000160199 ENSG0000072501 ENSG0000060339 ENSG00000157500 ENSG00000171365 ENSG00000143575

ENSG00000116954 ENSG00000185009 ENSG0000041353 ENSG0000107864 ENSG0000075239 ENSG0000068305 ENSG0000186432 ENSG00000163069 ENSG0000154305 ENSG0000087470 ENSG00000150593 ENSG0000152642 ENSG00000170500 ENSG0000141367 ENSG00000152944 ENSG0000020577 ENSG00000138600 ENSG0000182568 ENSG00000141759 ENSG0000058063 ENSG00000127870 ENSG00000140525 ENSG0000178691 ENSG0000007168 ENSG00000165650 ENSG00000197969 ENSG00000142599 ENSG00000146281 ENSG0000058056 ENSG0000163513 ENSG0000132463 ENSG00000118816 ENSG00000158604 ENSG00000180011 ENSG00000119866 ENSG00000196914 ENSG00000148158 ENSG0000060749 ENSG0000173281 ENSG0000108021 ENSG00000132842 ENSG0000168610 ENSG00000165105 ENSG00000117560

ENSG00000115310 ENSG0000033178 ENSG00000113328 ENSG0000101384 ENSG0000071967 ENSG0000083168 ENSG0000090863 ENSG00000111328 ENSG0000198142 ENSG00000109654 ENSG00000112242 ENSG00000159388 ENSG0000138443 ENSG0000169905 ENSG00000171940 ENSG0000099940 ENSG00000116918 ENSG0000198961 ENSG00000157933 ENSG00000104866 ENSG0000077684 ENSG00000143878 ENSG00000111266 ENSG00000135521 ENSG0000184743 ENSG00000163939 ENSG00000151413 ENSG00000163125 ENSG0000140396 ENSG0000165572 ENSG0000184007 ENSG00000172175 ENSG00000115159 ENSG00000112697 ENSG0000083312 ENSG0000166483 ENSG0000070759 ENSG0000153914 ENSG00000120137 ENSG00000102401 ENSG00000173674 ENSG0000257923 ENSG00000155744 ENSG00000123836

ENSG00000112941 ENSG00000148154 ENSG00000155189 ENSG0000215301 ENSG00000196937 ENSG00000162909 ENSG0000170348 ENSG00000177311 ENSG0000039319 ENSG00000188215 ENSG00000144674 ENSG00000177051 ENSG0000105856 ENSG00000117868 ENSG00000145332 ENSG0000107771 ENSG00000112425 ENSG00000120805 ENSG00000184602 ENSG00000130449 ENSG00000175582 ENSG0000076706 ENSG00000118579 ENSG0000091009 ENSG00000153561 ENSG00000155096 ENSG0000120889 ENSG00000101972 ENSG00000100485 ENSG0000135655 ENSG00000185129 ENSG00000148143 ENSG0000183735 ENSG00000122707 ENSG00000122566 ENSG00000113368 ENSG00000107560 ENSG0000130638 ENSG0000095015 ENSG00000171150 ENSG00000125633 ENSG0000029993 ENSG00000115808 ENSG00000149792

ENSG0000160213 ENSG0000100811 ENSG0000100345 ENSG0000099194 ENSG0000102144 ENSG00000163602 ENSG00000113300 ENSG0000107099 ENSG00000136100 ENSG0000026508 ENSG00000170677 ENSG00000120709 ENSG0000138663 ENSG0000101266 ENSG00000145495 ENSG0000156642 ENSG0000198642 ENSG0000140443 ENSG0000075420 ENSG0000067955 ENSG0000136868 ENSG00000196268 ENSG00000197312 ENSG0000001631 ENSG0000170802 ENSG00000116199 ENSG0000108510 ENSG00000163848 ENSG0000106723 ENSG00000144445 ENSG00000128923 ENSG00000175130 ENSG0000094916 ENSG0000183044 ENSG0000013375 ENSG0000074201 ENSG00000169398 ENSG0000108256 ENSG0000163283 ENSG00000132294 ENSG00000138069 ENSG0000065183 ENSG00000148835 ENSG00000119669

ENSG00000135535 ENSG00000105887 ENSG0000131791 ENSG0000056586 ENSG0000057757 ENSG00000113387 ENSG0000048544 ENSG00000138081 ENSG00000112902 ENSG0000083099 ENSG00000122335 ENSG0000155962 ENSG0000162607 ENSG0000170242 ENSG00000102554 ENSG0000142634 ENSG00000148730 ENSG00000166681 ENSG00000111647 ENSG0000085788 ENSG00000147548 ENSG0000070882 ENSG0000059728 ENSG00000100647 ENSG0000123684 ENSG00000161813 ENSG0000114098 ENSG00000177125 ENSG0000011405 ENSG00000123091 ENSG0000018189 ENSG0000134198 ENSG00000172575 ENSG00000159399 ENSG0000013588 ENSG0000064042 ENSG0000078399 ENSG0000079308 ENSG0000092969 ENSG00000102221 ENSG00000104369 ENSG00000111799 ENSG00000113594 ENSG00000114757

ENSG00000115844 ENSG00000116132 ENSG00000118946 ENSG00000122420 ENSG00000122778 ENSG00000122786 ENSG00000125398 ENSG0000135116 ENSG0000135378 ENSG00000135862 ENSG0000136634 ENSG00000138639 ENSG00000143867 ENSG00000151090 ENSG00000152078 ENSG0000153904 ENSG00000154380 ENSG0000159217 ENSG00000162407 ENSG0000162409 ENSG0000163293 ENSG0000163637 ENSG0000164176 ENSG0000164761 ENSG0000165092 ENSG00000166444 ENSG00000169245 ENSG00000171714 ENSG0000172380 ENSG00000173391 ENSG0000176597 ENSG00000180592 ENSG0000181449 ENSG00000182752 ENSG00000186205 ENSG00000203727 ENSG00000206075 ENSG0000214736 ENSG0000222014 ENSG00000263001 ENSG00000272602

een RR-MS and HC. Genes identified as miR-21 targets

Gene Name Description logFC AveExpr P.Value GRPEL2 GrpE like 2, mi 0.44 5.87 6.63E-05 YOD1 YOD1 deubiqu 0.30 5.09 3.28E-04 8.17 7.68E-04 ARRDC3 arrestin domai 0.44 6.40 2.74E-03 DEGS1 delta 4-desatu 0.21 LRRC57 leucine rich re 0.33 5.02 4.09E-03 chaperonin co -0.17 6.06 4.97E-03 CCT5 ATXN7L3B ataxin 7 like 3E 0.17 8.07 5.66E-03 RBSN rabenosyn, RA 0.13 5.61 7.10E-03 CBX4 chromobox 4 [6.52 9.03E-03 0.22 purine rich ele 0.17 5.75 9.29E-03 PURB AFTPH aftiphilin [Sour -0.14 6.05 1.24E-02 ELOVL4 ELOVL fatty ac 0.61 2.44 1.48E-02 6.23 1.49E-02 SFXN1 sideroflexin 1 0.14 PTPN13 protein tyrosir 0.67 3.10 1.55E-02 MTMR9 myotubularin i 0.09 4.85 1.65E-02 G3BP1 G3BP stress gr 0.09 6.92 1.88E-02 CD47 CD47 molecule 0.09 8.47 1.95E-02 BCL7A BCL tumor sup 0.63 2.13 2.20E-02 SLC44A1 solute carrier f -0.13 3.78 2.27E-02 -1.29 2.30E-02 ADGRG2 adhesion G prc -1.00 KLF3 Kruppel like fa 0.17 7.88 2.33E-02 ATPase family, -0.12 4.38 2.36E-02 ATAD2B 6.29 2.41E-02 BRWD1 bromodomain 0.10 PTPDC1 protein tyrosir -0.19 3.27 2.52E-02 FKBP5 FK506 binding 0.31 6.88 2.56E-02 SLC17A5 solute carrier f 0.14 4.31 2.74E-02 TRAPPC2 trafficking prot 0.11 5.06 3.06E-02 EIF5 eukaryotic trar 0.13 7.55 3.10E-02 LMO4 LIM domain or 0.33 4.30 3.20E-02 NIPBL NIPBL, cohesin -0.07 6.49 3.25E-02 SNX29 4.84 3.29E-02 sorting nexin 2 0.12 5.20 3.33E-02 TOPORS TOP1 binding a 0.12 YEATS4 YEATS domain -0.25 5.66 3.42E-02 PPIA peptidylprolyl 0.11 8.48 3.71E-02 RFFL ring finger and 0.11 5.60 3.76E-02 LATS1 large tumor su -0.07 5.87 3.88E-02 oxysterol bind -0.17 4.79 4.23E-02 OSBPL11 MYO9A myosin IXA [Sc -0.09 4.35 4.30E-02 CCND2 cyclin D2 [Sour 0.13 7.23 4.31E-02 9.08 4.32E-02 PCBP1 poly(rC) bindin -0.14

r TarBase7.0 were selected for investigation.

KMT2D	lysine methylti	-0.08	6.96	4.38F-02
IL1B	interleukin 1 b	-1.38	0.88	4.39F-02
SPCS3	signal peptidas	0.10	7.47	4.41F-02
RAB22A	RAB22A, mem	0.11	4.57	4.50F-02
TET1	tet methylcyto	-0.26	1.57	4.81E-02
HNRNPU	heterogeneou	-0.10	8.12	4.94F-02
PRPF39	pre-mRNA pro	-0.08	6.85	5.31E-02
GAB1	GRB2 associate	-0.83	-1.43	5.55E-02
MDN1	midasin AAA A	-0.12	6.59	5.75E-02
ANXA1	annexin A1 [Sc	-0.29	8.85	5.78E-02
CENPQ	centromere pr	-0.25	3.52	6.30E-02
FAM217B	family with sec	0.12	5.04	6.53E-02
ATP5G3	, ATP synthase,	0.10	4.69	6.92E-02
RSF1	remodeling an	0.07	5.37	6.93E-02
PAG1	phosphoprote	0.18	8.28	7.03E-02
MAP3K2	mitogen-activa	0.06	6.44	7.07E-02
ZNF367	zinc finger pro	0.16	3.85	7.29E-02
BNIP2	BCL2 interactir	0.07	6.14	7.31E-02
GATAD2B	GATA zinc fing	0.06	6.47	7.94E-02
CDS1	CDP-diacylglyc	-0.27	0.83	8.08E-02
FAM46C	family with sec	-0.44	6.75	8.49E-02
ADAM22	ADAM metallo	-0.23	1.73	8.58E-02
HDAC2	histone deacet	-0.13	4.32	8.59E-02
SESN1	sestrin 1 [Sour	0.25	6.65	8.70E-02
FICD	FIC domain col	0.21	2.08	9.01E-02
IQGAP1	IQ motif conta	-0.13	6.82	9.03E-02
UBE2W	ubiquitin conjı	0.08	4.35	9.23E-02
FRS2	fibroblast grov	0.08	4.97	9.50E-02
KLF7	Kruppel like fa	0.16	6.27	9.58E-02
RP2	retinitis pigme	-0.15	3.81	9.83E-02
SNTB2	syntrophin bet	0.19	4.62	1.03E-01
SEC63	SEC63 homolo	0.06	5.69	1.03E-01
RIC1	RIC1 homolog,	0.07	5.43	1.04E-01
KBTBD7	kelch repeat a	0.29	2.02	1.08E-01
FOXK1	forkhead box F	0.12	5.91	1.13E-01
PWP1	PWP1 homolo	-0.07	6.17	1.14E-01
BDH2	3-hydroxybuty	0.17	4.17	1.16E-01
LYRM7	LYR motif cont	-0.10	5.42	1.17E-01
SLK	STE20 like kina	-0.08	6.04	1.24E-01
ZRANB1	zinc finger RAM	0.06	5.57	1.25E-01
BAG4	BCL2 associate	0.11	4.01	1.27E-01
SMG1	SMG1, nonsen	-0.08	7.37	1.36E-01
LRRC8B	leucine rich re ${\rm }$	0.14	4.83	1.36E-01
RGS1	regulator of G-	-0.45	8.05	1.37E-01

GAPVD1	GTPase activat	0.07	5.09	1.37E-01
CMBL	carboxymethy	-0.37	0.54	1.40E-01
SLC5A3	solute carrier f	-0.16	5.06	1.40E-01
KIAA1551	KIAA1551 [Sou	-0.13	8.85	1.40E-01
APAF1	apoptotic pept	-0.08	5.15	1.43E-01
PGRMC1	progesterone ı	0.08	5.17	1.45E-01
-	-	0.16	4.26	1.46E-01
FAM160B1	family with sec	0.18	5.76	1.46E-01
KLHL15	kelch like fami	0.12	4.55	1.48E-01
RBMS1	RNA binding m	0.10	6.79	1.48E-01
SKP2	S-phase kinase	-0.12	4.79	1.55E-01
NAA25	N(alpha)-acety	0.08	5.08	1.58E-01
CERK	ceramide kina:	0.09	7.87	1.59E-01
AGO4	argonaute 4, R	0.17	5.75	1.65E-01
AGGF1	angiogenic fac	-0.06	5.64	1.65E-01
DDX1	DEAD/H-box h	-0.06	6.10	1.66E-01
NT5E	5'-nucleotidas	-0.43	2.73	1.71E-01
EPHA4	EPH receptor /	0.24	5.25	1.74E-01
HS3ST3B1	heparan sulfat	0.11	5.43	1.76E-01
KLF9	Kruppel like fa	0.18	7.60	1.81E-01
TC2N	tandem C2 doı	-0.11	8.46	1.82E-01
НІРКЗ	homeodomain	-0.08	6.58	1.84E-01
PKD2	polycystin 2, tr	0.18	4.94	1.86E-01
CEP97	centrosomal p	0.07	4.48	1.90E-01
REST	RE1 silencing t	0.05	6.04	1.92E-01
PHF6	PHD finger pro	-0.07	4.94	1.93E-01
DCTN4	dynactin subuı	0.06	5.33	1.95E-01
TRIM33	tripartite moti	0.04	6.56	1.95E-01
FNIP2	folliculin intera	-0.07	3.32	1.97E-01
STK38L	serine/threoni	-0.06	4.69	1.99E-01
SMAD7	SMAD family n	-0.28	4.63	2.08E-01
RAB11A	RAB11A, mem	-0.05	5.76	2.12E-01
GID4	GID complex s	-0.14	4.12	2.13E-01
NBEA	neurobeachin	0.23	2.11	2.16E-01
MEGF9	multiple EGF li	0.11	5.54	2.18E-01
GNAQ	G protein subı	0.05	6.60	2.18E-01
ARCN1	archain 1 [Sou	-0.08	7.02	2.20E-01
RMND5B	required for m	-0.06	4.33	2.22E-01
FKTN	fukutin [Source	0.08	5.14	2.26E-01
PTAR1	protein prenyl [.]	0.05	6.78	2.32E-01
ADNP	activity depend	0.05	6.66	2.35E-01
HGSNAT	heparan-alpha	0.07	5.52	2.38E-01
PCBP2	poly(rC) bindin	0.05	6.83	2.43E-01
DERL1	derlin 1 [Sourc	-0.07	5.60	2.47E-01

Page 70 of 76

MAPRE1	microtubule as	-0.05	7.41	2.50E-01
RBM12B	RNA binding m	-0.08	4.97	2.53E-01
OLA1	Obg-like ATPas	0.06	5.00	2.54E-01
IREB2	iron responsiv	0.05	5.96	2.57E-01
TANC1	tetratricopepti	0.29	-0.39	2.57E-01
POLR3B	RNA polymera	-0.10	3.60	2.61E-01
MAPK1	mitogen-activa	-0.06	6.48	2.62E-01
SMARCD1	SWI/SNF relate	0.04	6.43	2.66E-01
SLC26A2	solute carrier f	0.05	4.32	2.67E-01
ITFG1	integrin alpha	0.06	3.57	2.67E-01
MOAP1	modulator of a	0.09	7.87	2.68E-01
TSPAN31	tetraspanin 31	-0.10	4.22	2.70E-01
ZNF10	zinc finger pro	-0.07	4.06	2.71E-01
TGFBI	transforming g	-0.33	1.53	2.73E-01
RPS6KA3	ribosomal prot	0.06	7.43	2.83E-01
MFSD14A	major facilitato	0.05	6.70	2.84E-01
SLC16A10	solute carrier f	0.16	4.08	2.86E-01
NCEH1	neutral choles	-0.14	2.41	2.91E-01
CHD9	chromodomaiı	0.08	4.59	2.92E-01
ZNF354C	zinc finger pro	0.06	4.99	2.95E-01
ROCK2	Rho associatec	-0.05	4.86	2.95E-01
NRIP1	nuclear recept	0.08	5.14	2.97E-01
BRMS1L	breast cancer I	-0.07	3.53	2.98E-01
AFDN	afadin, adhere	0.24	3.44	2.99E-01
PLAG1	PLAG1 zinc fin	0.14	4.53	2.99E-01
LSM3	LSM3 homolog	0.07	5.10	3.00E-01
PELI1	pellino E3 ubic	0.11	7.00	3.02E-01
MIB1	mindbomb E3	0.07	5.54	3.04E-01
ZYG11B	zyg-11 family r	0.05	5.21	3.05E-01
CRKL	CRK like proto-	-0.07	6.49	3.07E-01
KLHL42	kelch like fami	-0.08	5.27	3.10E-01
MSI2	musashi RNA Ł	0.05	5.89	3.17E-01
EHD1	EH domain cor	-0.07	6.61	3.19E-01
BMPR2	bone morphog	0.06	4.33	3.20E-01
TBCEL	tubulin folding	0.07	4.51	3.23E-01
IPO11	importin 11 [S	0.05	3.32	3.26E-01
DPP8	dipeptidyl pep	0.03	5.74	3.29E-01
GLCCI1	glucocorticoid	0.08	5.73	3.32E-01
PKNOX1	PBX/knotted 1	-0.05	3.79	3.37E-01
SMC1A	structural maii	-0.10	6.25	3.37E-01
CCAR1	cell division cy	0.04	7.30	3.45E-01
APPL1	adaptor protei	-0.04	5.21	3.54E-01
CLCN5	chloride voltag	-0.10	1.88	3.60E-01
HAX1	HCLS1 associat	-0.06	6.87	3.63E-01

RRAGC	Ras related GT	-0.07	4.65	3.65E-01
AP3M1	adaptor relate	-0.04	5.67	3.68E-01
RAB27B	RAB27B, mem	0.17	2.88	3.69E-01
CPEB3	cytoplasmic pc	0.07	2.84	3.74E-01
ACAT1	acetyl-CoA ace	-0.08	3.93	3.75E-01
MEF2A	myocyte enha	0.06	5.71	3.79E-01
KPNA4	karyopherin sı	-0.04	5.45	3.82E-01
SGCB	sarcoglycan be	-0.08	3.39	3.83E-01
MIA3	MIA family me	-0.04	5.87	3.85E-01
DNM1L	dynamin 1 like	0.03	5.96	3.90E-01
PDCD4	programmed c	0.05	8.46	3.90E-01
GPD1L	glycerol-3-pho	-0.07	5.84	3.95E-01
LONRF2	LON peptidase	-0.28	-0.67	3.97E-01
CLTC	clathrin heavy	-0.03	5.84	3.98E-01
MED21	mediator com	0.06	5.65	3.99E-01
SAMD4A	sterile alpha m	-0.20	-0.19	4.00E-01
SPPL2A	signal peptide	0.06	5.57	4.02E-01
SATB1	SATB homeob	0.09	7.64	4.06E-01
TXNL4A	thioredoxin lik	0.05	5.67	4.08E-01
ATP11B	ATPase phospl	-0.03	7.06	4.10E-01
RNF6	ring finger pro	0.04	5.79	4.12E-01
FANCI	Fanconi anemi	-0.07	3.36	4.16E-01
SUZ12	SUZ12 polycon	-0.04	6.13	4.19E-01
PAFAH1B1	platelet activa	0.03	7.22	4.20E-01
PDZD8	PDZ domain cc	-0.08	5.11	4.24E-01
VPS13A	vacuolar prote	-0.05	6.20	4.26E-01
RERE	arginine-glutar	0.05	6.56	4.32E-01
PM20D2	peptidase M2(-0.04	5.20	4.33E-01
USP13	ubiquitin speci	-0.06	3.82	4.35E-01
TGFBR2	transforming g	0.06	8.68	4.35E-01
GRSF1	G-rich RNA sec	0.04	5.80	4.36E-01
CCNI	cyclin I [Source	0.04	9.14	4.37E-01
TMED4	transmembrar	0.03	7.80	4.37E-01
ZADH2	zinc binding al	0.06	5.30	4.37E-01
BCL11A	B-cell CLL/lymı	-0.35	-0.92	4.47E-01
ARHGEF12	Rho guanine n	0.17	2.66	4.49E-01
SNX30	sorting nexin f	-0.06	4.81	4.50E-01
QSER1	glutamine and	0.05	4.39	4.53E-01
PPP1R3B	protein phospl	0.09	3.82	4.58E-01
FAM208B	family with sec	-0.03	6.22	4.69E-01
AP3B1	adaptor relate	-0.04	4.91	4.71E-01
STAT3	signal transduc	-0.03	6.67	4.79E-01
RASEF	RAS and EF-ha	-0.21	0.50	4.80E-01
FASLG	Fas ligand [Sou	-0.26	1.02	4.81E-01

RTN4	reticulon 4 [So	0.04	6.20	4.90E-01
UBA6	ubiquitin like r	-0.03	5.57	4.93E-01
CCNG1	cyclin G1 [Sour	-0.03	7.42	4.98E-01
JAG1	jagged 1 [Sour	-0.33	-0.72	4.99E-01
CYBRD1	cytochrome b	-0.25	-0.14	5.01E-01
KAT6A	lysine acetyltra	-0.02	7.15	5.07E-01
GLG1	golgi glycoprot	0.02	7.47	5.11E-01
CDK2AP1	cyclin depend€	0.15	1.66	5.14E-01
SOWAHC	sosondowah a	0.18	1.61	5.16E-01
TRIM2	tripartite moti	0.11	2.37	5.19E-01
E2F3	E2F transcripti	0.05	5.22	5.21E-01
BTG2	BTG anti-prolif	-0.07	10.18	5.21E-01
ABI2	abl interactor 2	-0.04	5.52	5.24E-01
TOR1AIP2	torsin 1A inter	0.03	3.96	5.28E-01
ZNF217	zinc finger pro	0.03	6.68	5.29E-01
SNAP29	synaptosome a	-0.04	5.41	5.35E-01
TSNAX	translin associa	0.02	5.44	5.36E-01
PJA2	praja ring finge	0.03	6.98	5.41E-01
SKI	SKI proto-oncc	0.05	7.14	5.44E-01
PPP1R37	protein phospl	-0.04	3.62	5.53E-01
JADE1	jade family PH	-0.03	5.90	5.60E-01
RHOB	ras homolog fa	-0.19	5.49	5.62E-01
DUSP16	dual specificity	0.06	6.63	5.64E-01
LTV1	LTV1 ribosome	0.03	6.53	5.65E-01
ATL3	atlastin GTPase	0.03	5.11	5.65E-01
PBRM1	polybromo 1 [!	-0.02	5.89	5.65E-01
NUBPL	nucleotide bin	0.04	2.87	5.70E-01
RPRD2	regulation of n	-0.02	6.12	5.70E-01
NCOA2	nuclear recept	0.03	5.86	5.75E-01
KBTBD6	kelch repeat a	-0.05	2.93	5.77E-01
PTP4A2	protein tyrosir	0.03	8.12	5.77E-01
MALT1	MALT1 paraca	-0.02	7.30	5.77E-01
GPD2	glycerol-3-pho	0.04	4.12	5.83E-01
TMEM30A	transmembrar	0.02	7.15	5.85E-01
TNPO1	transportin 1 [-0.02	6.04	5.86E-01
WEE1	WEE1 G2 chec	-0.09	2.26	5.90E-01
TESK2	testis-specific	0.05	3.95	5.91E-01
SREK1	splicing regula [.]	0.02	6.57	5.92E-01
PANK3	pantothenate	0.02	6.15	5.95E-01
ARMCX3	armadillo repe	-0.03	5.47	5.96E-01
EIF1AX	eukaryotic trar	-0.08	6.96	5.99E-01
CUX1	cut like homec	0.03	4.27	5.99E-01
FAM126B	family with sec	0.03	4.63	6.01E-01
PFKFB2	6-phosphofruc	-0.07	1.95	6.02E-01

PAPD7	poly(A) RNA pc	0.03	6.88	6.06E-01
UGCG	UDP-glucose c	0.05	6.21	6.09E-01
AGPAT5	1-acylglycerol-	0.03	4.39	6.14E-01
DDX3X	DEAD-box heli	-0.07	9.08	6.16E-01
FAM3C	family with sec	0.04	4.85	6.18E-01
CAPN2	calpain 2 [Sour	-0.04	7.66	6.19E-01
TMED10	transmembrar	-0.03	7.44	6.22E-01
ZBTB38	zinc finger and	-0.05	5.16	6.25E-01
ZFYVE16	zinc finger FYV	-0.02	4.16	6.28E-01
DCUN1D3	defective in cu	-0.04	3.16	6.29E-01
GOLGA4	golgin A4 [Sou	0.03	5.91	6.32E-01
FBXO46	F-box protein 4	-0.05	5.26	6.35E-01
HBP1	HMG-box tran	0.03	6.72	6.41E-01
ESYT2	extended syna	0.03	8.09	6.42E-01
KLHL8	kelch like fami	-0.03	4.04	6.50E-01
CCSER2	coiled-coil seri	0.04	6.74	6.53E-01
EPM2A	epilepsy, progi	0.05	3.67	6.56E-01
ARL1	ADP ribosylatic	0.02	5.09	6.59E-01
SNN	stannin [Sourc	0.06	6.03	6.63E-01
ZSWIM6	zinc finger SW	0.03	5.09	6.64E-01
RAB6A	RAB6A, memb	-0.02	6.18	6.65E-01
MCAM	melanoma cell	-0.13	0.02	6.66E-01
MED28	mediator com	-0.02	6.64	6.66E-01
RBM27	RNA binding m	-0.02	5.91	6.67E-01
RMND5A	required for m	0.02	5.69	6.75E-01
AZIN1	antizyme inhib	0.02	6.37	6.76E-01
TNFRSF10B	TNF receptor s	-0.03	6.27	6.77E-01
STAG2	stromal antige	0.01	6.93	6.78E-01
SOS2	SOS Ras/Rho g	0.02	5.66	6.79E-01
USP15	ubiquitin speci	0.02	7.12	6.87E-01
PURA	purine rich ele	-0.03	5.03	6.99E-01
ZNF462	zinc finger pro [.]	0.16	-0.06	7.08E-01
TBK1	TANK binding l	-0.05	4.73	7.11E-01
RECK	reversion indu	-0.02	4.99	7.16E-01
HNRNPA2B1	heterogeneou	0.01	9.69	7.17E-01
LMNB1	lamin B1 [Sour	0.03	5.03	7.17E-01
RAB11FIP2	RAB11 family i	0.02	5.72	7.17E-01
ATXN10	ataxin 10 [Sou	0.02	5.80	7.22E-01
MAP3K1	mitogen-activa	0.03	8.20	7.24E-01
SOCS5	suppressor of (-0.02	4.54	7.31E-01
CCDC93	coiled-coil don	0.01	6.25	7.34E-01
HMGB3	high mobility g	0.11	0.70	7.37E-01
STRN	striatin [Source	0.01	5.74	7.54E-01
MRPL49	mitochondrial	0.02	5.86	7.57E-01

CSTB	cystatin B [Sou	0.03	5.96	7.57E-01
YY1	YY1 transcripti	0.01	7.09	7.59E-01
MYH9	myosin heavy	-0.02	9.63	7.59E-01
SCD	stearoyl-CoA d	0.11	1.11	7.69E-01
PGK1	phosphoglycer	0.01	7.52	7.74E-01
RYBP	RING1 and YY1	-0.02	5.95	7.81E-01
CNOT6	CCR4-NOT trar	0.02	5.64	7.85E-01
DOCK8	dedicator of cy	-0.03	7.03	7.87E-01
VPS36	vacuolar prote	0.01	6.53	7.87E-01
CD44	CD44 molecule	0.01	8.30	7.91E-01
SOCS6	suppressor of	0.07	1.04	7.91E-01
FAM53C	family with sec	-0.02	4.73	7.97E-01
COPS4	COP9 signalos	-0.01	4.95	7.98E-01
CSNK2A1	casein kinase 2	-0.01	6.15	7.99E-01
MARCH6	membrane ass	0.01	7.97	8.01E-01
NPTN	neuroplastin [0.02	5.93	8.03E-01
KLHL9	kelch like fami	0.02	5.32	8.03E-01
IGF1R	insulin like gro	0.04	5.68	8.13E-01
FNDC3B	fibronectin typ	0.02	3.71	8.15E-01
CBFB	core-binding fa	-0.01	6.92	8.16E-01
SLC31A1	solute carrier f	0.03	2.77	8.16E-01
ZNF493	zinc finger pro	0.02	4.63	8.19E-01
DDI2	DNA damage i	0.01	5.28	8.21E-01
KRIT1	KRIT1, ankyrin	-0.01	5.68	8.22E-01
FOXN2	forkhead box l	0.02	6.48	8.26E-01
FAM20B	family with sec	0.01	5.32	8.27E-01
MED13	mediator com	0.01	6.02	8.31E-01
ZNF148	zinc finger pro	0.01	5.56	8.32E-01
SPIN1	spindlin 1 [Sou	-0.01	5.84	8.34E-01
KANSL1L	KAT8 regulato	-0.03	3.22	8.38E-01
FAM63B	family with sec	0.02	4.99	8.39E-01
MARCKSL1	MARCKS like 1	-0.02	6.60	8.45E-01
CBX5	chromobox 5 [0.01	6.29	8.47E-01
ABAT	4-aminobutyra	0.01	3.40	8.48E-01
PGM3	phosphogluco	0.01	4.44	8.49E-01
CLNS1A	chloride nucle	0.01	6.16	8.49E-01
PTK2	protein tyrosir	0.03	2.26	8.49E-01
NUFIP2	NUFIP2, FMR1	-0.01	7.11	8.64E-01
ALPP	alkaline phosp	-0.05	0.81	8.68E-01
EFR3A	EFR3 homolog	0.01	6.14	8.70E-01
RAB1A	RAB1A, memb	-0.01	6.55	8.73E-01
WDR3	WD repeat doi	-0.01	5.29	8.73E-01
TAF5	TATA-box bind	-0.02	4.19	8.75E-01
IRF2BPL	interferon regu	-0.02	5.08	8.79E-01

CD164	CD164 molecu	-0.01	7.54	8.80E-01
MTPN	myotrophin [S	-0.01	7.32	8.82E-01
PRKAB2	protein kinase	0.01	5.80	8.84E-01
RC3H2	ring finger and	0.01	6.01	8.86E-01
PITHD1	PITH domain c	-0.01	6.57	8.87E-01
SUB1	SUB1 homolog	-0.01	6.56	8.89E-01
MRPS10	mitochondrial	-0.01	5.78	8.91E-01
FBXO11	F-box protein :	0.00	6.64	8.93E-01
SEMA5A	semaphorin 54	-0.04	1.13	8.98E-01
LYRM2	LYR motif cont	-0.01	3.78	9.01E-01
SERAC1	serine active si	-0.01	2.92	9.08E-01
CLIC2	chloride intrac	-0.03	0.90	9.22E-01
USP1	ubiquitin speci	0.01	6.53	9.27E-01
USP47	ubiquitin speci	0.00	6.01	9.27E-01
KLF5	Kruppel like fa	-0.02	2.89	9.34E-01
EFHD2	EF-hand doma	-0.02	6.91	9.37E-01
EIF4EBP2	eukaryotic trar	0.00	7.12	9.40E-01
BEX3	brain expresse	0.01	5.63	9.49E-01
UHRF1BP1L	UHRF1 binding	0.00	4.33	9.52E-01
DDHD2	DDHD domain	0.00	5.68	9.52E-01
WHSC1L1	Wolf-Hirschho	0.00	6.89	9.57E-01
OSBPL3	oxysterol bind	0.00	5.73	9.61E-01
MXD1	MAX dimerizat	0.00	4.36	9.68E-01
SUSD6	sushi domain c	0.00	6.55	9.70E-01
LPGAT1	lysophosphatic	0.00	5.45	9.76E-01
LARP4	La ribonucleop	0.00	4.77	9.79E-01
ARMC8	armadillo repe	0.00	5.17	9.83E-01
ZBTB34	zinc finger and	0.00	3.83	9.84E-01
PIK3C2A	phosphatidylin	0.00	5.43	9.95E-01
RNF11	ring finger pro	0.00	6.45	9.96E-01
RUFY3	RUN and FYVE	0.00	4.73	9.96E-01
TSPAN2	tetraspanin 2 [0.00	4.10	9.99E-01
RASGRP1	RAS guanyl rel	0.00	8.41	9.99E-01
HK2	hexokinase 2 [0.00	3.94	1.00E+00
GPRC5A	G protein-coup	-		
LIMCH1	LIM and calpor-	-		
HOXA9	homeobox A9	-		
TNS1	tensin 1 [Sourc	-		
TGFB2	transforming g	-		
JADE3	jade family PH	-		
JPH1	junctophilin 1	-		
COL12A1	collagen type >	-		
LIFR	leukemia inhib	-		
PEX5L	peroxisomal bi-	-		

DLX2	distal-less hor -
PRRX1	paired related -
PCDH17	protocadherin -
PTGFR	prostaglandin -
KIAA1549	KIAA1549 [Sou -
CALD1	caldesmon 1 [:-
SOX9	SRY-box 9 [Soı -
HRK	harakiri, BCL2 -
PRRG4	proline rich an -
LAMC1	laminin subuni-
IL10	interleukin 10 -
ARHGAP24	Rho GTPase ac -
OSR1	odd-skipped re-
THRB	thyroid hormo -
TMEM56	transmembrar -
DDAH1	dimethylargini -
ENAH	enabled homo -
IGF2BP1	insulin like gro -
PLPP3	phospholipid <code>p</code> -
PRKAA2	protein kinase -
NIPAL1	NIPA like dom:-
PRICKLE2	prickle planar (-
EDIL3	EGF like repea ⁻ -
TNFRSF11B	TNF receptor s -
ALDH1A1	aldehyde dehy-
ST5	suppression of -
CXCL10	C-X-C motif ch-
ANO5	anoctamin 5 [S-
GNG12	G protein subι -
OLR1	oxidized low d -
B3GNT5	UDP-GlcNAc:b -
SKIDA1	SKI/DACH dorr -
SOX2	SRY-box 2 [Sou -
PAPPA	pappalysin 1 [S-
MARC1	mitochondrial -
SAMD5	sterile alpha m-
SERPINB5	serpin family B -
TOMM6	translocase of -
RAB6C	RAB6C, memb -
GTF2I	general transc -
ZNF595	zinc finger pro -