SUPPLEMENTARY INFORMATION

Adipocyte-specific expression of C-type natriuretic peptide suppresses lipid metabolism and adipocyte hypertrophy in adipose tissues in mice fed high-fat diet

Cho-Rong Bae¹, Jun Hino¹, Hiroshi Hosoda², Cheol Son^{3, 4}, Hisashi Makino³, Takeshi Tokudome¹, Tsutomu Tomita^{3, 5}, Kiminori Hosoda³, Mikiya Miyazato¹, and Kenji Kangawa¹

¹Department of Biochemistry, ²Departments of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, Japan; ³Division of Endocrinology and Metabolism, ⁴Omics Research Center, and ⁵Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.

Supplementary Tables and legends

Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')	
ACC	CCCATCCAAACAGAGGGAAC	CTGACAAGGTGGCGTGAAG	
ATGL	TGACCATCTGCCTTCCAGA	TGTAGGTGGCGCAAGACA	
CD163	TCTCAGTGCCTCTGCTGTCA	CGCCAGTCTCAGTTCCTTCT	
CD206	CCACAGCATTGAGGAGTTTG	ACAGCTCATCATTTGGCTCA	
ChREBP	GGCCTGGCTGGAACAGTA	CGAAGGGAATTCAGGACAGT	
CNP	ACCGAAGGTCCCGAGAACCCC	GACTTGGTGTCCACACGCAGGTCC	
CPT1	TGCACTACGGAGTCCTGCAA	GGACAACCTCCATGGCTCAG	
F4/80	CTTTGGCTATGGGCTTCCAGTC	GCAAGGAGGGCAGAGTTGATCGTG	
FASN	GCTGCTGTTGGAAGTCAGC	AGTGTTCGTTCCTCGGAGTG	
GCB	GTCGCTGCGGGGGATCCAGTTACG	ATGTTGGGAGGGTCTATGCAGGC	
HSL	GCGCTGGAGGAGTGTTTTT	CCGCTCTCCAGTTGAACC	
IL-6	CCAGTTGCCTTCTTGGGACTGATG	GTAATTAAGCCTCCGACTTGTGTGAA	
MCP-1	GCAGGTGTCCCAAAGAAGCTGTAG	CAGAAGTGCTTGAGGTGGTTGTGG	
PGC1a	CCCTGCCATTGTTAAGACC	TGCTGCTGTTCCTGTTTTC	
PPARα	CTGAGACCCTCGGGGGAAC	AAACGTCAGTTCACAGGGAAG	
PPARγ	AGGCCGAGAAGGAGAAGCTGTTG	TGGCCACCTCTTTGCTCTGCTC	
SREBP1c	TTCCTCAGACTGTAGGCAAATCT	AGCCTCAGTTTACCCACTCCT	
TNF-α	TGGCCCAGACCCTCACACTCAGATC	GCCTTGTCCCTTGAAGAGAACCTGG	
36B4	TCATTGTGGGAGCAGACAATGTGG	AGGTCCTCCTTGGTGAACACAAAG	

Supplementary Table S1. Primers used for real-time qPCR analysis of gene expression

ACC, acetyl CoA carboxylase; ATGL, adipose triglyceride lipase; CD163, cluster of differentiation 163; CD206, cluster of differentiation 206; ChREBP, carbohydrate-responsive element-binding protein; CNP, C-type natriuretic peptide; CPT1, carnitine palmitoyltransferase 1; FASN, fatty acid synthase; GCB, guanylyl cyclase B; HSL, hormone-sensitive lipase; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; PGC1 α , peroxisome proliferator-activated receptor α ; PPAR γ , peroxisome proliferator-activated receptor γ ; SREBP1c, sterol regulatory element-binding protein 1c; TNF- α , tumor necrosis factor- α .

	Wt	A-CNP	
ANP (fmol/mL)	85.03 ± 10.45	55.48 ± 1.10	
BNP (fmol/mL)	53.18 ± 6.52	49.62 ± 1.59	

Supplementary Table S2. Plasma concentrations of ANP and BNP in mice

The data are presented as means \pm SEM. n = 3.

	Bl			
	Systolic	Mean	Diastolic	Heart rate (bpm)
Wt	103.1 ± 2.3	76.9 ± 2.8	64.0 ± 3.1	673 ± 21
A-CNP	102.9 ± 2.6	71.7 ± 4.0	56.4 ± 5.0	640 ± 33

Supplementary Table S3. Blood pressure in Wt and A-CNP Tg mice

The data are presented as means \pm SEM. n = 4-5.

Supplementary Figures and legends

Supplementary Figure S1. CNP increases cGMP level in mature adipocytes isolated from mouse adipose tissue. The data are presented as means \pm SEM. n = 4.

Supplementary Figure S2. CNP and GCB mRNA expression in the SVF and mature adipocytes of the visceral WAT of Wt and A-CNP Tg mice with HFD-induced obesity. (A-D) CNP and GCB mRNA expression in the stromal vascular fraction (SVF) and mature adipocytes of the epididymal white adipose tissue (EpiWAT) and mesenteric white adipose tissue (MesWAT) of Wt and Ad-CNP Tg mice fed HFD. a.u., arbitrary units (copy number of gene of interest / copy number of reference gene [ribosomal protein 36B4]). a.u., arbitrary units. The data are presented as means \pm SEM. n = 5 (A–D); *, P < 0.05.

Supplementary Figure S3. Lipid metabolism related genes in EpiWAT and IngWAT of of Wt and A-CNP Tg mice with HFD-induced obesity. qPCR analysis of mRNA expression of genes involved in (A) fatty acid β -oxidation, lipolysis, and lipogenesis in epididymal white adipose tissue (EpiWAT) and inguinal white adipose tissue (IngWAT). The data are presented as means ± SEM. n = 8-10 (A and B).

Supplementary Figure S4. Beta cell proliferation in Wt and A-CNP Tg mice with HFDinduced obesity. (A) Histology (hematoxylin and eosin [H&E] stain) and immunohistochemical quantification of the (B) insulin- (C) and Ki67-positive areas in pancreatic tissue from Wt and A-CNP Tg mice. Scale bars: H&E, 500 μ m; insulin and Ki67, 100 μ m. The data are presented as means \pm SEM. n = 5 (A); n = 9 (B and C); *, P < 0.05.

Supplementary Figure S5. Characterization of liver in Wt and A-CNP Tg mice with HFD-induced obesity. (A) Histology of liver sections stained with hematoxylin and eosin (H&E). (B) Triglyceride (TG) and total cholesterol (TC) content. Expression levels of genes involved in (C) fatty acid β -oxidation and lipogenesis, and (D) pro-inflammatory state were measured using qPCR analysis. Scale bars: 50 µm. The data are presented as means ± SEM. *n* = 5 (A); *n* = 8 (B); *n* = 9–11 (C and D); *, *P* < 0.05.

Supplementary Figure S6. The full-length blots are display of cropped blots from the main Figure 1B.