Applied Microbiology and Biotechnology

A novel galactolipase from a green microalga *Chlorella kessleri*: purification, characterization, molecular cloning and heterologous expression

Shuhei HASHIRO¹, Koyu FUJIUCHI², Daisuke SUGIMORI^{2*}, and Hisashi YASUEDA^{1*}

¹ Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan

² Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan

*To whom correspondence should be addressed:

Hisashi YASUEDA¹, Tel.: +81-44-245-8554; Fax: +81-44-244-9617; E-mail: hisashi_yasueda@ajinomoto.com Daisuke SUGIMORI², Tel.: +81-24-548-8206; Fax: +81-24-548-8206; E-mail: sugimori@sss.fukushima-u.ac.jp

Supplementary figures

Figure S1 Structure of the rckGL expression plasmid pCold TF-ckGL1 and the TF-ckGL fusion protein. The fusion protein was produced using the promoter of the *cspA* gene, which encodes a cold shock protein. TEE, translation enhancing element; His₆, His-tag; TF, trigger factor; UTR, untranslated region. The recognition region and cutting site of factor Xa are indicated as "I-E-G-R" and a black down-pointing triangle, respectively.

Figure S2 Amino acid sequence of pre-mature ckGL.

The pre-mature ckGL was composed of 535 amino acids (aa) and a pre-sequence (60 aa) containing a chloroplast transit peptide (cTP, shaded in gray). The initiator Met of premature ckGL was assigned as position +1 of the aa sequence, and the *N*-terminal Thr of mature ckGL at position 61 is indicated with a dot. The N-terminal aa sequence of purified ckGL was detected experimentally (bold underline). Amino acid sequences detected by LC-MS/MS analysis of ckGL were all assigned to corresponding sequences (indicated by double underlines), although the MS-analysis could not distinguish between Leu and Ile residues since they have identical mass. The one negatively charged aa (Glu) and Arg residues in the cTP region are indicated by an open circle and open triangles, respectively. Two Cys residues are indicated by closed triangles.

Figure S3 Steady-state kinetic analyses of (a) the purified native ckGL and (b) rckGL. Each data point represents the mean of three independent determinations with standard errors indicated.

150 AATGGCACAC V 300 TGCACAGGAG	450 GCATCGTTCA	600 GTTGCCACCA	750 CTGAGGGTTA	900 AGGGCTGCTG	1050 CCTGAGCCGC	1200 GTGTTGCACC	1350 CATGACGCCT	1500 AAGCTAGGCG	1650 CTGTGGTGTC	1800 CCCCTGTCCA	1950 GAGGGTGCCT	2100 TGGCAAGCTT	2250 ATCCCTGGTT	2400 TTTGCGAGAC	2550 GACCCTCCAT	2700 CAGGCTGGTT	2850 CTGCTTGTGT	3000 CGGAGGCTGC
140 CAGGAGTGGA WWWWWWWW CAGGTCAGTC	440 AACACGCTGT	590 CCTGCGCGAG	740 GGTATGACCG	890 CCATCCTCGC	1040 AAGTCCGGCT	1190 GCCAACTCGT	1340 GTTTCCTGCA	1490 GGTGTTGGTT	1640 AGTCCGCTTG	1790 TGGGAGTGCC	1940 GTTTGCCACG	2090 AGGGCCCTGC	2240 GGCTCCAGAG	2390 TGTGCTGAGG	2540 AATGCCTTGT	2690 CCTTCTGTGG	2840 TTGCCCAGCG	2990 CTATGCGCTG
130 AGGGTCCACC WWWWWWW 280 ATCGGCACAG	430 GCTGGGCTGC	580 TGGCAACTGC	730 CCTAGTCTTG	880 CACGCACTTC	1030 GCTTGTTCTC	1180 GGAGGCGCCT	1330 GAAAGGCACT	1480 CTTGCAATGT	1630 TGTGCAGCAA	1780 GGGATCCGTC	1930 AGGCCTACAT	2080 GACCCCCGCC	2230 TCTCTGAAGG	2380 GCGACAGGTC	2530 TGTGGGTCAA	2680 AACACCCATA	2830 GCACATGTCT	2980 TCCACCATCT
120 CATAGCTTGT WWWWWWW 270 TTCCAGGCGG	420 GCTGCAAGTT	570 GCCCTGTAC	720 GGCGGTCCGT	870 ATGACATGCC	1020 CTTGTGAGTT	1170 GGAGCCCCTT	1320 TGCTCGCGCT	1470 GGGTCCTACA	1620 ACCAAAGATT	1770 GGGGCTGCGT	1920 AATGTGGGACG	2070 TGCCCGCCAA	2220 GTAGCTGATG	2370 AACATCTTTG	2520 TCCCGGGGGA	2670 GACACACCGG	2820 ATGAGCAGCT	2970 CATGCTTCTG
110 CTGCCGAGCA WWWWWW 260 CTCTTCAGCG	410 GGGCTAGCAT	560 GCTCAGCGCT	710 TTCTGTGCAG	860 TGTTGCCTCT	1010 CCTCCTCACG	1160 TAACCTTGTG	1310 GGGCGGCCTG	1460 GGGGTCCTTT	1610 TTGCACAGGA	1760 GCCGTGCTGT	1910 GCTCCTCCCC	2060 GGCAGGTCAG	2210 GAGCAGGCAG	2360 GTGGAAGACA	2510 ATGCGGGGGG	2660 TGACCTCACT	2810 CGGTGCGTGT	2960 CTTGACCCTC
100 TCCTGTAGTG	400 GGCTTCAGGG	550 AAGCCCGGAG	700 CTGGGCTGGC	850 CCAGCGGATT	1000 ATCGGCGACC	1150 TGGGGCATCT	1300 GTCGCCCTTT	1450 TGCTGTACCG	1600 TGCAGGCTCC	1750 CCCTGACTTG	1900 ACAGCTATGA	2050 TGTCAAAAGA	2200 CTTGCGGCTT	2350 CGGGCGGCGA	2500 GTAATCTGCC	2650 TCACGGGTTG	2800 TCTCCTCGAG	2950 ACTGCGATGC
90 TCCACCCCT WWWWWW 240 TTTGGCAACT	390 GCCCACTACT	540 ACTGCAGTGG	690 GTGAGGGGACA	840 CTGCTTCTAC	990 CGACAGCTTC	1140 CACCAGTTGA	1290 GCGCAAACCA	1440 TCTGTTGCGG	1590 AAAACGGTCT	1740 GCTTGGTTGT	1890 TTCCTCCCAC	2040 TACATCGCAG	2190 ATGGCCATGT	2340 GGCACCATCA	2490 GCTCACCCT	2640 AGGGCTCGAC	2790 GGACCTGGAC	2940 CAAAGCTTTG
80 CAGTGTTGGC WWWWWWWW 230 GCCGTGCTTC	380 CATGAGAGTT	530 ATACTGCTGT	680 TAGAGTATAT	830 AGGCCTGTAC	980 AGGTCACCTA	1130 TGGCCAAAGG	1280 ATCTGCCACG	1430 GGCGCGCAGG	1580 ATCCGGCTAC	1730 ATGGCTGCGA	1880 GATTCTGTA	2030 CTGGATAGGC	2180 TTGAGACGTG	2330 CATGTTCCGG	2480 AGTTCTAGGT	2630 ACTGCACAAC	2780 CGGGGGATCA	2930 GGTTCCTACC
70 GCAGCCTCGT WWWWWWW 220 GGTGCCATGC	370 AGGGCCATAC	520 CCGGTGCTAG	670 GGTAGTCCTT	820 TCTAGCTTGA	970 GAGATGGCGG	1120 TAGGCCTGCA	1270 GAACCTGCAC	1420 CTCAGTCCAA	1570 TAGATAGGCA	1720 ACAGAGGAAG	1870 TCAGCCATGC	2020 AGAACAAGAA	2170 CAAGCTGATC	2320 ACATTGCCAT	2470 ACAGCCCATG	2620 GGATACCTGC	2770 TACTGGGAGA	2920 ATTGGGAAAC
60 CAGTACTGAC WWWWWWW CCGCGTGGGG	360 GATACTGCCT	510 GCTACTGACC	660 TGGAAAGGTA	810 CAAGGGTCAG	960 GATGTATGGG	1110 GCGGGGGGGCA	1260 GCGCCCTAGG	1410 ATCGTGCTGC	1560 GCATTTGGGC	1710 GTCCTAGATC	1860 GACCCACGAC	2010 GCCGACCCCC	2160 ACAGGCGAGG	2310 GGGATGCGAG	2460 ACCCTTCATG	2610 CGTTCCTACA	2760 CAGGGCCACC	2910 CAAGGAGGTG
50 CCCCGATCAC WWWWWWW AGGCCCATGT	350 ATATGGTTCT	500 CACTGGCCCC	650 CAGCAACGAC	800 ATAGTGTTAC	950 CCACCATTCT	1100 TTTTACTGA	1250 TCAGGAGGCA	1400 GTACCCAGAC	1550 TTGGTGAAGT	1700 TCAGGAGAGG	1850 AGCTCTGGTT	2000 CGACCGGATT	2150 AAGTTGAGGC	2300 TGCAGAGGAT	2450 TGCAGCACTT	2600 CTGCTGTGGG	2750 ATGAGGGCTT	2900 TGTATTTTGC
40 AATAGCGCAC WWWWWWW 190 GCTCTCCTGC	340 CCTGAGCCTG	490 ACTGTGAAAA	640 AGCTGCGCGG	790 GACCTTGCGT	940 GACCTGCGGG	1090 AGGCTGGCCT	1240 GACTGAGCAG	1390 CGTCTGACTT	1540 GACCCTGCAA	1690 TCCCAATGGG	1840 AGTTCTTGTA	1990 ACCCCTCCCC	2140 CAACTGCATA	2290 GTCCCTTGGC	2440 GCTGCCTGAC	2590 CGTTGCCATC	2740 GGCAAGGTGC	2890 GCTCTGTACA
30 TTGCTTGTCT WWWWWWW CCAAACAGGG	330 ATTTGATCCG	480 TGTGACCTGC	630 CGGCAGCTTG	780 CCCCAGGCTT	930 CATCGACCCA	1080 CGCACAGGCG	1230 ACTGGCAACC	1380 TTTGAGAAGC	1530 CGTACACACG	1680 CATAACTCTC	1830 TTTCCGCTGA	1980 AAGGAGGGCA	2130 GATTGTTCAA	2280 CGCAACCGAC	2430 CTGACATGGT	2580 CGTGGCCGCC	2730 CGGGCTGGGA	2880 CAAAGCGCA
20 ACAGTTGGAG MVVVVVVVVV TTCTTCAGCT	320 CCTTTCCTCA	470 CGAGTGATCC	620 CAGTGAGGCT	770 AAGCCTCCCA	920 AGAATGACAC	1070 CTGCTGCTAG	1220 CATAACAGTA	1370 GAGGAACCGC	1520 ACTACAGCTG	1670 TTAAGGCACC	1820 AGCACTTCCG	1970 CGACGATTCC	2120 TTGCTGGCGA	2270 GTATGGAGTT	2420 ATGCTTTGCA	2570 GCTGTAGCAG	2720 CCCGCACCCC	2870 CTGTTGGTGC
10 GACTGCAGCC AVVVVVVVVV 160 CCGAAGGCCC	310 CACTTTGCAC	460 GGACGTGGAA	610 AGTCTGAAGT	760 TGTACATTTC	910 CCAACCAAGG	1060 CTGCCTTGCA	1210 CTTGCATGGA	1360 GCAGTTTTGG	1510 CGATGCGCAC	1660 TTTGACCTGG	1810 AGAAATGTGA	1960 ACAAGCTGAG	2110 GCTGGCAAGC	2260 GAGGAGTCTG	2410 CAGGAAGCAC	2560 GCCCACAATT	2710 GCGTGGGGACC	2860 GCAGCAGTAG

Figure S4 DNA sequence of *glp1* gene.

The sequence of *glp1* gene contained 10 introns and 11 exons (regions with underlines). The ATG for initiation codon and the ACT codon for the *N*-terminal amino acid (Thr) of mature ckGL are indicated with bold bars. The 5'- and 3'-untranslated regions are underlined with wavy lines.

3150 CTCAAGAG	3300 GACAGGCC	3450 CTTTGCGT	3600 AACTGGCT	3750 ACAATGCG	3900 GTGACCAA	4050 GGGTGTGG	4200 GCCCCTGG	4350 TTCTACTG	4500 GAGGGGCC	4650 GAGGCCTG	4800 GCCCTCCC	4950 CAAGGGCG	5100 GAGAGATT	TCCACACA	5400	TCAGCTTG	0555 2550	AAAATTTT	5700	
3140 STTGCTGCTT C1	3290 STCCGTCACA G1	3440 CTCAGCGATA AC	3590 GGTTGGGTT G1	3740 ATGCTCCTT TO	3890 STGAGGACGG C1	4040 AGGTGCGGA G2	4190 CCGTAACCC AC	4340 GCATGCTTC TO	4490 ATCACATATG TO	4640 GCCTTCAGT GO	4790 GCCATGGCA TO	4940 GTGCTTCTT AA	5090 ATGTGAGTGA CO	WWWWS240	vvvvvvvvvvvvv	TTTGCTCCC T1	www.www.	GGAGTATCC AC	0695	
3130 TGCACCTCAT C	3280 CTTCGATTGG C	3430 AGATCCACGT C	3580 TTGCGCTGTG G	3730 TTGCTTTGAT 2	3880 TGCAGGATTC C	4030 CACCGACCCA G	4180 CGAGGGGGGTC 1	4330 TGGTCACAGC 2	4480 CACGGACGAT 2	4630 TACAGTTCCT G	4780 CCTCTCGAGA G	4930 AGCGCGACCC G	5080 GAGGCAGAGC 2	TTGTATGCCA C	www.www. 5380	TTGAGCTCTG 1	www.www.	GGGGTGGAGC 2	www.www.	
3120 CCTTTGCTGC	3270 AAGCATGGCA	3420 ATCCGGGACA	3570 CCCGGCAGGC	3720 ATGCCCTGGG	3870 CTTGATTGG	4020 CGTACGAGCA	4170 GATGTGCAAC	4320 ACAGCCTGAG	4470 GGACGGTAAA	4620 TGGACTACTC	4770 AGAGGTCCGC	4920 GGGGCCATCG	5070 TATGGCAAGT	5220 ATTGGCTGCT	www.www.	CCCTTCAGAG	www.www.www	CCTATAACCT	20000000000000000000000000000000000000	
3110 CCGCTCTACC	3260 CATTCTGCGC	3410 GGGAGTCAAG	3560 AGGTAGGCGC	3710 AGTCGCACTG	3860 TAGCAGCGCT	4010 GGTGACTGGT	4160 TGCGGTCCAT	4310 CTTGGCCAGC	4460 TGCGTGCAGT	4610 CCTGACTTTG	4760 GGAAGGTGTC	4910 CCAGAAGGGT	5060 GAAGATACC	5210 AGCATCAGGT	www.www.	CTTATCATTT	20000000000000000000000000000000000000	AAGGACGCCA	2660	
3100 GGGTCCTGCA	3250 CTCTGGAGGC	3400 TGACCAACGA	3550 CACAAGTGCC	3700 CTCATTTCGT	3850 CAGGGTTCCT	4000 TCCGGTGCTC	4150 CGTTATAGAC	4300 TGCTCCTTCT	4450 TCGCCTGTGC	4600 TTGGCAAGCC	4750 GCGAGCACCT	4900 CGCTGAGTGC	5050 CCCAGTGGAA	5200 GCGAGAAGAG	www.www.	AGACATCCCG	www.www.	ATTAGTGCGT	vvvvvvvvvvvv	
3090 CCAGCAGCTG	3240 GTGCGCCGGG	3390 AGGGACAAAC	3540 GACGTGGTCC	3690 AGCAGCCATC	3840 TCAGATGGTG	3990 TCTCCAAGGT	4140 CCCGAGGCCA	4290 TTATTATT	4440 CCTTGCCTAC	4590 TCACCCACAC	4740 AGGGCAGACT	4890 ATGGTGGCGA	5040 GAGACCTTCT	5190 GACGTGAAGT	www.www.5340	CCCGGAACAT	vvvvvvvvvvvvvvv	TGGGCTGCTG	vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	CTTGAC
3080 GCATGTGCTG	3230 ACTGCAGACC	3380 TGGCAGCATC	3530 CAACTACAGG	3680 TTATGCGTCT	3830 AGACCGCTAA	3980 AACTGGGGAC	4130 TCCGGTGGCG	4280 TATTATTA	4430 CCGCTCTAAA	4580 GTACGACTCC	4730 GCCACAGTCA	4880 GTACCTGTAT	5030 CCAGGTGTGC	5180 AGAAGCGATG	www.www.	TGAACATCAC	20000000000000000000000000000000000000	TCCTGACTCT	20000000000000000000000000000000000000	ATTCTAAGT
3070 CTACCTTATG	3220 TGCCCCTACG	3370 CAACCGAACC	3520 TGCGGGTCGT	3670 CAAATAGGCC	3820 CTAGAACAGC	3970 CAAGTTCCTC	4120 TCCTTCTCTC	4270 GGTCTGGGCG	4420 GGCTACGATC	4570 CAACCTGGAG	4720 CAAGCTTGCT	4870 CGGCGCAGGT	5020 GGTTCCAGCC	5170 ATTATTTAT	www.www.	TACTGAATTC	wwwwwwwww 5470	TGAACTGTTT	NVVVVVVVVVVV	TGGCTGTGGGC
3060 CAGCAGGCAA	3210 TGTGGCCTGT	3360 CGCCTGAAGT	3510 GTGAAGATGC	3660 TGGGATAGTA	3810 CAAGCAAACC	3960 GCACGGTGCT	4110 GCTTGCTTGC	4260 GTGTCCTTGA	4410 CCTACAGCCC	4560 GGCCCCGCCA	4710 ACTGTGGCAG	4860 TGCCTTCAAT	5010 CCCAAAGCAT	5160 TCCCTGTGGGG	www.www.	ACACAAGTCT	wwwwwwww 5460	CATGTCCTCT	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	GAACCTGCC
3050 TGGAGCAGGC	3200 TCTGACCCTC	3350 TGTCGGGCTG	3500 GCAGGCGGGG	3650 GCAGCCCCAA	3800 AGGCAACCGG	3950 GACGGTGTGG	4100 AGCTGGTCCT	4250 GGCCACGGCT	4400 GAGCCTCGGG	4550 AAGGATGTGG	4700 GCAGACCTTG	4850 CAAGGCTACC	5000 CCCCGACACG	5150 CCTGGACTTC	www.s300	GGGGTACAAT	20000000000000000000000000000000000000	GACGTGTGTA	20000000000000000000000000000000000000	GGTGCAACAT
3040 CGGTACAGTG	3190 CTTCCTCGGT	3340 CAGCCTATGA	3490 ATGCTGTGAA	3640 CCGCAGTGTG	3790 CAGGCATAGC	3940 GGCTCCAGGT	4090 TGCTCAGCAG	4240 CTCAAGGCAC	4390 CTGCCGGCCA	4540 GCTGGAGCGC	4690 GACGCCTTAG	4840 GCGACTTTCT	4990 AGCACAAGCG	5140 GGCGATGGCG	www.www.5290	CCAAGCTTTG	www.www.	GATGTTTCTC	0635 2590	GGATGGGCAA
3030 CTGTATTGTA	3180 TCCCCACAAT	3330 GCCAGCGTGG	3480 GACTTCAAGC	3630 GCCTGTGTAG	3780 GCTTGGCAGC	3930 TTGATGCCAG	4080 TGTGCTCAGC	4230 CAGGGCACCA	4380 GACTTCGCAG	4530 CCATGCGCGT	4680 GAGGCCCCTG	4830 TGTTCGTTGG	4980 TGGCTGGAGG	5130 GCAATGGTCG	www.www.	GGGTCTGCAA	02430	ATATTTTCT	02280	ACCTGTGTGTTA
3020 CTGTACTGCA	3170 TTACTCAACG	3320 CGGTGCGCTG	3470 GGGCAACCCC	3620 GCAGGCGGTT	3770 GAGGTGTGCA	3920 CTGGCGGGCA	4070 CTCAAGCTGC	4220 GTGGTTTTCC	4370 GAGTGCAGCT	4520 GCCAAGCGGC	4670 TGCTTCTCTG	4820 TGCACTCTCC	4970 GGAGTCCAAG	5120 ATGGGGTTCA	00000000000000000000000000000000000000	CATGAAGAGG	www.www.5420	CTGGCAACAA	2570 5570	AGGTGGTACG
3010 CGGAACAAGC	3160 ACGCCAAGCG	3310 ACAGCCTGGG	3460 CGCCGCGTGT	3610 GCAGAGTGGC	3760 CACCATCACA	3910 GAGCCTCATC	4060 CCCGGTAGGG	4210 CTGGTGTCCT	4360 GCACAGTCCA	4510 GGCCAACAAT	4660 CCCACATGTG	4810 TTGACCTTC	4960 ACTGGTGTGT	5110 GAACAAAATT	-20000000000000000000000000000000000000	AGTGTATGGC	-7////////////////////////////////////	CTCGGTAACA	-2000000000000000000000000000000000000	GGTCACAGAT

Figure S5 Crystal and model structures of $AtPLA_1$ and ckGL. (a) PLA_1 from *A. thaliana* (PDB ID, 2YIJ) as crystal structure; (b) ckGL as homology-modeled structure. The structures are represented in ribbon models as monomer from the same viewpoint. The putative catalytic triad (Ser, Asp, and His) in the area within black dotted circle is shown in red. In the lower panels, close-up views of the catalytic triads, with oxygen and nitrogen atoms in red and cyan, respectively, are shown as stick models.