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Abstract: Background: Maize (Zea mays ssp. mays) is one of three crops, along with rice and
wheat, responsible for more than 1/2 of all calories consumed around the world.
Increasing the yield and stress tolerance of these crops is essential to meet the
growing need for food. The cost and speed of plant phenotyping is currently the largest
constraint on plant breeding efforts. Datasets linking new types of high throughput
phenotyping data collected from plants to the performance of the same genotypes
under agronomic conditions across a wide range of environments are essential for
developing new statistical approaches and computer vision based tools.

Findings: A set of maize inbreds - primarily recently off patent lines -- were phenotyped
using a high throughput platform at University of Nebraska-Lincoln. These lines have
been previously subjected to high density genotyping, and scored for a core set of 13
phenotypes in field trials across 13 North American states in two years by the
Genomes to Fields consortium. A total of 485 GB of image data including RGB,
hyperspectral, fluorescence and thermal infrared photos has been released.

Conclusions: Correlations between image-based measurements and manual
measurements demonstrated the feasibility of quantifying variation in plant architecture
using image data. However, naive approaches to measuring traits such as biomass
can introduce nonrandom measurement errors confounded with genotype variation.
Analysis of hyperspectral image data demonstrated unique signatures from stem
tissue. Integrating heritable phenotypes from high-throughput phenotyping data with
field data from different environments can reveal previously unknown factors
influencing yield plasticity.
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Order of Authors Secondary Information:

Response to Reviewers: We would like to thank both the editorial staff of Gigascience and both peer reviewers
for taking the time to evaluate the previous draft of this manuscript and provide
extremely helpful feedback. It is our belief that this revised manuscript is significantly
improved as a result of the changes suggested in the previous round of review.

Reviewer #1:

In the study entitled "Conventional and hyperspectral time-series imaging of maize
lines widely used in field trials", Liang et al. performed high-throughput phenotyping
(HTP) in a set of maize inbreds. The dataset is especially valuable through integrative
analysis with matched field data from different environments and genotypic data.

Major points:
1. It's unclear what automated phenotyping system was used in the study. Is it
commercial and available to other users?

This was a serious omission. We have added information on this to the manuscript.
This is the first complete dataset to be released from the UNL greenhouse innovation
center phenotyping system. The UNL-GIC is based on an Lemnatec/Bosch style
design and is available to both internal UNL researchers and external academic and
private sector clients. We have added text to the methods and introduction sections to
provide the same information summarized in this response.

2. One of the advantages of HTP is to enable us to extract a long list of phenotypic
traits for the same plants from image data. However, in the study, the authors only
showed some well investigated traits like plant height and projected area. It would be
nice to indicate how many potential traits can be extracted from their image data, and
how about the potential

We thank the reviewer for this valuable suggestion. We have added an additional
concluding paragraph summarizing traits which have been extracted from different
image types in the past and discuss other potential phenotypes which it may be
possible to extract from these types of images in the future.

3. The authors provided infuorescence and thermal infrared data in the study. But
these data were not shown in their analysis, correct? If not, it would be to have an
evaluation of these data.

The reviewer is correct that the fluorescence and thermal infrared image data was
included in the release but not analyzed in the short results section. Based on the
concerns of both reviewer #1 and reviewer #2, in this revised version we include
analysis and validation of the fluorescence imaging data -- extracting average
fluorescence intensity measurements from plant pixels and testing the heritability of
these values -- in results and in figure 4B and the additional code used to perform
these analysis has been added to the associated github repository. We have also
added discussion and references to previous literature demonstrating the utility of
measurements of fluorescence intensity and its correlation to other plant traits such as
chlorophyll content and abiotic stress responses.

4. In figure 2A and 2B, plant height showed higher correlation with manual data but
biomass not. This is true because biomass is a complex phenotypic that cannot solely
explained by a single measurements (plant project area). I have three related
questions here.

1) which project area used for the analysis? PA0 or PA90?

We apologize for the ambiguity. We actually used the sum the the estimated number of
plant pixels from the two offset side views. The manuscript has been revised to
explicitly state this point at the place where we first introduce biomass estimation.
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2) the correlation coefficient (r=0.72) is lower than existing results in maize (e.g.,
Muraya et al, 10.1111/tpj.13390). Is this possible due to the software used to derive the
area measurement? If I correctly read the manuscript, the author used their in-house
image processing pipeline. Did the author compare their results to the results
generated by some published image-processing software?

We thank the reviewer for this suggestion. We have reestimated plant biomass using
PlantCV2 (Noah et al. 2015 DOI: 10.1016/j.molp.2015.06.005; Gehan MA et al. DOI:
10.7287/peerj.preprints.3225v1). The correlation between the sum of plant pixel areas
in the two side views and ground truth biomass measurements was (r=0.91). The large
increase in accuracy in the PlantCV2 based analysis lead us to reevaluate the
approach used in our own scripts, and identify a significant coding flaw which lead to
incorrect plant pixel count data being using in our own calculations. We have revised
figures 2B, 2C and 4B to use the corrected data, and provide a comparison of biomass
estimates from the code used here, PlantCV2’s code, and ground truth measurements
in the revised manuscript.

3) Given the biomass is not well predicted by a single image-derived parameters, I
would suggest to predict it by using multiple parameters (e.g.,
doi.org/10.1101/046656).

We agree with the reviewer that pixel counts should not have a perfect linear
relationship with plant biomass. Factors such as the ratio of stems to leaves, and stem
density and diameter vary significantly among genotypes and can produce significant
differences in plant pixel counts from plants with equivalent quantities of biomass. We
included the analysis of the relationship between plant pixel number and estimated
biomass as single variable linear models of the relationship between plant pixel count
and biomass are widely used in the literature (Noah F et al.
DOI:10.1016/j.molp.2015.06.005; Golzarian MR et al. DOI:10.1186/1746-4811-7-2;
Malachy T. Campbell MT et al. DOI: 10.1104/pp.15.00450; Ge Y et al. DOI:
10.1016/j.compag.2016.07.028), and to illustrate there that there is systematic
genetically-linked bias in estimates of plant biomass generated using this method.

However, based on this suggestion by the review we now include the results from a
second set biomass estimates generated using the four approaches proposed in the
manuscript referenced above (multivariate linear model, MARS, Random Forest and
SVM).* These models increased the accuracy of plant biomass estimates from r = 0.91
(single variable linear model) to r = 0.96  (the machine learning methods MARS).
However, we show than even when using machine learning methods trained to
estimate biomass from multiple traits extracted from multiple image types error in
biomass estimate remains non-random and systematically biased towards over or
under estimation of the biomass of specific genotypes. This information is now included
in the main text.

5. Since the plants were randomly set on the pot, in principle there is no difference for
the measurement of PA0 and PA90. But they are significantly different (figure 5)?

We appreciate the reviewer raising this point. On the first day of imaging or when
plants reach to the two leaf stage, plants were arranged so that the major axis of leaf
phylotaxy was parallel to the camera in the PA0 orientation and perpendicular to the
camera in the PA90 angle. We have added this information to the manuscript in both
the declarations and the legend of figure 4 (where the terms PA0 and PA90 are first
introduced). As we feel that this point was a distraction from the central point of the
manuscript, we have removed Figure 5 in this revised version of the manuscript.

Reviewer #2: This manuscript describes the generation of a time-series dataset of
conventional and hyperspectral images of commonly known and important maize lines.
The authors describe the methods of data collection and how it is useful, especially in
conjunction with other already available datasets for the same lines. The authors begin
to analyze the dataset generated, focusing on biomass measures and determining
heritability. The authors conclude that they believe it is important and necessary to
combine controlled environment data with field data to tackle problems facing crop
production. I do have several comments about the manuscript in its current form:
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1.My main concern about the manuscript is the amount of data use in the article. The
manuscript was submitted as a 'Data Note', but it is not obvious this data is
exceptional, rare, or novel as it was collected nearly 2 years ago.

The reviewer raises two distinct points here. The first is that this dataset may not be
exceptional or rare. The second is that this dataset is almost two years old. Of the
various points raised by reviewer #2, these concerns appears to be the most critical
barriers to publication, so we have responded to them at some length.

Exceptionality of the dataset.

I think the reason the two of us are in disagreement about the exceptionality of this
dataset is that we’re comparing this dataset to different baselines. I believe that
compared to published plant image datasets, our dataset is exceptional for two
reasons. 1) The link between publically available field based data in a wide range of
well characterized environments. 2) Hyperspectral imagery collected under controlled
light conditions from individual corn (maize) plants.

Now at the same time, because Gigascience practices open peer review, I can see that
the reviewer is part of a research group which has done, and continues to do
groundbreaking work in both the image collection and phenotypic data extraction
portions of plant phenotyping. It wouldn’t surprise me at all if, compared to the internal
datasets he and his collaborators have access to, the dataset we are trying to release
to the community is rather small and not particularly novel or exciting.

The disconnect between these two assessments is a result of the second point that the
reviewer raises.

Age of the dataset.

It has been my observation that the cycle time from data collection to publication in
plant phenomics is significantly longer than in other scientific fields in which I have
experience (particularly plant comparative genomics where it is often possible to go
from idea to analysis to submitted paper in as little as six months). I don’t want to base
my position on a qualitative gut feeling, so I dug into the literate a bit to see if that gut
feeling is supported by quantitative data. In many cases manuscripts do not report the
date of phenotypic data collection -- which is whole concern of its own but beside the
point today -- but in the cases where dates of data collection were reported, the lag
time was quite significant.

Chen et al Dec 2014 10.1105/tpc.114.129601 used data collected in July 2011 (3.5
years)
Campbell et al Aug  2015 10.1104/pp.15.00450 used data collected in 2013 (2.5 years)
Muraya et al Feb 2017 10.1111/tpj.13390 used data collected in 2011-2012 (5+ years)
Zhang et al Mar 2017 10.1104/pp.16.01516 used data collected in 2011-2012 (5+
years)
Feldman et al June 2017 10.1371/journal.pgen.1006841 used data collected in 2013-
2014 (3+ years)

I suspect that part of the delay between data collection and publication for plant
phenomic datasets is the fact that computational and statistical methods for the
analysis of high throughput plant phenotyping data remain much less mature than
those for other data types encountered by plants scientists. Right now it is very hard to
interest third party computer scientists and statisticians without pre-existing
collaborations with plant scientists  in developing new methods for plant phenomics
given the dearth of well documented and freely usable datasets. It was and is our hope
that this dataset and others like it can help to bring more such researchers into the
community.

Summary

In conclusion, while I agree with the reviewer that the field of plant phenomics is
advancing quickly and that compared to datasets collected today, datasets from two
years ago are likely to seem smaller and less novel, I ask that the size, novel data
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types and reuse potential of the dataset described in this manuscript be assessed
relative to plant phenomics datasets which are currently published, accessible, and
well documented. If we cannot agree on that standard as a community, then  when the
plant phenomic datasets collected today are ready for publication in 3-5 years, they will
face the same challenges of seeming small scale compared to even newer datasets
collected with future technology.

One criteria to review this type of article is dataset size. The authors are claiming a
dataset size of ~500Gb, but this includes data (thermal infrared and fluorescence
images) that was not mentioned in the manuscript except that it was collected.

From the terminology used -- the authors are claiming --  I fear the way the manuscript
is written somehow gave Prof. Hirsch the impression that I am my co-authors were in
bad faith and attempting to deceive readers about the scale of the dataset presented. I
would like to state that this was not in any way our intention and I apologize for any
ambiguity or apparent deception. We now report the specific percentages of our
dataset composed of RGB (51.1%), fluorescence (4.3%), and hyperspectral images
(44.6%) prominently when the size of the dataset is first introduced. In addition,  as the
concern over the lack of analysis from two data types was raised by both reviewers, we
had added additional analyses for the fluorescence images to this revised manuscript
Thermal IR images previously constituted only 0.4% of the total dataset size, and we
have chose to remove this data type from the manuscript to address the concerns of
reviewers #1 & #2. - James Schnable.

I applaud the authors for the willingness to be so open with their data, but I'm not
convinced that one month worth of images for 32 genotypes is enough for publication.

As discussed above, we believe that the unique nature of the hyperspectral images
which are part of this dataset, as well as the link to well characterized field phenotyping
datasets from the same lines makes this dataset exceptional relative to other plant
image datasets.

2.The manuscripts main point is not to get into conclusions based on their image
analysis, but I would have liked to have seen more strenuous ground truthing. The
manual measurements were made only at the very last time point. These really should
encompass the variation of plants throughout development. How can we determine if
the measured traits are accurate at day 9 for example? Nothing can be done for true
manual measurements, but digital manual measurements could be made and
correlated with image analysis extracted values.

We thank the reviewer for raising this point. Obviously it is not possible to measure
ground truth biomass from digital images, but at the reviewers suggestion we have
revisited a sample of images on different days and made manual digital measures of
height. The manually counted pixels of plant height is uploaded in Table S1 and this
new analysis is presented as Figure 3B.

In addition, we have added time series ground truth biomass measurements (Table
S2) for two genotypes under two drought treatments, including some data previously
published as part of Ge et al 2016 doi: 10.1016/j.compag.2016.07.028 and some
previously unpublished to demonstrate the correlation between estimated biomass and
ground truth biomass at earlier points in the maize lifecycle. These data are currently
presented as Figure S1.

3.Board sense heritability needs to be corrected throughout the manuscript.

We thank the reviewer for catching this embarrassing repeated spelling error, and we
have made corrections throughout the manuscript.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics Yes
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Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Conventional and hyperspectral time-series
imaging of maize lines widely used in �eld trials
Zhikai Liang1, Piyush Pandey2, Vincent Stoerger3, Yuhang Xu4, Yumou
Qiu4, Yufeng Ge2 and James C. Schnable1,*
1Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of
Nebraska-Lincoln, Lincoln, 68503, USA and 2Department of Biological System Engineering, University of
Nebraska-Lincoln, Lincoln, 68503, USA and 3Plant Phenotyping Facilities Manager, University of
Nebraska-Lincoln, Lincoln, 68503, USA and 4Department of Statistics, University of Nebraska-Lincoln,
Lincoln, 68503, USA
*schnable@unl.edu

Abstract
Background: Maize (Zea mays ssp. mays) is one of three crops, along with rice and wheat, responsible for more than 1/2 of
all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the
growing need for food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding
e�orts. Datasets linking new types of high throughput phenotyping data collected from plants to the performance of the
same genotypes under agronomic conditions across a wide range of environments are essential for developing new
statistical approaches and computer vision based tools.
Findings: A set of maize inbreds – primarily recently o� patent lines – were phenotyped using a high throughput platform
at University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a
core set of 13 phenotypes in �eld trials across 13 North American states in two years by the Genomes to Fields consortium.
A total of 485 GB of image data including RGB, hyperspectral, �uorescence and thermal infrared photos has been released.
Conclusions: Correlations between image-based measurements and manual measurements demonstrated the feasibility of
quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as
biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral
image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput
phenotyping data with �eld data from di�erent environments can reveal previously unknown factors in�uencing yield
plasticity.
Key words: Maize; Image; Phenomics; Field-phenotype

Data Description

Background

The green revolution created a signi�cant increase in the yields
of several major crops in the 1960s and 1970s, dramatically re-
ducing the prevalence of hunger and famine around the world,
even as population growth continued. One of the major com-

ponents of the green revolution was new varieties of major
grain crops produced through conventional phenotypic selec-
tion with higher yield potentially. Since the green revolution,
the need for food has continued to increase, and a great deal of
e�ort in the public and private sectors is devoted to developing
crop varieties with higher yield potential. However, as the low
hanging fruit for increased yield vanish, each new increase in
yield requires more time and resources. Recent studies have
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demonstrated that yield increases may have slowed or stopped
for some major grain crops in large regions of the world [16].
New approaches to plant breeding must be developed if crop
production continues to grow to meet the needs of an increas-
ing population around the world.
The major bottleneck in modern plant breeding is pheno-

typing. Phenotyping can be used in two ways. Firstly, by phe-
notyping a large set of lines, a plant breeder can identify those
lines with the highest yield potential and/or greatest stress tol-
erance in a given environment. Secondly, su�ciently detailed
phenotyping measurements from enough di�erent plants can
be combined with genotypic data to identify regions of the
genome of a particular plant species which carry bene�cial or
deleterious alleles. The breeder can then develop new crop vari-
eties which incorporate as many bene�cial alleles and exclude
as many deleterious alleles as possible. Phenotyping tends to
be expensive and low throughput, yet as breeders seek to iden-
tify larger numbers of alleles each with individually smaller
e�ects, the amount of phenotyping required to achieve a given
increase in yield potential is growing. High throughput com-
puter vision based approaches to plant phenotyping have the
potential to ameliorate this bottleneck. These tools can be used
to precisely quantify even subtle traits in plants and will tend
to decrease in unit cost with scale, while conventional pheno-
typing, which remains a human labor intensive processes, does
not.
Several recent pilot studies have applied a range of image-

processing techniques to extract phenotypic measurements
from crop plants. RGB (R: Red channel; G: Green channel;
B: Blue channel) camera technology, widely used in the con-
sumer sector, has also been the most widely used tool in
these initial e�orts at computer vision based plant phenotyping
[31, 8, 36]

::::::::::
[18, 31, 8, 36]. Other types of cameras including �u-

oresence [5, 4] and NIR (near-infrared) [5, 10]
:::::::::
[26, 5, 10] have

also been employed in high throughput plant phenotyping ef-
forts, primarily in studies of the response of plant to di�erent
abiotic stresses.
However, the utility of current studies is limited in two

ways. Firstly, current analysis tools can extract only a small
number of di�erent phenotypic measurements from images of
crop plants. Approximately 150 tools for analyzing plant im-
age data are listed in a �eld speci�c database, however the ma-
jority of these are either developed speci�cally for Arabidopsis
thaliana which is a model plant, or are designed speci�cally to
analyze images of roots [24]. Secondly, a great deal of image
data is generated in controlled environments, however, there
are comparatively few attempts to link phenotypic measure-
ments in the greenhouse to performance in the �eld. However,
one recent report inmaize suggested that more than 50% of the
total variation in yield under �eld conditions could be predicted
using traits measured under controlled environments [36].
Advances in computational tools for extracting phenotypic

measurements of plants from image data and statistical mod-
els for predicting yield under di�erent �eld conditions from
such measurements requires suitable training datasets. Here,
we generate and validate such a dataset consisting of high
throughput phenotyping data from 32 distinct maize (Zeamays)
accessions drawn primarily from recently o�-patent lines de-
veloped by major plant breeding companies. These accessions
were selected speci�cally because paired data from the same
lines exists for a wide range of plant phenotypes collected in
54 distinct �eld trials at locations spanning 13 North Amer-
ican states or provinces over two years [3]. This extremely
broad set of �eld sites captures much of the environmental
variation among areas in which maize are cultivated with to-
tal rainfall during the growing season ranging from 133.604
mm to 960.628 mm (excluding sites with supplemental ir-
rigation) and peak temperatures during the growing season

ranging from 23.5◦C to 34.9◦C. In addition, the same lines
have been genotyped for approximately 200,000 SNP markers
using GBS [3]. Towards these existing data, we added RGB,
thermal infra-red, �uorescent and hyperspectral images col-
lected once per day per plant, as well as detailed water-use
information (single day, single plant resolution). At the end
of the experiment, 12 di�erent types of ground-truth pheno-
types were measured for individual plants including destruc-
tive measurements. A second experiment focused on inter-
actions between genotype and environmental stress, collect-
ing the same types of data described above from two maize
genotypes under well watered and water stressed conditions
[13]. We are releasing this curated dataset of high through-
put plant phenotyping image

::::::
images from accessions where

data on both genotypic variation and and agronomic perfor-
mance under �eld conditions is already available. This

::
All

::::
data

:::
was

::::::::
generated

:::::
using

::
a
::::::::
Lemnatec

:::::::
designed

:::::
high

:::::::::
throughput

::::::::::::::
greenhouse-based

:::::::::::
phenotyping

::::::
system

::::::::::
constructed

:::
at

:::
the

::::::::
University

::
of

:::::::::::::::
Nebraska-Lincoln.

::::
This

:::::
system

::
is
:::::::::::
distinguished

::::
from

:::::::
existing

:::::
public

::::::
sector

::::::::::
phenotyping

:::::::
systems

:::
in

:::::
North

::::::
America

:::
by

::::
both

:::
the

:::::
ability

::
to

:::::
grow

:::::
plants

::
to

::
a

:::::
height

::
of

:::
2.5

:::::
meters

::::
and

:::
the

:::::::::::
incorporation

::
of

:
a
:::::::::::
hyperspectral

::::::
camera

::::
[10].

::::
Given

:::
the

::::::
unique

::::::::
properties

::::::::
described

:::::
above,

::::
this comprehen-

sive data set should lower the barriers to the development of
new computer vision approaches or statistical methodologies
by independent researchers who do not have the funding or
infrastructure to generate the wide range of di�erent types of
data needed.

Methods

Greenhouse Management
All imaged plants were grown in the greenhouse facility of the
University of Nebraska-Lincoln’s Greenhouse Innovation Cen-
ter (Latitude: 40.83, Longitude: -96.69) between October 2nd,
2015 to November 10th, 2015. Kernels were sown in 1.5 gal-
lon pots with Fafard germination mix supplemented with 1
cup (236 mL) of Osmocote plus 15-9-12 and one tablespoon
(15 mL) of Micromax Micronutrients per 2.8 cubic feet (80 L)
of soil. The target photoperiod was 14:10 with supplementary
light provided by LED growth lamps from 07:00 to 21:00 each
day. The target temperature of the growth facility was between
24 – 26◦C. Pots were weighed once per day and watered back
to a target weight of 5,400 grams from 10-09-2015 to 11-07-
2015 and a target weight of 5,500 grams from 11-08-2015 to
the termination of the experiment.
Experimental Design
A total of 156 plants, representing the 32 genotypes listed in Ta-
ble 1 were grown and imaged, as well as 4 pots with soil but no
plant which serve as controls for the amount of water lost from
soil as a result of non-transpiration mechanisms (e.g. evapo-
ration). The 156 plants plus control pots were arranged in a
ten row by sixteen column grid, with 0.235 meter spacing be-
tween plants in the same row and 1.5 meters spacing between
rows (Table 2). Sequential pairs of two rows were consisted of a
complete replicate with either 31 genotypes and one empty con-
trol pot, or 32 genotypes. Within each pair of rows, genotypes
were blocked in groups of eight (one half row), with order ran-
domized within blocks between replicates in order to maximize
statistical power to analyze within-greenhouse variation.
Plant imaging
The plants were imaged daily using four di�erent cameras in
separate imaging chambers. The four types of cameras were
thermal infrared, �uorescence, conventional RGB, and hyper-
spectral [13]. Images were collected in the order that the cam-
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Table 1. 32 genotypes in maize phenotype map
Genotype ID Genotype Source Released Year
ZL1 740 Novartis Seeds 1998
ZL2 2369 Cargill 1989
ZL3 A619 Public Sector 1992
ZL4 A632 Public Sector 1992
ZL5 A634 Public Sector 1992
ZL6 B14 Public Sector 1968
ZL7 B37 Public Sector 1971
ZL8 B73 Public Sector 1972
ZL9 C103 Public Sector 1991
ZL10 CM105 Public Sector 1992
ZL11 LH123HT Holden’s Foundation 1984
ZL12 LH145 Holden’s Foundation 1983
ZL13 LH162 Holden’s Foundation 1990
ZL14 LH195 Holden’s Foundation 1989
ZL15 LH198 Holden’s Foundation 1991
ZL16 LH74 Holden’s Foundation 1983
ZL17 LH82 Holden’s Foundation 1985
ZL18 Mo17 Public Sector 1964
ZL19* DKPB80 DEKALB Genetics ?
ZL20 PH207 Pioneer Hi-Bred 1983
ZL21 PHB47 Pioneer Hi-Bred 1983
ZL22** PHG35 Pioneer Hi-Bred 1983
ZL23 PHG39 Pioneer Hi-Bred 1983
ZL24 PHG47 Pioneer Hi-Bred 1986
ZL25 PHG83 Pioneer Hi-Bred 1985
ZL26 PHJ40 Pioneer Hi-Bred 1986
ZL27 PHN82 Pioneer Hi-Bred 1989
ZL28 PHV63 Pioneer Hi-Bred 1988
ZL29 PHW52 Pioneer Hi-Bred 1988
ZL30 PHZ51 Pioneer Hi-Bred 1986
ZL31 W117HT Public Sector 1982
ZL32 Wf9 Public Sector 1991

* Not currently available for order.
** Genotype represented by only a single plant in the dataset.

era types are listed in the previous sentence. On each day,
plants were imaged sequentially by row, starting with row 1
column 1 and concluding with row 10, column 16 (Table 2).
The thermal infrared camera captured images with a

resolution of 480 × 640 pixels and measures emissions at
wavelengths between 8-14 µm. Plants were imaged from the
side at two angles o�set 90 degrees from each other as well
as a top down view.

:::
On

:::
the

::::
�rst

:::
day

:::
of

:::::::
imaging

::
or

:::::
when

:::::
plants

::::::
reached

:::
the

:::
two

::::
leaf

::::
stage

::
of

:::::::::::
development,

:::
the

:::
pot

:::
was

:::::
rotated

:::
so

:::
that

::::
the

:::::
major

:::
axis

::
of
::::
leaf

::::::::
phylotaxy

::::
was

::::::
parallel

::
to

::
the

::::::
camera

::
in
:::
the

::::
PA0

:::::::::
orientation

:::
and

:::::::::::
perpendicular

::
to

:::
the

::::::
camera

::
in

::
the

:::::
PA90

:::::::::
orientation.

::::
This

:::::::::
orientation

::
is

::::::::
consistent

::
for

:::
all

::::::
cameras

::::
and

:::
was

:::
not

:::::::
adjusted

:::::
again

:::
for

:::
the

::::::::
remainder

::
of

:::
the

:::::::::
experiment. The �uorescence camera captured images

with a resolution of 1038 × 1390 pixels and measures emis-
sion intensity at wavelengths between 500-750 nm based on
excitation with light at 400-500 nm. Plants were imaged us-
ing the same three perspectives employed for the thermal in-
frared camera. The RGB camera captured images with a res-
olution of 2454 × 2056 pixels. Initially the zoom of the RGB
camera in side views was set such that each pixel corresponds
to 0.746 mm at the distance of the pot from the camera. Be-
tween 2015-11-05 and 2015-11-10, the zoom level of the RGB
camera was reduced to keep the entire plant in the frame of
the image. As a result of a system error, this same decreased
zoom level was also applied to all RGB images taken on 2015-
10-20. At this reduced zoom level, each pixel corresponds to
1.507 mm at the distance of the pot from the camera, an ap-
proximate 2x change. Plants were also imaged using the same
three perspectives employed for the thermal infrared camera.

The hyperspectral camera captured images with a resolution
of 320 horizontal pixels. As a result of the scanning technology
employed, vertical resolution ranged from 494 to 499 pixels.
Hyperspectral imaging was conducted using illumination from
halogen bulbs (Manufacturer Sylvania, model # ES50 HM UK
240V 35W 25° GU10). A total of 243 separate intensity values
were captured for each pixel spanning a range of light wave-
lengths between 546nm-1700nm. Data from each wavelength
was stored as a separate grayscale image.

Ground Truth Measurement

Ground truth measurements were collected at the termination
of data collection on November 11-12, 2015. Manually col-
lected phenotypes included plant height, total number of visi-
ble leaves, number of total fully extended leaves, stem diame-
ter at the base of the plant, stem diameter at the collar of the
top fully extended leaf, length and width of top fully extended
leaf, and presence/absence visible anthocyanin production in
the stem. After these measurements, total above-ground fresh
weight biomass was measured for four out of �ve replicates,
resulting in the destruction of the plants.

::::::
Ground

::::
truth

::::
data

::
for

:::
the

:::::::
drought

:::::::
stressed

:::::
subset

:::
of

:::
this

::::::
dataset

::::
was

:::::::
collected

:::::::
following

:::
the

::::::::
procedure

:::::::::
previously

::::::::
described

::
in

::::
[13].

RGB image processing

Pixels covering portions of the plant were segmented out of
RGB images using a green index ((2×G)/(R+B)). Pixels with an
index value greater than 1.15 [13] were considered to be plant
pixels. This method produced some false positive plant pixels
within the re�ectivemetal columns at the edge of the image. To
reduce the impact of false positives, these areas were excluded
from the analysis. Therefore, when plant leaves cross the re-
�ective metal frame, some true plant pixels were excluded. If
no plant pixels were identi�ed in the image – often the case
in the �rst several days when the plant had either not germi-
nated or had not risen above the edge of the pot – the value
was recorded as "NA" in the output �le.

Heritability analysis

A linear regression model was used to analyze the genotype
e�ect (excluding genotype ZL22 which lacked replication) and
greenhouse position e�ect on plant traits. The responses were
modeled independently for each day as

yh,ij,t = µh,t + αh,i,t + γh,ν(i,j),t + εh,ij,t, (1)
where the subscript h = 1, . . . , 6 denotes the three responses
extracted from the images: plant height, width and size for
the two views 0 and 90 degree. The subscripts i, j and t denote
the jth plant in the ith row and day t, respectively, and ν(i, j)
stands for the genotype at this pot. The parameters α and γ
denote row e�ect and genotype e�ect, respectively. The error
term is εh,ij,t. Let SSα,t, SSγ,t and SSε,t be the sum of squares ofthe regression model (1) for the row e�ect, genotype e�ect and
the error at time t, respectively. Let SSt = SSα,t + SSγ,t + SSε,tbe the total sum of squares at time t. The heritability HRt (2)of a given trait within this population was de�ned as the ra-
tio of the genotype sum of squares over the sum of genotype
and error sum of squares. For the estimate of the heritabil-
ity of measurement error, the row e�ect term was replaced
by a replicate e�ect (each replicate consisted of two sequential
rows) . For this analysis, ZL14, ZL26 were excluded as ground
truth measurements were missing for two or more of the �ve
replicated plants, and

:::
with

::::::::
exclusion

::
of

:
ZL22 was excluded as

only one plant of this genotype was grown.
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Table 2. Experimental layout (ID: ZL1-ZL32). At the time this experiment was conducted, the total size of the UNL greenhouse systemwas ten rows by twenty columns. Positions marked with UP indicate pots �lled with plants from an unrelated experiment, while positionsmarked with NA indicate pots which had no plants. The �rst complete replicate is shown in color, and the four incomplete blocks withinthe �rst replicate are marked in di�erent colors. * marks empty pots within the experimental design.
9 7 3 10 23 25 26 19 13 5 29 21 2 4 18 20 UP UP UP UP
11 16 1 32 17 27 6 22 24 31 14 30 15 28 8 12 UP UP UP UP
29 31 15 13 1 17 25 9 21 30 3 5 * 19 14 6 UP UP UP UP
12 23 32 16 7 28 2 18 10 11 8 26 27 4 20 24 UP UP UP UP
25 9 21 27 28 12 5 11 15 6 * 7 4 23 31 20 UP UP UP UP
19 32 29 24 16 13 3 8 17 14 18 30 10 26 1 2 UP UP UP UP
8 1 17 23 21 5 7 24 27 18 3 11 31 15 19 2 NA NA NA NA
25 30 4 9 16 32 14 20 * 10 6 29 28 12 26 13 NA NA NA NA
15 10 5 32 31 21 16 26 2 18 9 25 6 8 24 * NA NA NA NA
29 13 23 14 27 7 11 30 12 1 28 4 3 20 17 19 NA NA NA NA

HRt = SSγ,t
SSε,t + SSγ,t . (2)

As the heritability index may change over the growth of the
plant, an nonparametric smoothing method was provided for
analyzing the time varying heritability of plants. The de�nition
in (3) excludes the variation brought by the greenhouse row ef-
fect, which can be considered as the percentage of the variation
in plant response that can be explained by the genotype e�ect
after adjusting the environmental e�ect. To compare with this
de�nition of heritability (2), the response in the model without
considering the row e�ect was constructed as

yh,ij,t = µh,t + γh,ν(i,j),t + εh,ij,t, (3)
where similarly as (1), ν(i, j) is the genotype of the jth plant in
the ith row. Let S̃Sγ,t and S̃St be the genotype sum of squares
and total sum of squares under (4). The classical heritability is
de�ned as

H̃Rt = S̃Sγ,tS̃St
. (4)

Hyperspectral image processing
Two methods and thresholds were used to extract plant re-
gions of interest from hyperspectral images. First, the com-
monly used NDVI (normalized di�erence vegetation index) for-
mula was applied to all pixels using the formula (R750nm-
R705nm)/(R750nm+R705nm), and pixels with a value greater than0.25 were classi�ed as originating from the plant [12]. Sec-
ond, based on the di�erence in re�ectance between stem and
leaves at wavelengths of 1056nm and 1151nm, the stem was
segmented from other part of plants by selecting pixels where
(R1056nm/R1151nm) produced a value greater than 1.2. Leaf pixelswere de�ned as pixels identi�ed as plant pixels based on NDVI
but not classi�ed as stem pixels. In addition to the biological
variation between individual plants, overall intensity variation
existed both between di�erent plants imaged on the same day
and the same plant on di�erent days as a result of changes in
the performance of the lighting used in the hyperspectral imag-
ing chamber. To calibrate each individual image and make the
results comparable, a python script (hosted on Github; see code
availability section) was used to normalize the intensity values
of each plant pixel using data from the non-plant pixels in the
same image.
In order to visualize variation across 243 separate wave-

length measurements across multiple plant images, we used
a PCA (Principal Component Analysis) based approach. After

the normalization described above, PCA analysis of intensity
values for individual pixels was conducted. PCA values of each
individual plant pixel per analyzed plant were translated to in-
tensity values using the formula [x-min(x)]/[max(x)-min(x)].
False color RGB images were constructed with the values for
the �rst principal component stored in the red channel, the
second principal component in the green channel and the third
principal component stored in the blue channel.

:::::::::
Fluorescence

:::::
image

::::::::
processing

:
A
:::::::::
consistent

:::
area

::
of

:::::::
interest

:::
was

:::::::
de�ned

::
for

::::
each

:::::
zoom

::::
level

::
to

::::::
exclude

:::
the

::::
pot

:::
and

:::::::::::
non-uniform

:::::
areas

:::
of

:::
the

:::::::
imaging

:::::::
chamber

::::::::
backdrop.

::::::
Within

:::
that

::::
area,

:::::
pixels

::::
with

:::
an

:::::::
intensity

::::
value

::::::
greater

:::::
than

::
70

:::
in

:::
the

:::
red

:::::::
channel

:::::
were

:::::::::
considered

::
to

::
be

:::::
plant

::::::
pixels.

:::::
The

:::::::::
aggregate

::::::::::
�uorescence

::::::::
intensity

:::
was

::::::
de�ned

:::
as

:::
the

::::
sum

::
of

:::
the

:::
red

:::::::
channel

::::::::
intensity

:::::
values

::
for

:::
all

:::::
pixels

::::::::
classi�ed

::
as

:::::
plant

:::::
pixels

::::::
within

:::
the

::::::
region

::
of

::::::
interest,

::::
and

:::
the

::::
mean

::::::::::
�uorescence

:::::::
intensity

::
as

:::
the

::::::::
aggregate

::::::::::
�uorescence

:::::::
intensity

:::::
value

::::::
divided

:::
by

:::
the

::::::
number

::
of
:::::
plant

:::::
pixels

:::::
within

:::
the

::::::
region

::
of

::::::
interest.

:

::::
Plant

::::::
biomass

:::::::
prediction

:::
Two

::::::::
methods

::::
were

::::
used

::
to

::::::
predict

:::::
plant

:::::::
biomass.

::::
The

::::
�rst

:::
was

::
a

:::::
single

:::::::
variable

:::::
model

:::::
based

:::
on

:::
the

:::::::
number

::
of

:::::
zoom

::::
level

::::::
adjusted

:::::
plant

:::::
pixels

::::::::
identi�ed

::
in

:::
the

:::
two

::::
RGB

:::
side

::::
view

:::::
images

:::
on

:
a
:::::
given

::::
day.

:::
The

::::::
second

:::
was

::
a
::::::::::
multivariate

:::::
model

::::
based

:::::
upon

:::
the

:::
sum

::
of
:::::
plant

:::::
pixels

::::::::
identi�ed

::
in

:::
the

:::
two

::::
RGB

:::
side

:::::
views,

::::
sum

::
of

:::::
plant

:::::
pixels

::::::::
identi�ed

::
in

::
the

::::
two

:::
RGB

::::
side

::::
views

::::
plus

:::
the

::::
RGB

::
top

:::::
view,

::::::::
aggregate

::::::::::
�uorescence

:::::::
intensity

::
in

:::
the

::::
two

:::
side

::::::
views,

:::::::::
aggregate

::::::::::
�uorescence

::::::::
intensity

::
in

::
the

::::
two

::::
side

:::::
views

:::
plus

:::
the

::::
top

::::
view,

:::::::
number

::
of

:::::
plant

::::
stem

:::::
pixels

::::::::
identi�ed

::
in

:::
the

:::::::::::
hyperspectral

::::::
image

:::
and

:::::::
number

::
of

::::
plant

:::
leaf

:::::
pixels

::::::::
identi�ed

::
in

:::
the

:::::::::::
hyperspectral

::::::
image.

:::::
Traits

::::
were

::::::
selected

:::
to

::::::
overlap

::::
with

:::::
those

::::::::
employed

::
by

:::::
(Chen

::
et

::
al

:::
[6])

:::::
where

::::::::
possible.

::::
This

:::::::::::
multivariate

::::::
dataset

::::
was

::::
used

::
to

:::::
predict

:::::
plant

:::::::
biomass

::::
using

:::::
linear

::::::::
modeling

::
as

::::
well

::
as

:::::
MARS,

::::::
Random

::::::
Forest

:::
and

::::
SVM

::::
[6].

:::::
MARS

:::::::
analysis

:::
was

:::::::::
performed

::::
using

:::
the

::
R
:::::::
package

:::::
earth

::::
[25],

:::::::
Random

::::::
Forest

::::
with

:::
the

::
R

::::::
package

:::::::::::
randomForest

:::::::
[23] and

::::
SVM

::::
with

:::
the

:
R
:::::::
package

::::
e1071

:::
[9].

Data Validation and quality control

Validation against ground truth measurements
A total of approximately 500 GB of image data was ini-
tially generated by the system during the course of this ex-
periment

::::::::
consisting

::
of
:::::
RGB

::::::
images

:::::::
(51.1%),

:::::::::::
�uorescence

:::::
images

:::::::
(4.3%),

::::
and

:::::::::::
hyperspectral

::::::
images

:::::::
(44.6%). A sub-

set of the RGB images within this dataset were previously
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analyzed in [7], and were made available for download
from http://plantvision.unl.edu/dataset under the terms of the
Toronto Agreement. To validate the dataset and ensure plants
had been properly tracked through both the automated imaging
system and ground truth measurements, a simple script was
written to segment images into plant and not-plant pixels (Fig-
ure 1). Source codes for all validation analysis are posted online
(https://github.com/shanwai1234/Maize_Phenotype_Map).

Figure 1. Segmentation of images into plant and not plant pixels for one rep-
resentative plant (Path to this image in the released dataset: Genotype_ZL019
– > Plant_008-19 – > Image_Type – > Day_32). Area

::
The

:::
area

:
enclosed

by green border is composed of pixels scored as "plant",
::
the area outside the

green border
:
s composed of pixels scored as "not-plant". Minimum bounding

rectangle of plant pixels
:
is shown in red. (A) Side view, angle 1; (B) Side view,

90 degree rotation relative to A; (C) Top View.

Based on the segmentation of the image into plant and
non-plant pixels, plant height was scored as the y axis di-
mension of the minimum bounding box. Plant area was
scored as the total number of plant pixels observed in
both side view images after correcting for the area of each
pixel at each zoom employed (See Methods). Similar ap-
proaches to estimate plant biomass have been widely em-
ployed across a range of grain crop species including rice [1],
wheat [15], barley [15, 20], maize [13], sorghum [28] and se-
teria [10]. Calculated values were compared to manual mea-
surements of plant height and plant fresh biomass which
were quanti�ed using destructive methods on the last day of
the experiment. In both cases manual measurements and
image based measurements were correlated, with calculated
height exhibiting a greater correlation with ground truth than
biomass (Figure 2A,B).

::
In

::::
both

:::::
cases

::::::
manual

::::::::::::
measurements

:::
and

:::::
image

::::::
derived

::::::::
estimates

::::
were

:::::
highly

:::::::::
correlated,

:::::::
although

::
the

::::::::::
correlation

:::::::
between

::::::
manual

::::
and

::::::::
estimated

::::::
height

::::
was

::::::
greater

:::
than

:::
the

:::::::::
correlation

:::::::
between

::::::::
manually

::::::::
measured

:::
and

::::::::
estimated

::::::
biomass

::::::
(Figure

::::::
2A,B).

::::
Using

:::
the

:::::::
PlantCV

:::::::
software

::::::
package

::::
[14],

:::::::::
equivalent

::::::::::
correlations

:::::::
between

::::::::
estimated

:::
and

::::::
ground

::::
truth

:::::::
biomass

:::::
were

:::::::
obtained

:::::::
(r=0.91).

:::::::::
Estimates

::
of

::::::
biomass

:::::
using

::::
both

:::::::
software

::::::::
packages

::::
were

:::::
more

::::::::
correlated

::::
with

::::
each

::::
other

:::::::
(r=0.96)

::::
than

::::::
either

:::
was

::::
with

::::::
ground

:::::
truth

::::::::::::
measurements.

::::
This

::::::::
suggests

::::
that

:
a
:::::::::
signi�cant

:::::::
fraction

::
of

::
the

:::::::::
remaining

:::::
error

::
is

:::
the

:::::
result

::
of

:::
the

::::::::
expected

::::::::
imperfect

::::::::
correlation

::::::::
between

:::::
plant

:::::
size

::::
and

:::::
plant

::::::
mass,

::::::
rather

::::
than

::::::::::
inaccuracies

::
in

:::::::::
easimating

:::::
plant

::::
size

:::::
using

::::::::
individual

:::::::
software

::::::::
packages.

:::::
Recent

::::::
reports

:::::
have

:::::::::
suggested

::::
that

:::::::
estimates

::
of
:::::::
biomass

::::::::::::
incorporating

:::::::
multiple

::::
traits

::::::::
extracted

::::
from

::::::
image

::::
data

::::
can

:::::::
increase

::::::::
accuracy

::::
[6].

::::
We

::::::
tested

::
the

::::::::
accuracy

:::
of

:::::::
biomass

:::::::::
prediction

:::
of

::::
four

:::::::::::
multivariate

::::::::
estimation

:::::::::
techniques

:::
on

::::
this

::::::
dataset

::::
(see

:::::::::
Methods).

::::
The

::::::::
correlation

:::::::::
coe�cient

:::
(r

:::::
value)

:::
of

:::
the

:::::::::
estimated

:::::::
biomass

:::::::
measures

::::
with

::::::
ground

::::
truth

::::
data

::::
was

:::::
0.949,

:::::
0.958,

:::::
0.925

:::
and

::::
0.951

:::
for

::::::::::
multivariate

:::::
linear

::::::
model,

::::::
MARS,

:::::::
Random

::::::
Forest

:::
and

::::
SVM

::::::::::
respectively.

Plants with ratios of manually measured biomass to plant
pixel counts which were distant from the linear regression line
(y = 0.617x + 16.702) shown in Figure 2B were individually
reexamined. In some cases measurement error was caused by
large overlap of leaves at both angles from which the plant

had been photographed. However, such obvious cases did
not explain the majority of large measurement errors. The
residual value – di�erence between the destructively measured
biomass value and the predicted biomass value based on im-
age data and the linear regression line equation – was calcu-
lated for each individual plant (Figure 2C). Using data from
the multiple replicates of each individual accession, it can be
calculated that 62% of the total variation in residual value
was controlled by genetic variation between di�erent maize
lines

::
the

:::::::::
proportion

::
of
:::::
error

:::::
which

:::
is

::::::::
controlled

:::
by

::::::
genetic

:::::
factors

::::::
rather

::::
than

:::::::
random

:::::
error

:::
can

:::
be

::::::::::
ascertained.

::::
We

:::::::::
determined

::::
that

::::
58%

::
of

:::
the

::::
total

:::::
error

::
in

:::::::
biomass

:::::::
estimate

:::
was

::::::::
controlled

:::
by

::::::
genetic

:::::::
variation

:::::::
between

::::::::
di�erent

:::::
maize

::::
lines.

:::
As

:::::
such,

:::
this

:::::
error

::
is

:::::::::
systematic

:::::
rather

::::
than

:::::::
random

:::
and

::::
thus

:::::
more

:::::
likely

:::
to

:::::::
produce

:::::::::
misleading

:::::::::::
downstream

:::::
results

::::::
when

::::
used

:::
in

::::::::::
quantitative

:::::::
genetic

::::::::
analysis.

::::
As

::::::::
mentioned

::::::
above,

:::::::
biomass

::::
and

:::::
plant

::::
size

:::
are

::::::::::
imperfectly

::::::::
correlated,

::
as

::::::::
di�erent

:::::
plants

:::
can

::::::
exhibit

:::::::
di�erent

::::::::
densities,

::
for

::::::::
example

::
as

::
a
::::::
result

::
of
::::::::
di�erent

::::
leaf

:::
to

::::
stem

::::::
ratios.

:::::
Recent

:::::::
reports

::::
have

:::::::::
suggested

::::
that

::::::::
estimates

:::
of

:::::::
biomass

:::::::::::
incorporating

:::::::
multiple

::::
traits

::::::::
extracted

:::::
from

:::::
image

::::
data

:::
can

::::::
increase

::::::::
accuracy

:::
[6].

::::
We

::::::
tested

:::
the

::::::::
accuracy

::
of

:::::::
biomass

::::::::
prediction

::
of

::::
four

::::::::::
multivariate

::::::::
estimation

:::::::::
techniques

:::
on

:::
this

::::::
dataset

::::
(see

::::::::
Methods).

:::::
The

::::::::::
correlation

::
of

::::
the

::::::::
estimated

::::::
biomass

::::::::
measures

::::
with

::::::
ground

:::::
truth

::::
data

:::
was

::::::
0.949,

:::::
0.958,

::::
0.925

:::
and

:::::
0.951

::
for

::::::::::
multivariate

:::::
linear

::::::
model,

:::::
MARS,

:::::::
Random

:::::
Forest

:::
and

::::
SVM

::::::::::
respectively.

:::::::
However,

::::
even

::::
when

:::::::::
employing

::
the

:::::
most

:::::::
accurate

::
of

::::
these

::::
four

:::::::
methods

:::::::
(MARS),

::::
63%

::
of

:::
the

::::
error

::
in

:::::::
biomass

:::::::::
estimation

:::::
could

:::
be

::::::::
explained

:::
by

::::::
genetic

:::::
factors. This source of error, with the biomass of some lines
systematically underestimated and the biomass of other lines
systematically overestimated presents a signi�cant challenge
to downstream quantitative genetic analysis. Given the preva-
lence of plant pixel counts as a proxy for biomass [15, 28, 10,
20, 13, 1], this result also highlights the need for more advanced
algorithmic approaches to analyze plant image data.

Figure 2. Correlation between image-based and manual measurements of
individual plants.(A) Plant height; (B) Plant fresh biomass; (C) Variation in
the residual between estimated biomass and ground truth measurement of
biomass across inbreds.
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Patterns of change over time
One of the desirable aspects of image based plant phenotyp-
ing is that, unlike destructively measured phenotypes, the
same plant can be imaged repeatedly. Instead of providing
a snapshot in time this allows researchers to quantify rates
of change in phenotypic values over time, providing an addi-
tional set of derived trait values. Given the issues with biomass
quanti�cation presented above, measurements of plant height
were selected to validate patterns of change in phenotypic val-
ues over time. As expected, height increases over time, and
the patterns of increase tended to cluster together by geno-
type (Figure 3

:
A). Increases in height followed by declines,

as observed for ZL26, were determined to be caused by a
change in the angle of the main stalk.

::::
While

::::
the

:::::::
accuracy

::
of

:::::
height

::::::::
estimates

::::
was

:::::::
assessed

::
by

::::::::::
comparison

::
to

:::::::
physical

::::::
ground

::::
truth

::::::::::::
measurements

::::
only

::
on

:::
the

::::
last

:::
day,

::::
the

:::::
height

::
of

::::
three

::::::::
randomly

::::::
selected

::::::
plants

:::::
(Plant

::::::
007-26,

:::::
Plant

:::::
002-7

:::
and

::::
Plant

:::::::
041-29)

::::
were

::::::::
manually

::::::::
measured

::::
from

:::::
image

::::
data

:::
and

::::::::
compared

:::
to

:::::::
software

:::::
based

::::::
height

:::::::::
estimates,

:::
and

:::
no

::::::::
signi�cant

::::::::::
di�erences

::::
were

::::::::
observed

:::::::
between

:::
the

:::::::
manual

:::
and

:::::::::
automated

::::::::::::
measurements

:::::::
(Figure

:::
3B;

:::::::::::::
Supplementary

::::
Table

::
1).

:::
To

:::::::
perform

:
a
::::::
similar

:::
test

::
of

:::
the

:::::::
accuracy

::
of

:::::::
biomass

::::::::
estimation

::
at

::::::::
di�erent

:::::
stages

::
in

:::
the

:::::
maize

:::
life

:::::
cycle,

:
a
:::
set

::
of

::::::
existing

::::::
ground

::::
truth

::::::::::::
measurements

:::
for

:::
two

::::::::
genotypes

:::::
under

:::
two

:::::
stress

::::::::::
treatments

::::::::
[13] were

::::::::
combined

::::
with

:::::::::
additional

::::
later

::::
grow

::::
stage

::::
data

::::::::::::
(Supplemental

::::
Table

:::
2).

:::
The

:::::::::
correlation

::::::
between

:::::
total

:::::
plant

:::::
pixels

::::::::
observed

::
in

:::
the

::::
two

::::
side

:::::
views

:::
and

:::::
plant

:::::::
biomass

:::
was

:::::::
actually

::::::::::
substantially

::::::
higher

::
in
::::
this

::::::
dataset

::::::
(r=0.97)

::::
than

:::
the

:::::::
primary

::::::
dataset,

:::::
likely

::
as

:
a
:::::
result

::
of

::
the

:::::::
smaller

::::::
amount

::
of

::::::
genetic

::::::::
variability

::::::
among

:::::
these

:::::
plants

::::::::::::
(Supplementary

::::::
Figure

::
1).

Figure 3.
::
(A)

:
Plant growth curves of each of �ve replicates of eight selected

genotypes
:
;
::
(B)

::::::::
Comparison

::
of

:::::
manual

:::::::::
measurements

::
of
::::
plant

::::
height

::::
from

::::
image

:::
data

:::
with

:::::::
automated

:::::::::
measurements

::
for

::::
three

::::::
randomly

:::::
selected

::::
plants

::
on

:::
each

::
day

::
of

::
the

:::::::
experiment.

Heritability of phenotypes
The proportion of total phenotypic variation for a trait con-
trolled by genetic variation is referred to as the heritability of
that trait and is a good indicator of how easy or di�cult it will
be to either identify the genes which control variation in a given
trait, or to breed new crop varieties in which a given trait is sig-
ni�cantly altered. Board-sense

:::::::::
Broad-sense

:
heritability can be

estimated without the need to �rst link speci�c genes to vari-
ation in speci�c traits [19]. Variation in a trait which is not
controlled by genotype can result from environmental e�ects,
interactions between genotype and environment, random vari-
ance, and measurement error. Controlling for estimated row
e�ects on di�erent phenotypic measurements signi�cantly in-
creased overall broad sense heritability (Figure 4A,B). This re-
sult suggests that even within controlled environments such
as greenhouses, signi�cant micro-environmental variation ex-
ists and that proper statistically based experimental design re-
mains critical importance in even controlled environment phe-
notyping e�orts.
If the absolute size of measurement error was constant in

this experiment, as the measured values for a given trait be-
came larger, the total proportion of variation explained by the
error term should decrease and, as a result, heritability should
increase as observed (Figure 4A). This trend was indeed ob-
served across six di�erent phenotypic measurements (three
traits calculated from each of two viewing angles (Figure 4B).
Plant height also exhibited signi�cantly greater heritability
than plant area or plant width and greater heritability when cal-
culated solely from the 90 degree side angle photo than when
calculated solely from to 0 degree angle photo. Plants were
initially orientated so that leaves would be arranged parallel
to the camera at 0 degrees and perpendicular to the camera
at 90 degrees. This initial arrangement was conserved to an
extent throughout the experiment, with the 90 degree angle
identifying more plant pixels than the 0 degree angle (Figure
??). This di�erence �rst becomes signi�cant at 23 DAP (Figure
??), and is consistent with the model described above that if
error is constant, larger measured valued will produce higher
overall heritability.

::
In

::::::::
previous

:::::::
studies,

:::::::::::
�uorescence

::::::::
intensity

::::
has

:::::
been

:::::
treated

:::
as

::::
an

::::::::
indicator

:::
for

::::::
plant

::::::
abiotic

::::::
stress

::::::
status

::::::::::::
[32, 11, 4, 21] or

:::::::::
chlorophyll

:::::::
content

::::
level

:::::::
[27, 17].

:::::
Using

:::
the

::::::::::
�uorescence

::::::
images

:::::::
collected

::
as

::::
part

::
of

:::
this

::::::::::
experiment,

:::
the

::::
mean

::::::::::
�uorescence

::::::::
intensity

:::::
value

::
for

:::::
each

::::
plant

:::::
image

::::
was

::::::::
calculated

:::
(see

:::::::::
Methods).

::::
We

:::::
found

:::
that

::::
this

::::
trait

:::::::
exibited

:::::::
moderate

:::::::::::
heritability,

:::::
with

:::
the

::::::::::
proportion

:::
of

::::::::
variation

::::::::
controlled

:::
by

:::::::
genetic

::::::
factors

::::::::::
increasing

::::
over

:::::
time

::::
and

:::::::
reaching

:::::::::::
approximately

::::
60%

::
by

:::
the

:::
last

:::
day

::
of

:::
the

:::::::::
experiment

::::::
(Figure

:::
4B).

Di�erence in the sum of pixel counts in the two side views
of plants on each day of imaging. (A) The median value of total
plant pixels across all plants for each angle on each day of the
imaging cycle. The di�erence between the values observed for
0 degree and 90 degree images on each day was tested using a
paired t-test. ∗ = P-value < 0.05, ∗∗ = P-value < 0.01; (B) 90
degree image of plant 196-19 captured on day 30 (DAP37); (C)
0 degree image of plant 196-19 captured on day 30 (DAP37).
Hyperspectral image validation
Hyperspectral imaging of crop plants has been employed pre-
viously in �eld settings using airborne cameras [35, 34, 33].
As a result of the architecture of grain crops such as maize,
aerial imagery will largely capture leaf tissue during vegeta-
tive growth, and either tassels (maize) or seed heads (sorghum,
millet, rice, oats, etc) during reproductive growth. The dataset
described here includes hyperspectral imagery taken from the
side of individual plants, enabling quanti�cation of the re-
�ectance properties of plant stems in addition to leaf tissue.
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Figure 4. (A) The time course board
:::
broad

:
sense heritability of PH90. The her-

itability in the G model was calculated using a linear model that only considers
the e�ect of genotype with residual values in the error term while heritability
in the G + E model was calculated using a linear model that considers the e�ect
of both genotype and environment (row e�ect) with residual values in the error
term.; (B) The time course board

:::
broad sense heritability of PA90 before and

after controlling for the row e�ect; (B) Variation in broad-sense heritability
(H2) after controlling row e�ects for 6 trait measurements every second day
across the phenotyping cycle. PA0: Plant Area in 0 degree

:::
(The

::::
major

::
axis

::
of

::
leaf

:::::::
phylotaxy

::
was

:::::
parallel

::
to

::
the

:::::
camera

:
at
::
0

::::
degree); PA90: Plant Area in 90

degree
:::
(The

::::
major

:::
axis

::
of

::
leaf

:::::::
phylotaxy

:::
was

::::::::
perpendicular

::
to
:::
the

::::
camera

::
at

::
90

::::
degree); PH0: Plant Height in 0 degree; PH90: Plant Height in 90 degree;

PW0: Plant Width in 0 degree; PW90: Plant Width in 90 degree
:
;
:::
PF0:

:::::
Average

:
of
::::
plant

:::::::
�uorescence

::::::
intensity

::
in

:
0
::::
degree;

::::
PF90:

:::::
Average

::
of

:::
plant

::::::::
�uorescence

:::::
intensity

::
in

::
90

::::
degree.

Many uses of hyperspectral data reduce the data from a
whole plant or whole plot of genetically identical plants to a
single aggregate measurement. While these approaches can in-
crease the precision of intensity measurements for individual
wavelengths, these approaches also sacri�ce spatial resolution
and can in some cases produce apparent changes in re�ectivity
between plants that result from variation in the ratios of the
sizes of di�erent organs with di�erent re�ective properties. To
assess the extent of variation in the re�ectance properties of
individual plants, a principal component analysis of variation
in intensity values for individual pixels was conducted. After
non-plant pixels were removed from the hyperspectral data
cube (Figure 5A) (See Methods), false color images were gen-
erated encoding the intensity values of the �rst three principal
components of variation as the intensity of the red, green, and
blue channels respectively (Figure 5B, C and D). The second
principal component (green channel) marked boundary pixels
where intensity values likely represent a mixture of re�ectance
data from the plant and from the background. The �rst princi-
pal component (red channel) appeared to indicate distinctions
between pixels within the stem of the plant and pixels within
the leaves.
Based on this observation, an index was de�ned which accu-

rately separated plant pixels into leaf and stem (see Methods).
Stem pixels were segmented from the rest of the plant using an
index value derived from the di�erence in intensity values ob-
served in the 1056nm and 1151nm hyperspectral bands. This
methodology was previously described [13]. The re�ectance
pattern of individual plant stems is quite dissimilar from the
data observed from leaves and exhibits signi�cantly di�erent
re�ective properties in some areas of the near infrared (Figure
6). Characteristics of the stem are important breeding targets
for both agronomic traits (lodging resistance, yield for biomass
crops) and value added traits (biofuel conversion potential for
bioenergy crops, yield for sugarcane and sweet sorghum). Hy-
perspectral imaging of the stem has the potential to provide
nondestructive measurements of these traits. The calculated
pattern of leaf re�ectance for the data presented here are com-
parable with those observed in �eld-based hyperspectral stud-
ies [30, 37, 2], providing both external validation and suggest-
ing that the data presented here may be of use in developing
new indices for use under �eld conditions.

Figure 5. Segmentation and visualization of variation in hyperspectral sig-
natures of representative maize plant images. (A) RGB photo of Plant 013-2
(ZL02) collected on DAP 37; (B) False color image constructed of the same
corn plant from a hyperspectral photo taken on the same day. For each plant
pixel the values for each of the �rst three principal components of variation
across 243 speci�c wavelength intensity values are encoded as one of the three
color channels in the false image; (C) Equivalent visualization for Plant 048-9
(ZL09); (D) Equivalent visualization for Plant 008-19 (ZL19).

Figure 6. Re�ectance values for three plants - Plant 090-6 (ZL06), Plant 002-
7 (ZL07), and Plant 145-16 (ZL16) on three days across development. (A) Re-
�ectance values for non-stem plant pixels (ie

::
i.e.

:
leaves) (B) Re�ectance values

for pixels within the plant stem.
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::
In

:::::::::
conclusion,

:::::
while

:::
the

::::::
results

::::::::
presented

::::
above

::::::::
highlight

::::
some

::
of

:::
the

:::::::
simplest

::::
traits

::::::
which

:::
can

::
be

:::::::
extracted

:::::
from

::::
plant

:::::
image

::::
data,

:::::
these

::::::::
represent

:
a
:::::
small

:::::::
fraction

::
of

:::
the

::::
total

:::
set

::
of

:::::::::
phenotypes

:::
for

:::::
which

:::::
image

:::::::
analysis

:::::::::
algorithms

:::::::
currently

::::
exist,

::::
and

:::::
those

::
in

:::::
turn

::::::::
represent

:
a
:::::
small

:::::::
fraction

:::
of

:::
the

::::
total

::
set

::
of

::::::::::
phenotypes

:::::
which

:::
can

:::::::::
potentially

::
be

::::::
scored

::::
from

:::::
image

::::
data.

:::::::::
Software

::::::::
packages

:::::::
already

::::
exist

:::
to

:::::::
measure

:
a
:::::
range

:::
of

:::::
plant

:::::::::::
architectural

:::::
traits

::::
such

:::
as

::::
leaf

::::::
length,

:::::
angle,

:::
and

:::::::::
curvature

::::
from

::::
RGB

:::::::
images

::::::
[5, 22].

::::::
Tools

:::
are

:::
also

:::::
being

:::::::::
developed

::
to

::::::
extract

:::::::::
phenotypic

::::::::::
information

:::
on

:::::
abiotic

:::::
stress

::::::::
response

:::::::
patterns

:::::
from

::::::::::
�uorescence

:::::::
imaging

:::::
[5, 4].

:::
The

:::::::
analysis

::
of

:::::
plant

::::
traits

:::::
from

:::::::::::
hyperspectral

:::::
image

::::
data,

:::::
while

::::::::
common

:::::
place

:::
in

:::
the

:::::::
remote

:::::::
sensing

:::::
realm

:::::
where

:::
an

:::::
entire

:::::
�eld

::::
may

::::::::
represent

::
a
:::::
single

:::::
data

:::::
point,

:
is
::::
just

:::::::::
beginning

:::
for

::::::
single

::::
plant

::::::::
imaging.

:::::::
Recent

:::::
work

::
as

::::::::::
highlighted

:::
the

::::::::
potential

:::
of

:::::::::::
hyperspectral

:::::::
imaging

:::
to

::::::
quantify

:::::::
changes

::
in
:::::
plant

::::::::::
composition

::::
and

:::::::
nutrient

::::::
content

:::::::::
throughout

:::::::::::
development

:::::::
[13, 29].

::::::
While

:::::
these

:::::::::
techniques

::::
have

::::
great

::::::::
potential

::
to
:::::::::
accelerate

::::::
e�orts

::
to

::::
link

::::::::
genotype

::
to

::::::::
phenotype

::::::::
through

::::::::::
ameliorating

::::
the

::::::
current

:::::::::
bottleneck

::
of

::::
plant

::::::::::
phenotypic

::::
data

::::::::
collection,

::
it
::::
will

::
be

:::::::::
important

::
to

::::::
balance

:::
the

:::::::::::
development

::
of

::::
new

:::::
image

:::::::
analysis

:::::
tools

::::
with

::
the

:::::::::
awareness

::
of

:::
the

::::::::
potential

::
for

:::::::::
systematic

:::::
error

:::::::
resulting

::::
from

::::::
genetic

::::::::
variation

:::::::
between

:::::::
di�erent

:::::
lines

::
of

:::
the

:::::
same

:::
crop

:::::::
species.

Availability of source code and requirements

• Project name: Maize Phenotype Map
• Project home page: https://github.com/shanwai1234/Maize_

Phenotype_Map
• Operating system(s): Linux
• Programming language: Python 2.7
• Other requirements: OpenCV module 2.4.8, Numpy >1.5,
CMake > 2.6, GCC > 4.4.x, Scipy 0.13

• License: BSD 3-Clause License

Availability of supporting data and materials

The image data sets, pot weight records per day and ground
truth measurements with corresponding documentations
from 4 types of cameras of 32 maize inbreds and same
types of image data for the two maize genotypes under
two stress treatments were deposited in the CyVerse data
commons under a CC0 license with doi: 10.7946/P22K7V.
(The data for the peer review process can be downloaded
from https://doi.org/10.7946/P22K7V). All image data were
stored in the following data structure: Genotype – > Plant
– > Camera type – > Day. For the hyperspectral camera
each photo is stored as 243 sub images, each image repre-
senting intensity values for a given wavelength, so these
require one additional level of nesting in the data structure
Day – > wavelength. The grayscale images from the IR
camera and the hyperspectral imaging system are stored
as three-channel images with all three channels in a given
pixel set to identical values. The �uorescence images contain
almost all information in the red channel with the blue and
green channel having intensities equal to or very close to
zero, but data all three channels exist. Genotype data of
32 inbreds were generated as part of a separate project and
can be retrieved from either https://doi.org/10.7946/P2V888 or
http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?�legroupid=4.
:
4.
::
Measurements for thirteen core phenotypes at each �eld

trial as well as local weather data can be retrieved from
publicly released Genomes 2 Fields datasets released on
CyVerse. Data from the 2014 G2F �eld trials is posted

(https://doi.org/10.7946/P2V888) and data from the 2015
G2F �eld trials is posted (https://doi.org/10.7946/P24S31).
Genetically identical seeds from the majority of the accessions
used in creating both this dataset and the genomes to �elds
�eld trial data can be ordered from public domain sources (e.g.
USDA GRIN) and are listed in Table 1.

Declarations

List of abbreviations

DAP: Days after planting
GBS: Genotyping by Sequencing
LED: Light-emitting diode
:::::
MARS:

::::::::::
Multivariate

:::::::
Adaptive

::::::::
Regression

::::::
Splines

:NDVI: Normalized di�erence vegetation index
NIR: Near-infrared
RGB: Red, Blue and Green

::
An

:::::
image

::::
with

::::::::
separate

:::::::
intensity

:::::
values

:::
for

::
the

::::
red,

::::
blue

:::
and

:::::
green

:::::::
channels

SNP: Single Nucleotide Polymorphism
::::
SVM:

::::::
Support

::::::
Vector

:::::::
Machines

:UNL: University of Nebraska-Lincoln
PA0: Plant Area calculated from a 0 degree image

:
.
:::::
Plants

::::
were

::::::
initially

::::::::
orientated

::::
then

::::::
leaves

:::::
would

::
be

::::::::
arranged

::::::
parallel

::
to

::
the

::::::
camera

::
at
::
0

::::::
degrees.

:PA90: Plant Area calculated from a 90 degree image.
::::::
Plants

::::
were

:::::::
initially

:::::::::
orientated

::::
then

::::::
leaves

::::::
would

:::
be

::::::::
arranged

::::::::::
perpendicular

::
to
:::
the

::::::
camera

::
at

:::
90

::::::
degrees.

:PCA: Principal Component Analysis
PH0: Plant Height calculated from a 0 degree image
PH90: Plant Height calculated from a 90 degree image
PW0: Plant Width calculated from a 0 degree image
PW90: Plant Width calculated from a 90 degree image
:::
PF0:

:::::::
Average

::
of

::::
plant

::::::::::
�uorescence

:::::::
intensity

::
in
::
0
:::::
degree

:

::::
PF90:

:::::::
Average

::
of

::::
plant

::::::::::
�uorescence

:::::::
intensity

::
in
:::
90

::::::
degree.
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