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Conventional and hyperspectral time-series
imaging of maize lines widely used in �eld trials
Zhikai Liang1, Piyush Pandey2, Vincent Stoerger3, Yuhang Xu4, Yumou
Qiu4, Yufeng Ge2 and James C. Schnable1,*
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Nebraska-Lincoln, Lincoln, 68503, USA and 2Department of Biological System Engineering, University of
Nebraska-Lincoln, Lincoln, 68503, USA and 3Plant Phenotyping Facilities Manager, University of
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Abstract
Background: Maize (Zea mays ssp. mays) is one of three crops, along with rice and wheat, responsible for more than 1/2 of
all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the
growing need for food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding
e�orts. Datasets linking new types of high throughput phenotyping data collected from plants to the performance of the
same genotypes under agronomic conditions across a wide range of environments are essential for developing new
statistical approaches and computer vision based tools.
Findings: A set of maize inbreds – primarily recently o� patent lines – were phenotyped using a high throughput platform
at University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a
core set of 13 phenotypes in �eld trials across 13 North American states in two years by the Genomes 2 Fields consortium. A
total of 485 GB of image data including RGB, hyperspectral, �uorescence and thermal infrared photos has been released.
Conclusions: Correlations between image-based measurements and manual measurements demonstrated the feasibility of
quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as
biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral
image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput
phenotyping data with �eld data from di�erent environments can reveal previously unknown factors in�uencing yield
plasticity.
Key words: Maize; Image; Phenomics; Field-phenotype

Data Description

Background

The green revolution created a signi�cant increase in the yields
of several major crops in the 1960s and 1970s, dramatically re-
ducing the prevalence of hunger and famine around the world,
even as population growth continued. One of the major com-

ponents of the green revolution was new varieties of major
grain crops produced through conventional phenotypic selec-
tion with higher yield potentially. Since the green revolution,
the need for food has continued to increase, and a great deal of
e�ort in the public and private sectors is devoted to developing
crop varieties with higher yield potential. However, as the low
hanging fruit for increased yield vanish, each new increase in
yield requires more time and resources. Recent studies have
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demonstrated that yield increases may have slowed or stopped
for some major grain crops in large regions of the world [1].
New approaches to plant breeding must be developed if crop
production continues to grow to meet the needs of an increas-
ing population around the world.
The major bottleneck in modern plant breeding is pheno-

typing. Phenotyping can be used in two ways. Firstly, by phe-
notyping a large set of lines, a plant breeder can identify those
lines with the highest yield potential and/or greatest stress tol-
erance in a given environment. Secondly, su�ciently detailed
phenotyping measurements from enough di�erent plants can
be combined with genotypic data to identify regions of the
genome of a particular plant species which carry bene�cial or
deleterious alleles. The breeder can then develop new crop vari-
eties which incorporate as many bene�cial alleles and exclude
as many deleterious alleles as possible. Phenotyping tends to
be expensive and low throughput, yet as breeders seek to iden-
tify larger numbers of alleles each with individually smaller
e�ects, the amount of phenotyping required to achieve a given
increase in yield potential is growing. High throughput com-
puter vision based approaches to plant phenotyping have the
potential to ameliorate this bottleneck. These tools can be used
to precisely quantify even subtle traits in plants and will tend
to decrease in unit cost with scale, while conventional pheno-
typing, which remains a human labor intensive processes, does
not.
Several recent pilot studies have applied a range of image-

processing techniques to extract phenotypic measurements
from crop plants. RGB (R: Red channel; G: Green channel; B:
Blue channel) camera technology, widely used in the consumer
sector, has also been the most widely used tool in these initial
e�orts at computer vision based plant phenotyping [2, 3, 4, 5].
Other types of cameras including �uoresence [6, 7] and NIR
(near-infrared) [6, 8, 9] have also been employed in high
throughput plant phenotyping e�orts, primarily in studies of
the response of plant to di�erent abiotic stresses.
However, the utility of current studies is limited in two

ways. Firstly, current analysis tools can extract only a small
number of di�erent phenotypic measurements from images of
crop plants. Approximately 150 tools for analyzing plant im-
age data are listed in a �eld speci�c database, however the ma-
jority of these are either developed speci�cally for Arabidopsis
thaliana which is a model plant, or are designed speci�cally to
analyze images of roots [10]. Secondly, a great deal of image
data is generated in controlled environments, however, there
are comparatively few attempts to link phenotypic measure-
ments in the greenhouse to performance in the �eld. However,
one recent report inmaize suggested that more than 50% of the
total variation in yield under �eld conditions could be predicted
using traits measured under controlled environments [5].
Advances in computational tools for extracting phenotypic

measurements of plants from image data and statistical mod-
els for predicting yield under di�erent �eld conditions from
such measurements requires suitable training datasets. Here,
we generate and validate such a dataset consisting of high
throughput phenotyping data from 32 distinct maize (Zeamays)
accessions drawn primarily from recently o�-patent lines de-
veloped by major plant breeding companies. These accessions
were selected speci�cally because paired data from the same
lines exists for a wide range of plant phenotypes collected in
54 distinct �eld trials at locations spanning 13 North Amer-
ican states or provinces over two years [11]. This extremely
broad set of �eld sites captures much of the environmental
variation among areas in which maize are cultivated with to-
tal rainfall during the growing season ranging from 133.604
mm to 960.628 mm (excluding sites with supplemental irriga-
tion) and peak temperatures during the growing season rang-
ing from 23.5◦C to 34.9◦C. In addition, the same lines have

been genotyped for approximately 200,000 SNP markers using
GBS [11]. Towards these existing data, we added RGB, ther-
mal infra-red, �uorescent and hyperspectral images collected
once per day per plant, as well as detailed water-use informa-
tion (single day, single plant resolution). At the end of the ex-
periment, 12 di�erent types of ground-truth phenotypes were
measured for individual plants including destructive measure-
ments. A second experiment focused on interactions between
genotype and environmental stress, collecting the same types
of data described above from two maize genotypes under well
watered and water stressed conditions [12]. We are releasing
this curated dataset of high throughput plant phenotyping im-
ages from accessions where data on both genotypic variation
and agronomic performance under �eld conditions is already
available. All data was generated using a Lemnatec designed
high throughput greenhouse-based phenotyping system con-
structed at the University of Nebraska-Lincoln. This system is
distinguished from existing public sector phenotyping systems
in North America by both the ability to grow plants to a height
of 2.5 meters and the incorporation of a hyperspectral camera
[9]. Given the unique properties described above, this compre-
hensive data set should lower the barriers to the development
of new computer vision approaches or statistical methodolo-
gies by independent researchers who do not have the funding
or infrastructure to generate the wide range of di�erent types
of data needed.

Methods

Greenhouse Management
All imaged plants were grown in the greenhouse facility of the
University of Nebraska-Lincoln’s Greenhouse Innovation Cen-
ter (Latitude: 40.83, Longitude: -96.69) between October 2nd,
2015 to November 10th, 2015. Kernels were sown in 1.5 gal-
lon pots with Fafard germination mix supplemented with 1
cup (236 mL) of Osmocote plus 15-9-12 and one tablespoon
(15 mL) of Micromax Micronutrients per 2.8 cubic feet (80 L)
of soil. The target photoperiod was 14:10 with supplementary
light provided by LED growth lamps from 07:00 to 21:00 each
day. The target temperature of the growth facility was between
24 – 26◦C. Pots were weighed once per day and watered back
to a target weight of 5,400 grams from 10-09-2015 to 11-07-
2015 and a target weight of 5,500 grams from 11-08-2015 to
the termination of the experiment.
Experimental Design
A total of 156 plants, representing the 32 genotypes listed in Ta-
ble 1 were grown and imaged, as well as 4 pots with soil but no
plant which serve as controls for the amount of water lost from
soil as a result of non-transpiration mechanisms (e.g. evapo-
ration). The 156 plants plus control pots were arranged in a
ten row by sixteen column grid, with 0.235 meter spacing be-
tween plants in the same row and 1.5 meters spacing between
rows (Table 2). Sequential pairs of two rows were consisted of a
complete replicate with either 31 genotypes and one empty con-
trol pot, or 32 genotypes. Within each pair of rows, genotypes
were blocked in groups of eight (one half row), with order ran-
domized within blocks between replicates in order to maximize
statistical power to analyze within-greenhouse variation.
Plant Imaging
The plants were imaged daily using four di�erent cameras in
separate imaging chambers. The four types of cameras were
thermal infrared, �uorescence, conventional RGB, and hyper-
spectral [12]. Images were collected in the order that the cam-
era types are listed in the previous sentence. On each day,
plants were imaged sequentially by row, starting with row 1
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Table 1. 32 genotypes in maize phenotype map
Genotype ID Genotype Source Released Year
ZL1 740 Novartis Seeds 1998
ZL2 2369 Cargill 1989
ZL3 A619 Public Sector 1992
ZL4 A632 Public Sector 1992
ZL5 A634 Public Sector 1992
ZL6 B14 Public Sector 1968
ZL7 B37 Public Sector 1971
ZL8 B73 Public Sector 1972
ZL9 C103 Public Sector 1991
ZL10 CM105 Public Sector 1992
ZL11 LH123HT Holden’s Foundation 1984
ZL12 LH145 Holden’s Foundation 1983
ZL13 LH162 Holden’s Foundation 1990
ZL14 LH195 Holden’s Foundation 1989
ZL15 LH198 Holden’s Foundation 1991
ZL16 LH74 Holden’s Foundation 1983
ZL17 LH82 Holden’s Foundation 1985
ZL18 Mo17 Public Sector 1964
ZL19* DKPB80 DEKALB Genetics ?
ZL20 PH207 Pioneer Hi-Bred 1983
ZL21 PHB47 Pioneer Hi-Bred 1983
ZL22** PHG35 Pioneer Hi-Bred 1983
ZL23 PHG39 Pioneer Hi-Bred 1983
ZL24 PHG47 Pioneer Hi-Bred 1986
ZL25 PHG83 Pioneer Hi-Bred 1985
ZL26 PHJ40 Pioneer Hi-Bred 1986
ZL27 PHN82 Pioneer Hi-Bred 1989
ZL28 PHV63 Pioneer Hi-Bred 1988
ZL29 PHW52 Pioneer Hi-Bred 1988
ZL30 PHZ51 Pioneer Hi-Bred 1986
ZL31 W117HT Public Sector 1982
ZL32 Wf9 Public Sector 1991

* Not currently available for order.
** Genotype represented by only a single plant in the dataset.

column 1 and concluding with row 10, column 16 (Table 2).
Plants were imaged from the side at two angles o�set 90

degrees from each other as well as a top down view. On the
�rst day of imaging or when plants reached the two leaf stage
of development, the pot was rotated so that the major axis of
leaf phylotaxy was parallel to the camera in the PA0 orientation
and perpendicular to the camera in the PA90 orientation. This
orientation is consistent for all cameras and was not adjusted
again for the remainder of the experiment. The �uorescence
camera captured images with a resolution of 1038 × 1390 pixels
and measures emission intensity at wavelengths between 500-
750 nm based on excitation with light at 400-500 nm. Plants
were imaged using the same three perspectives employed for
the thermal infrared camera. The RGB camera captured images
with a resolution of 2454 × 2056 pixels. Initially the zoom of
the RGB camera in side views was set such that each pixel cor-
responds to 0.746 mm at the distance of the pot from the cam-
era. Between 2015-11-05 and 2015-11-10, the zoom level of the
RGB camera was reduced to keep the entire plant in the frame
of the image. As a result of a system error, this same decreased
zoom level was also applied to all RGB images taken on 2015-
10-20. At this reduced zoom level, each pixel corresponds to
1.507 mm at the distance of the pot from the camera, an ap-
proximate 2x change. Plants were also imaged using the same
three perspectives employed for the thermal infrared camera.
The hyperspectral camera captured images with a resolution
of 320 horizontal pixels. As a result of the scanning technology
employed, vertical resolution ranged from 494 to 499 pixels.
Hyperspectral imaging was conducted using illumination from
halogen bulbs (Manufacturer Sylvania, model # ES50 HM UK

240V 35W 25° GU10). A total of 243 separate intensity values
were captured for each pixel spanning a range of light wave-
lengths between 546nm-1700nm. Data from each wavelength
was stored as a separate grayscale image.
Ground Truth Measurement
Ground truth measurements were collected at the termination
of data collection on November 11-12, 2015. Manually col-
lected phenotypes included plant height, total number of visi-
ble leaves, number of total fully extended leaves, stem diame-
ter at the base of the plant, stem diameter at the collar of the
top fully extended leaf, length and width of top fully extended
leaf, and presence/absence visible anthocyanin production in
the stem. After these measurements, total above-ground fresh
weight biomass was measured for four out of �ve replicates,
resulting in the destruction of the plants. Ground truth data
for the drought stressed subset of this dataset was collected
following the procedure previously described in [12].
RGB Image Processing
Pixels covering portions of the plant were segmented out of
RGB images using a green index ((2×G)/(R+B)). Pixels with an
index value greater than 1.15 [12] were considered to be plant
pixels. This method produced some false positive plant pixels
within the re�ectivemetal columns at the edge of the image. To
reduce the impact of false positives, these areas were excluded
from the analysis. Therefore, when plant leaves cross the re-
�ective metal frame, some true plant pixels were excluded. If
no plant pixels were identi�ed in the image – often the case
in the �rst several days when the plant had either not germi-
nated or had not risen above the edge of the pot – the value
was recorded as "NA" in the output �le.
Heritability Analysis
A linear regression model was used to analyze the genotype
e�ect (excluding genotype ZL22 which lacked replication) and
greenhouse position e�ect on plant traits. The responses were
modeled independently for each day as

yh,ij,t = µh,t + αh,i,t + γh,ν(i,j),t + εh,ij,t, (1)
where the subscript h = 1, . . . , 6 denotes the three responses
extracted from the images: plant height, width and size for
the two views 0 and 90 degree. The subscripts i, j and t denote
the jth plant in the ith row and day t, respectively, and ν(i, j)
stands for the genotype at this pot. The parameters α and γ
denote row e�ect and genotype e�ect, respectively. The error
term is εh,ij,t. Let SSα,t, SSγ,t and SSε,t be the sum of squares ofthe regression model (1) for the row e�ect, genotype e�ect and
the error at time t, respectively. Let SSt = SSα,t + SSγ,t + SSε,tbe the total sum of squares at time t. The heritability HRt (2)of a given trait within this population was de�ned as the ra-
tio of the genotype sum of squares over the sum of genotype
and error sum of squares. For the estimate of the heritabil-
ity of measurement error, the row e�ect term was replaced
by a replicate e�ect (each replicate consisted of two sequential
rows) with exclusion of ZL22 as only one plant of this genotype
was grown.

HRt = SSγ,t
SSε,t + SSγ,t . (2)

As the heritability index may change over the growth of the
plant, an nonparametric smoothing method was provided for
analyzing the time varying heritability of plants. The de�nition
in (3) excludes the variation brought by the greenhouse row ef-
fect, which can be considered as the percentage of the variation
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Table 2. Experimental layout (ID: ZL1-ZL32). At the time this experiment was conducted, the total size of the UNL greenhouse systemwas ten rows by twenty columns. Positions marked with UP indicate pots �lled with plants from an unrelated experiment, while positionsmarked with NA indicate pots which had no plants. The �rst complete replicate is shown in color, and the four incomplete blocks withinthe �rst replicate are marked in di�erent colors. * marks empty pots within the experimental design.
9 7 3 10 23 25 26 19 13 5 29 21 2 4 18 20 UP UP UP UP
11 16 1 32 17 27 6 22 24 31 14 30 15 28 8 12 UP UP UP UP
29 31 15 13 1 17 25 9 21 30 3 5 * 19 14 6 UP UP UP UP
12 23 32 16 7 28 2 18 10 11 8 26 27 4 20 24 UP UP UP UP
25 9 21 27 28 12 5 11 15 6 * 7 4 23 31 20 UP UP UP UP
19 32 29 24 16 13 3 8 17 14 18 30 10 26 1 2 UP UP UP UP
8 1 17 23 21 5 7 24 27 18 3 11 31 15 19 2 NA NA NA NA
25 30 4 9 16 32 14 20 * 10 6 29 28 12 26 13 NA NA NA NA
15 10 5 32 31 21 16 26 2 18 9 25 6 8 24 * NA NA NA NA
29 13 23 14 27 7 11 30 12 1 28 4 3 20 17 19 NA NA NA NA

in plant response that can be explained by the genotype e�ect
after adjusting the environmental e�ect. To compare with this
de�nition of heritability (2), the response in the model without
considering the row e�ect was constructed as

yh,ij,t = µh,t + γh,ν(i,j),t + εh,ij,t, (3)
where similarly as (1), ν(i, j) is the genotype of the jth plant in
the ith row. Let S̃Sγ,t and S̃St be the genotype sum of squares
and total sum of squares under (4). The classical heritability is
de�ned as

H̃Rt = S̃Sγ,tS̃St
. (4)

Hyperspectral Image Processing

Two methods and thresholds were used to extract plant re-
gions of interest from hyperspectral images. First, the com-
monly used NDVI (normalized di�erence vegetation index) for-
mula was applied to all pixels using the formula (R750nm-
R705nm)/(R750nm+R705nm), and pixels with a value greater than0.25 were classi�ed as originating from the plant [13]. Sec-
ond, based on the di�erence in re�ectance between stem and
leaves at wavelengths of 1056nm and 1151nm, the stem was
segmented from other part of plants by selecting pixels where
(R1056nm/R1151nm) produced a value greater than 1.2. Leaf pixelswere de�ned as pixels identi�ed as plant pixels based on NDVI
but not classi�ed as stem pixels. In addition to the biological
variation between individual plants, overall intensity variation
existed both between di�erent plants imaged on the same day
and the same plant on di�erent days as a result of changes in
the performance of the lighting used in the hyperspectral imag-
ing chamber. To calibrate each individual image and make the
results comparable, a python script (hosted on Github; see code
availability section) was used to normalize the intensity values
of each plant pixel using data from the non-plant pixels in the
same image.
In order to visualize variation across 243 separate wave-

length measurements across multiple plant images, we used
a PCA (Principal Component Analysis) based approach. After
the normalization described above, PCA analysis of intensity
values for individual pixels was conducted. PCA values of each
individual plant pixel per analyzed plant were translated to in-
tensity values using the formula [x-min(x)]/[max(x)-min(x)].
False color RGB images were constructed with the values for
the �rst principal component stored in the red channel, the
second principal component in the green channel and the third
principal component stored in the blue channel.

Fluorescence Image Processing
A consistent area of interest was de�ned for each zoom level to
exclude the pot and non-uniform areas of the imaging cham-
ber backdrop. Within that area, pixels with an intensity value
greater than 70 in the red channel were considered to be plant
pixels. The aggregate �uorescence intensity was de�ned as
the sum of the red channel intensity values for all pixels classi-
�ed as plant pixels within the region of interest, and the mean
�uorescence intensity as the aggregate �uorescence intensity
value divided by the number of plant pixels within the region
of interest.
Plant Biomass Prediction
Two methods were used to predict plant biomass. The �rst
was a single variable model based on the number of zoom level
adjusted plant pixels identi�ed in the two RGB side view im-
ages on a given day. The second was a multivariate model
based upon the sum of plant pixels identi�ed in the two RGB
side views, sum of plant pixels identi�ed in the two RGB side
views plus the RGB top view, aggregate �uorescence intensity
in the two side views, aggregate �uorescence intensity in the
two side views plus the top view, number of plant stem pix-
els identi�ed in the hyperspectral image and number of plant
leaf pixels identi�ed in the hyperspectral image. Traits were
selected to overlap with those employed by[14] where possible.
This multivariate dataset was used to predict plant biomass us-
ing linear modeling as well as MARS, Random Forest and SVM
[14]. MARS analysis was performed using the R package earth
[15], Random Forest with the R package randomForest [16] and
SVM with the R package e1071 [17].

Data Validation and Quality Control

Validation against ground truth measurements
A total of approximately 500 GB of image data was initially
generated by the system during the course of this exper-
iment consisting of RGB images (51.1%), �uorescence im-
ages (4.3%), and hyperspectral images (44.6%). A sub-
set of the RGB images within this dataset were previously
analyzed in [18], and were made available for download
from http://plantvision.unl.edu/dataset under the terms of the
Toronto Agreement. To validate the dataset and ensure plants
had been properly tracked through both the automated imaging
system and ground truth measurements, a simple script was
written to segment images into plant and not-plant pixels (Fig-
ure 1). Source codes for all validation analysis are posted online
(https://github.com/shanwai1234/Maize_Phenotype_Map).
Based on the segmentation of the image into plant and non-

plant pixels, plant height was scored as the y axis dimension of
the minimum bounding box. Plant area was scored as the total
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Figure 1. Segmentation of images into plant and not plant pixels for one rep-
resentative plant (Path to this image in the released dataset: Genotype_ZL019
– > Plant_008-19 – > Image_Type – > Day_32). The area enclosed by green
border is composed of pixels scored as "plant", the area outside the green bor-
der s composed of pixels scored as "not-plant". Minimum bounding rectangle
of plant pixels is shown in red. (A) Side view, angle 1; (B) Side view, 90 degree
rotation relative to A; (C) Top View.

number of plant pixels observed in both side view images af-
ter correcting for the area of each pixel at each zoom employed
(See Methods). Similar approaches to estimate plant biomass
have been widely employed across a range of grain crop species
including rice [19], wheat [20], barley [20, 21], maize [12],
sorghum [22] and seteria [9]. Calculated values were com-
pared to manual measurements of plant height and plant fresh
biomass which were quanti�ed using destructive methods on
the last day of the experiment. In both cases manual measure-
ments and image derived estimates were highly correlated, al-
though the correlation between manual and estimated height
was greater than the correlation between manually measured
and estimated biomass (Figure 2A,B). Using the PlantCV soft-
ware package [23], equivalent correlations between estimated
and ground truth biomass were obtained (r=0.91). Estimates
of biomass using both software packages were more correlated
with each other (r=0.96) than either was with ground truth
measurements. This suggests that a signi�cant fraction of the
remaining error is the result of the expected imperfect corre-
lation between plant size and plant mass, rather than inaccu-
racies in easimating plant size using individual software pack-
ages. Recent reports have suggested that estimates of biomass
incorporating multiple traits extracted from image data can in-
crease accuracy [14]. We tested the accuracy of biomass predic-
tion of four multivariate estimation techniques on this dataset
(see Methods). The correlation coe�cient (r value) of the es-
timated biomass measures with ground truth data was 0.949,
0.958, 0.925 and 0.951 for multivariate linear model, MARS,
Random Forest and SVM respectively.
The residual value – di�erence between the destructively

measured biomass value and the predicted biomass value based
on image data and the linear regression line equation – was cal-
culated for each individual plant (Figure 2C). Using data from
the multiple replicates of each individual accession, the propor-
tion of error which is controlled by genetic factors rather than
random error can be ascertained. We determined that 58% of
the total error in biomass estimate was controlled by genetic
variation between di�erent maize lines. As such, this error is
systematic rather than random and thus more likely to produce
misleading downstream results when used in quantitative ge-
netic analysis. As mentioned above, biomass and plant size are
imperfectly correlated, as di�erent plants can exhibit di�erent
densities, for example as a result of di�erent leaf to stem ratios.
Recent reports have suggested that estimates of biomass incor-
porating multiple traits extracted from image data can increase
accuracy [14]. We tested the accuracy of biomass prediction
of four multivariate estimation techniques on this dataset (see
Methods). The correlation of the estimated biomass measures
with ground truth data was 0.949, 0.958, 0.925 and 0.951 for
multivariate linear model, MARS, Random Forest and SVM re-
spectively. However, even when employing the most accurate
of these four methods (MARS), 63% of the error in biomass es-

timation could be explained by genetic factors. This source of
error, with the biomass of some lines systematically underes-
timated and the biomass of other lines systematically overes-
timated presents a signi�cant challenge to downstream quan-
titative genetic analysis. Given the prevalence of plant pixel
counts as a proxy for biomass [20, 22, 9, 21, 12, 19].

Figure 2. Correlation between image-based and manual measurements of
individual plants.(A) Plant height; (B) Plant fresh biomass; (C) Variation in
the residual between estimated biomass and ground truth measurement of
biomass across inbreds.

Patterns of change over time

One of the desirable aspects of image based plant phenotyping
is that, unlike destructively measured phenotypes, the same
plant can be imaged repeatedly. Instead of providing a snap-
shot in time this allows researchers to quantify rates of change
in phenotypic values over time, providing an additional set of
derived trait values. Given the issues with biomass quanti�-
cation presented above, measurements of plant height were
selected to validate patterns of change in phenotypic values
over time. As expected, height increases over time, and the
patterns of increase tended to cluster together by genotype
(Figure 3A). Increases in height followed by declines, as ob-
served for ZL26, were determined to be caused by a change in
the angle of the main stalk. While the accuracy of height es-
timates was assessed by comparison to physical ground truth
measurements only on the last day, the height of three ran-
domly selected plants (Plant 007-26, Plant 002-7 and Plant
041-29) were manually measured from image data and com-
pared to software based height estimates, and no signi�cant
di�erences were observed between the manual and automated
measurements (Figure 3B; Supplementary Table 1). To perform
a similar test of the accuracy of biomass estimation at di�er-
ent stages in the maize life cycle, a set of existing ground truth
measurements for two genotypes under two stress treatments
[12] were combined with additional later grow stage data (Sup-
plemental Table 2). The correlation between total plant pixels
observed in the two side views and plant biomass was actually
substantially higher in this dataset (r=0.97) than the primary
dataset, likely as a result of the smaller amount of genetic vari-
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ability among these plants (Supplementary Figure 1).

Figure 3. (A) Plant growth curves of each of �ve replicates of eight selected
genotypes; (B) Comparison of manual measurements of plant height from im-
age data with automated measurements for three randomly selected plants on
each day of the experiment.

Heritability of phenotypes
The proportion of total phenotypic variation for a trait con-
trolled by genetic variation is referred to as the heritability
of that trait and is a good indicator of how easy or di�cult
it will be to either identify the genes which control variation in
a given trait, or to breed new crop varieties in which a given
trait is signi�cantly altered. Broad-sense heritability can be
estimated without the need to �rst link speci�c genes to vari-
ation in speci�c traits [24]. Variation in a trait which is not
controlled by genotype can result from environmental e�ects,
interactions between genotype and environment, random vari-
ance, and measurement error. Controlling for estimated row
e�ects on di�erent phenotypic measurements signi�cantly in-
creased overall broad sense heritability (Figure 4A,B). This re-
sult suggests that even within controlled environments such
as greenhouses, signi�cant micro-environmental variation ex-
ists and that proper statistically based experimental design re-
mains critical importance in even controlled environment phe-
notyping e�orts.
If the absolute size of measurement error was constant

in this experiment, as the measured values for a given trait
became larger, the total proportion of variation explained by
the error term should decrease and, as a result, heritability
should increase as observed (Figure 4A). This trend was in-
deed observed across six di�erent phenotypic measurements
(three traits calculated from each of two viewing angles (Fig-
ure 4B). Plant height also exhibited signi�cantly greater her-
itability than plant area or plant width and greater heritabil-
ity when calculated solely from the 90 degree side angle photo
than when calculated solely from to 0 degree angle photo.
In previous studies, �uorescence intensity has been treated

as an indicator for plant abiotic stress status [25, 26, 7, 27]
or chlorophyll content level [28, 29]. Using the �uorescence

images collected as part of this experiment, the mean �uores-
cence intensity value for each plant image was calculated (see
Methods). We found that this trait exhibited moderate heri-
tability, with the proportion of variation controlled by genetic
factors increasing over time and reaching approximately 60%
by the last day of the experiment (Figure 4B).

Figure 4. (A) The time course broad sense heritability of PH90. The heritability
in the G model was calculated using a linear model that only considers the
e�ect of genotype with residual values in the error term while heritability in
the G + E model was calculated using a linear model that considers the e�ect
of both genotype and environment (row e�ect) with residual values in the
error term.; (B) The time course broad sense heritability of PA90 before and
after controlling for the row e�ect; (B) Variation in broad-sense heritability
(H2) after controlling row e�ects for 6 trait measurements every second day
across the phenotyping cycle. PA0: Plant Area in 0 degree (The major axis of
leaf phylotaxy was parallel to the camera at 0 degree); PA90: Plant Area in 90
degree (The major axis of leaf phylotaxy was perpendicular to the camera at
90 degree); PH0: Plant Height in 0 degree; PH90: Plant Height in 90 degree;
PW0: Plant Width in 0 degree; PW90: Plant Width in 90 degree; PF0: Average
of plant �uorescence intensity in 0 degree; PF90: Average of plant �uorescence
intensity in 90 degree.

Hyperspectral image validation
Hyperspectral imaging of crop plants has been employed pre-
viously in �eld settings using airborne cameras [30, 31, 32].
As a result of the architecture of grain crops such as maize,
aerial imagery will largely capture leaf tissue during vegeta-
tive growth, and either tassels (maize) or seed heads (sorghum,
millet, rice, oats, etc) during reproductive growth. The dataset
described here includes hyperspectral imagery taken from the
side of individual plants, enabling quanti�cation of the re-
�ectance properties of plant stems in addition to leaf tissue.
Many uses of hyperspectral data reduce the data from a

whole plant or whole plot of genetically identical plants to a
single aggregate measurement. While these approaches can in-
crease the precision of intensity measurements for individual
wavelengths, these approaches also sacri�ce spatial resolution
and can in some cases produce apparent changes in re�ectivity
between plants that result from variation in the ratios of the
sizes of di�erent organs with di�erent re�ective properties. To
assess the extent of variation in the re�ectance properties of
individual plants, a principal component analysis of variation
in intensity values for individual pixels was conducted. After
non-plant pixels were removed from the hyperspectral data
cube (Figure 5A) (See Methods), false color images were gen-
erated encoding the intensity values of the �rst three principal
components of variation as the intensity of the red, green, and
blue channels respectively (Figure 5B, C and D). The second
principal component (green channel) marked boundary pixels
where intensity values likely represent a mixture of re�ectance
data from the plant and from the background. The �rst princi-
pal component (red channel) appeared to indicate distinctions
between pixels within the stem of the plant and pixels within
the leaves.
Based on this observation, an index was de�ned which accu-

rately separated plant pixels into leaf and stem (see Methods).
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Figure 5. Segmentation and visualization of variation in hyperspectral sig-
natures of representative maize plant images. (A) RGB photo of Plant 013-2
(ZL02) collected on DAP 37; (B) False color image constructed of the same
corn plant from a hyperspectral photo taken on the same day. For each plant
pixel the values for each of the �rst three principal components of variation
across 243 speci�c wavelength intensity values are encoded as one of the three
color channels in the false image; (C) Equivalent visualization for Plant 048-9
(ZL09); (D) Equivalent visualization for Plant 008-19 (ZL19).

Stem pixels were segmented from the rest of the plant using an
index value derived from the di�erence in intensity values ob-
served in the 1056nm and 1151nm hyperspectral bands. This
methodology was previously described [12]. The re�ectance
pattern of individual plant stems is quite dissimilar from the
data observed from leaves and exhibits signi�cantly di�erent
re�ective properties in some areas of the near infrared (Figure
6). Characteristics of the stem are important breeding targets
for both agronomic traits (lodging resistance, yield for biomass
crops) and value added traits (biofuel conversion potential for
bioenergy crops, yield for sugarcane and sweet sorghum). Hy-
perspectral imaging of the stem has the potential to provide
nondestructive measurements of these traits. The calculated
pattern of leaf re�ectance for the data presented here are com-
parable with those observed in �eld-based hyperspectral stud-
ies [33, 34, 35], providing both external validation and suggest-
ing that the data presented here may be of use in developing
new indices for use under �eld conditions.
In conclusion, while the results presented above highlight

some of the simplest traits which can be extracted from plant
image data, these represent a small fraction of the total set of
phenotypes for which image analysis algorithms currently ex-
ist, and those in turn represent a small fraction of the total
set of phenotypes which can potentially be scored from image
data. Software packages already exist to measure a range of
plant architectural traits such as leaf length, angle, and cur-
vature from RGB images [6, 36]. Tools are also being devel-
oped to extract phenotypic information on abiotic stress re-
sponse patterns from �uorescence imaging [6, 7]. The anal-
ysis of plant traits from hyperspectral image data, while com-
mon place in the remote sensing realm where an entire �eld
may represent a single data point, is just beginning for single
plant imaging. Recent work as highlighted the potential of hy-
perspectral imaging to quantify changes in plant composition
and nutrient content throughout development [12, 37]. While
these techniques have great potential to accelerate e�orts to
link genotype to phenotype through ameliorating the current
bottleneck of plant phenotypic data collection, it will be impor-
tant to balance the development of new image analysis tools
with the awareness of the potential for systematic error result-

Figure 6. Re�ectance values for three plants - Plant 090-6 (ZL06), Plant 002-
7 (ZL07), and Plant 145-16 (ZL16) on three days across development. (A) Re-
�ectance values for non-stem plant pixels (i.e. leaves) (B) Re�ectance values
for pixels within the plant stem.

ing from genetic variation between di�erent lines of the same
crop species.

Availability of source code and requirements

• Project name: Maize Phenotype Map
• Project home page: https://github.com/shanwai1234/Maize_

Phenotype_Map
• Operating system(s): Linux
• Programming language: Python 2.7
• Other requirements: OpenCV module 2.4.8, Numpy >1.5,
CMake > 2.6, GCC > 4.4.x, Scipy 0.13

• License: BSD 3-Clause License

Availability of supporting data and materials

The image data sets from four types of cameras, pot weight
records per day and ground truth measurements with corre-
sponding documentation for 32 maize inbreds and same types
of image data for two maize inbreds under two stress treat-
ments were deposited in the CyVerse data commons under a
CC0 license with [38]. All image data were stored in the fol-
lowing data structure: Genotype – > Plant – > Camera type
– > Day. For the hyperspectral camera each photo is stored as
243 sub images, each image representing intensity values for a
given wavelength, so these require one additional level of nest-
ing in the data structure Day – > wavelength. The grayscale
images from the IR camera and the hyperspectral imaging sys-
tem are stored as three-channel images with all three channels
in a given pixel set to identical values. The �uorescence images
contain almost all information in the red channel with the blue
and green channel having intensities equal to or very close to
zero, but data all three channels exist. Genotype data of 32 in-
breds were generated as part of a separate project and SNP calls
for individual inbred lines were made available either through
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[39] or the ZeaGBSv2.7 GBS SNP dataset stored in Panzea. Mea-
surements for thirteen core phenotypes at each �eld trial as
well as local weather data can be retrieved from publicly re-
leased Genomes 2 Fields datasets released on CyVerse [39, 40].
Data from the 2014 G2F �eld trials is posted [39] and data from
the 2015 G2F �eld trials is posted [40]. Genetically identical
seeds from the majority of the accessions used in creating both
this dataset and the Genomes 2 Fields �eld trial data can be
ordered from public domain sources (e.g. USDA GRIN) and are
listed in Table 1. Further supportingmetadata and snapshots of
the Maize Phenotype Map code are available in the GigaScience
database, GigaDB [41].

Declarations

List of abbreviations

DAP: Days after planting
GBS: Genotyping by Sequencing
LED: Light-emitting diode
MARS: Multivariate Adaptive Regression Splines
NDVI: Normalized di�erence vegetation index
NIR: Near-infrared
RGB: An image with separate intensity values for the red, blue
and green channels
SNP: Single Nucleotide Polymorphism
SVM: Support Vector Machines
UNL: University of Nebraska-Lincoln
PA0: Plant Area calculated from a 0 degree image. Plants were
initially orientated then leaves would be arranged parallel to
the camera at 0 degrees.
PA90: Plant Area calculated from a 90 degree image. Plants
were initially orientated then leaves would be arranged perpen-
dicular to the camera at 90 degrees.
PCA: Principal Component Analysis
PH0: Plant Height calculated from a 0 degree image
PH90: Plant Height calculated from a 90 degree image
PW0: Plant Width calculated from a 0 degree image
PW90: Plant Width calculated from a 90 degree image
PF0: Average of plant �uorescence intensity in 0 degree
PF90: Average of plant �uorescence intensity in 90 degree.
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Supplementary Information

Figure S1. Correlation of fresh weight biomass with total number of plant pix-
els identi�ed in two side view images for maize plants destructively sampled at
eight di�erent time points between 13 days and 39 days after planting (DAP).
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Abstract 14 

 15 
Background: Maize (Zea mays ssp. mays) is one of three crops, along with rice and wheat, 16 
responsible for more than 1/2 of all calories consumed around the world. Increasing the yield and 17 
stress tolerance of these crops is essential to meet the growing need for food. The cost and speed 18 
of plant phenotyping is currently the largest constraint on plant breeding efforts. Datasets linking 19 
new types of high throughput phenotyping data collected from plants to the performance of the 20 
same genotypes under agronomic conditions across a wide range of environments are essential 21 
for developing new statistical approaches and computer vision based tools. 22 
 23 
Findings: A set of maize inbreds – primarily recently off patent lines -- were phenotyped using a 24 
high throughput platform at University of Nebraska-Lincoln. These lines have been previously 25 
subjected to high density genotyping, and scored for a core set of 13 phenotypes in field trials 26 
across 13 North American states in two years by the Genomes 2 Fields consortium. A total of 27 
485 GB of image data including RGB, hyperspectral, fluorescence and thermal infrared photos 28 
has been released. 29 
 30 
Conclusions: Correlations between image-based measurements and manual measurements 31 
demonstrated the feasibility of quantifying variation in plant architecture using image data. 32 
However, naive approaches to measuring traits such as biomass can introduce nonrandom 33 
measurement errors confounded with genotype variation. Analysis of hyperspectral image data 34 
demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-35 
throughput phenotyping data with field data from different environments can reveal previously 36 
unknown factors influencing yield plasticity. 37 
 38 

Data Description 39 

Background 40 

 41 

The green revolution created a significant increase in the yields of several major crops in the 42 
1960s and 1970s, dramatically reducing the prevalence of hunger and famine around the world, 43 

MS Word version of manuscript Click here to download Manuscript
gigascience_conventional_hyperspectral_zl.docx
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even as population growth continued. One of the major components of the green revolution was 44 
new varieties of major grain crops produced through conventional phenotypic selection with 45 
higher yield potentially. Since the green revolution, the need for food has continued to increase, 46 
and a great deal of effort in the public and private sectors is devoted to developing crop varieties 47 
with higher yield potential. However, as the low hanging fruit for increased yield vanish, each 48 
new increase in yield requires more time and resources. Recent studies have demonstrated that 49 
yield increases may have slowed or stopped for some major grain crops in large regions of the 50 
world [1]. New approaches to plant breeding must be developed if crop production continues to 51 
grow to meet the needs of an increasing population around the world.  52 
 53 
The major bottleneck in modern plant breeding is phenotyping. Phenotyping can be used in two 54 
ways. Firstly, by phenotyping a large set of lines, a plant breeder can identify those lines with the 55 
highest yield potential and/or greatest stress tolerance in a given environment. Secondly, 56 
sufficiently detailed phenotyping measurements from enough different plants can be combined 57 
with genotypic data to identify regions of the genome of a particular plant species which carry 58 
beneficial or deleterious alleles. The breeder can then develop new crop varieties which 59 
incorporate as many beneficial alleles and exclude as many deleterious alleles as possible. 60 
Phenotyping tends to be expensive and low throughput, yet as breeders seek to identify larger 61 
numbers of alleles each with individually smaller effects, the amount of phenotyping required to 62 
achieve a given increase in yield potential is growing. High throughput computer vision based 63 
approaches to plant phenotyping have the potential to ameliorate this bottleneck. These tools can 64 
be used to precisely quantify even subtle traits in plants and will tend to decrease in unit cost 65 
with scale, while conventional phenotyping, which remains a human labor intensive processes, 66 
does not. 67 
 68 
Several recent pilot studies have applied a range of image-processing techniques to extract 69 
phenotypic measurements from crop plants. RGB (R: Red channel; G: Green channel; B: Blue 70 
channel) camera technology, widely used in the consumer sector, has also been the most widely 71 
used tool in these initial efforts at computer vision based plant phenotyping [2,3,4,5]. Other types of 72 
cameras including fluoresence [6,7] and NIR (near-infrared) [6,8,9] have also been employed in high 73 
throughput plant phenotyping efforts, primarily in studies of the response of plant to different 74 
abiotic stresses.  75 
 76 
However, the utility of current studies is limited in two ways. Firstly, current analysis tools can 77 
extract only a small number of different phenotypic measurements from images of crop plants. 78 
Approximately 150 tools for analyzing plant image data are listed in a field specific database, 79 
however the majority of these are either developed specifically for Arabidopsis thaliana which is 80 
a model plant, or are designed specifically to analyze images of roots [10]. Secondly, a great deal 81 
of image data is generated in controlled environments, however, there are comparatively few 82 
attempts to link phenotypic measurements in the greenhouse to performance in the field. 83 
However, one recent report in maize suggested that more than 50% of the total variation in yield 84 
under field conditions could be predicted using traits measured under controlled environments 85 
[10]. 86 
 87 
Advances in computational tools for extracting phenotypic measurements of plants from image 88 
data and statistical models for predicting yield under different field conditions from such 89 
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measurements requires suitable training datasets. Here, we generate and validate such a dataset 90 
consisting of high throughput phenotyping data from 32 distinct maize (Zea mays) accessions 91 
drawn primarily from recently off-patent lines developed by major plant breeding companies. 92 
These accessions were selected specifically because paired data from the same lines exists for a 93 
wide range of plant phenotypes collected in 54 distinct field trials at locations spanning 13 North 94 
American states or provinces over two years [11]. This extremely broad set of field sites captures 95 
much of the environmental variation among areas in which maize are cultivated with total 96 
rainfall during the growing season ranging from 133.604 mm to 960.628 mm (excluding sites 97 
with supplemental irrigation) and peak temperatures during the growing season ranging from 98 
23.5 ºC to 34.9 ºC. In addition, the same lines have been genotyped for approximately 200,000 99 
SNP markers using GBS [11]. Towards these existing data, we added RGB, thermal infra-red, 100 
fluorescent and hyperspectral images collected once per day per plant, as well as detailed water-101 
use information (single day, single plant resolution). At the end of the experiment, 12 different 102 
types of ground-truth phenotypes were measured for individual plants including destructive 103 
measurements. A second experiment focused on interactions between genotype and 104 
environmental stress, collecting the same types of data described above from two maize 105 
genotypes under well watered and water stressed conditions [12]. We are releasing this curated 106 
dataset of high throughput plant phenotyping images from accessions where data on both 107 
genotypic variation and agronomic performance under field conditions is already available. All 108 
data was generated using a Lemnatec designed high throughput greenhouse-based phenotyping 109 
system constructed at the University of Nebraska-Lincoln. This system is distinguished from 110 
existing public sector phenotyping systems in North America by both the ability to grow plants 111 
to a height of 2.5 meters and the incorporation of a hyperspectral camera [9]. Given the unique 112 
properties described above, this comprehensive data set should lower the barriers to the 113 
development of new computer vision approaches or statistical methodologies by independent 114 
researchers who do not have the funding or infrastructure to generate the wide range of different 115 
types of data needed.  116 

 117 

Methods 118 

 119 

Greenhouse Management 120 

 121 

All imaged plants were grown in the greenhouse facility of the University of Nebraska-Lincoln’s 122 
Greenhouse Innovation Center (Latitude: 40.83, Longitude: -96.69) between October 2nd, 2015 123 
to November 10th, 2015. Kernels were sown in 1.5 gallon pots with Fafard germination mix 124 
supplemented with 1 cup (236 mL) of Osmocote plus 15-9-12 and one tablespoon (15 mL) of 125 
Micromax Micronutrients per 2.8 cubic feet (80 L) of soil. The target photoperiod was 14:10 126 
with supplementary light provided by LED growth lamps from 07:00 to 21:00 each day. The 127 
target temperature of the growth facility was between 24-26 ºC. Pots were weighed once per day 128 
and watered back to a target weight of 5,400 grams from 10-09-2015 to 11-07-2015 and a target 129 
weight of 5,500 grams from 11-08-2015 to the termination of the experiment. 130 

 131 

Experimental Design 132 

 133 
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A total of 156 plants, representing the 32 genotypes listed in Table 1 were grown and imaged, as 134 
well as 4 pots with soil but no plant which serve as controls for the amount of water lost from 135 
soil as a result of non-transpiration mechanisms (e.g. evaporation). The 156 plants plus control 136 
pots were arranged in a ten row by sixteen column grid, with 0.235 meter spacing between plants 137 
in the same row and 1.5 meters spacing between rows (Table 2). Sequential pairs of two rows 138 
were consisted of a complete replicate with either 31 genotypes and one empty control pot, or 32 139 
genotypes. Within each pair of rows, genotypes were blocked in groups of eight (one half row), 140 
with order randomized within blocks between replicates in order to maximize statistical power to 141 
analyze within-greenhouse variation.  142 
 143 

Table 1. 32 genotypes in maize phenotype map 144 
 145 

Genotype ID Genotype Source Released Year 

ZL1 740 Novartis Seeds 1998 

ZL2 2369 Cargill 1989 

ZL3 A619 Public Sector 1992 

ZL4 A632 Public Sector 1992 

ZL5 A634 Public Sector 1992 

ZL6 B14 Public Sector 1968 

ZL7 B37 Public Sector 1971 

ZL8 B73 Public Sector 1972 

ZL9 C103 Public Sector 1991 

ZL10 CM105 Public Sector 1992 

ZL11 LH123HT Holden’s Foundation 1984 

ZL12 LH145 Holden’s Foundation 1983 

ZL13 LH162 Holden’s Foundation 1990 

ZL14 LH195 Holden’s Foundation 1989 

ZL15 LH198 Holden’s Foundation 1991 

ZL16 LH74 Holden’s Foundation 1983 

ZL17 LH82 Holden’s Foundation 1985 

ZL18 Mo17 Public Sector 1964 

ZL19* DKPB80 DEKALB Genetics ?  

ZL20 PH207 Pioneer Hi-Bred 1983 

ZL21 PHB47 Pioneer Hi-Bred 1983 

ZL22** PHG35 Pioneer Hi-Bred 1983 

ZL23 PHG39 Pioneer Hi-Bred 1983 

ZL24 PHG47 Pioneer Hi-Bred 1986 

ZL25 PHG83 Pioneer Hi-Bred 1985 

ZL26 PHJ40 Pioneer Hi-Bred 1986 

ZL27 PHN82 Pioneer Hi-Bred 1989 

ZL28 PHV63 Pioneer Hi-Bred 1988 

ZL29 PHW52 Pioneer Hi-Bred 1988 

ZL30 PHZ51 Pioneer Hi-Bred 1986 

ZL31 W117HT Public Sector 1982 

ZL32 Wf9 Public Sector 1991 
* Not currently available for order 146 
** Genotype represented by only a single plant in the dataset 147 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 148 
Table 2. Experimental layout (ID: ZL1-ZL32). At the time this experiment was conducted, the 149 
total size of the UNL greenhouse system was ten rows by twenty columns. Positions marked 150 
with UP indicate pots filled with plants from an unrelated experiment, while positions marked 151 
with NA indicate pots which had no plants. The first complete replicate is shown in color, and 152 
the four incomplete blocks within the first replicate are marked in different colors. * marks 153 
empty pots within the experimental design. 154 
 155 
9 7 3 10 23 25 26 19 13 5 29 21 2 4 18 20 UP UP UP UP 

11 16 1 32 17 27 6 22 24 31 14 30 15 28 8 12 UP UP UP UP 

29 31 15 13 1 17 25 9 21 30 3 5 * 19 14 6 UP UP UP UP 

12 23 32 16 7 28 2 18 10 11 8 26 27 4 20 24 UP UP UP UP 

25 9 21 27 28 12 5 11 15 6 * 7 4 23 31 20 UP UP UP UP 

19 32 29 24 16 13 3 8 17 14 18 30 10 26 1 2 UP UP UP UP 

8 1 17 23 21 5 7 24 27 18 3 11 31 15 19 2 NA NA NA NA 

25 30 4 9 16 32 14 20 * 10 6 29 28 12 26 13 NA NA NA NA 

15 10 5 32 31 21 16 26 2 18 9 25 6 8 24 * NA NA NA NA 

29 13 23 14 27 7 11 30 12 1 28 4 3 20 17 19 NA NA NA NA 

 156 

Plant Imaging 157 

 158 

The plants were imaged daily using four different cameras in separate imaging chambers. The 159 
four types of cameras were thermal infrared, fluorescence, conventional RGB, and hyperspectral 160 
[12]. Images were collected in the order that the camera types are listed in the previous sentence. 161 
On each day, plants were imaged sequentially by row, starting with row 1 column 1 and 162 
concluding with row 10, column 16 (Table 2).  163 

 164 
Plants were imaged from the side at two angles offset 90 degrees from each other as well as a top 165 
down view. On the first day of imaging or when plants reached the two leaf stage of 166 
development, the pot was rotated so that the major axis of leaf phylotaxy was parallel to the 167 
camera in the PA0 orientation and perpendicular to the camera in the PA90 orientation. This 168 
orientation is consistent for all cameras and was not adjusted again for the remainder of the 169 
experiment. The fluorescence camera captured images with a resolution of 10381390 pixels and 170 
measures emission intensity at wavelengths between 500-750 nm based on excitation with light 171 
at 400-500 nm. Plants were imaged using the same three perspectives employed for the thermal 172 
infrared camera. The RGB camera captured images with a resolution of 24542056 pixels. 173 
Initially the zoom of the RGB camera in side views was set such that each pixel corresponds to 174 
0.746 mm at the distance of the pot from the camera. Between 2015-11-05 and 2015-11-10, the 175 
zoom level of the RGB camera was reduced to keep the entire plant in the frame of the image. As 176 
a result of a system error, this same decreased zoom level was also applied to all RGB images 177 
taken on 2015-10-20. At this reduced zoom level, each pixel corresponds to 1.507 mm at the 178 
distance of the pot from the camera, an approximate 2x change. Plants were also imaged using 179 
the same three perspectives employed for the thermal infrared camera. The hyperspectral camera 180 
captured images with a resolution of 320 horizontal pixels. As a result of the scanning 181 
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technology employed, vertical resolution ranged from 494 to 499 pixels. Hyperspectral imaging 182 
was conducted using illumination from halogen bulbs (Manufacturer Sylvania, model # ES50 183 
HM UK 240V 35W 25ºGU10). A total of 243 separate intensity values were captured for each 184 
pixel spanning a range of light wavelengths between 546nm-1700nm. Data from each 185 
wavelength was stored as a separate grayscale image. 186 
 187 

Ground Truth Measurement 188 

 189 

Ground truth measurements were collected at the termination of data collection on November 190 
11-12, 2015. Manually collected phenotypes included plant height, total number of visible 191 
leaves, number of total fully extended leaves, stem diameter at the base of the plant, stem 192 
diameter at the collar of the top fully extended leaf, length and width of top fully extended leaf, 193 
and presence/absence visible anthocyanin production in the stem. After these measurements, 194 
total above-ground fresh weight biomass was measured for four out of five replicates, resulting 195 
in the destruction of the plants. Ground truth data for the drought stressed subset of this dataset 196 
was collected following the procedure previously described in [12]. 197 
 198 
RGB Image Processing 199 
 200 

Pixels covering portions of the plant were segmented out of RGB images using a green index 201 
((2G)/(R+B)). Pixels with an index value greater than 1.15 [12] were considered to be plant 202 
pixels. This method produced some false positive plant pixels within the reflective metal 203 
columns at the edge of the image. To reduce the impact of false positives, these areas were 204 
excluded from the analysis. Therefore, when plant leaves cross the reflective metal frame, some 205 
true plant pixels were excluded. If no plant pixels were identified in the image - often the case in 206 
the first several days when the plant had either not germinated or had not risen above the edge of 207 
the pot - the value was recorded as "NA" in the output file.  208 
 209 
Heritability Analysis 210 
 211 

A linear regression model was used to analyze the genotype effect (excluding genotype ZL22 212 
which lacked replication) and greenhouse position effect on plant traits. The responses were 213 
modeled independently for each day as  214 

𝑦ℎ,𝑖𝑗,𝑡 = µℎ,𝑡 + 𝛼ℎ,𝑖,𝑡 + 𝛾ℎ,𝑣(𝑖,𝑗),𝑡 + 𝜀ℎ,𝑖𝑗,𝑡  (1) 215 
where the subscript h=1,…,6 denotes the three responses extracted from the images: plant height, 216 
width and size for the two views 0 and 90 degree. The subscripts i, j and t denote the jth plant in 217 
the ith row and day t, respectively, and v(i,j) stands for the genotype at this pot. The parameters α 218 
and γ denote row effect and genotype effect, respectively. The error term is h,ij,t. Let SS,t, SS,t 219 
and SS,t be the sum of squares of the regression model (1) for the row effect, genotype effect 220 
and the error at time t, respectively. Let SSt = SS,t + SS,t + SS,t be the total sum of squares at 221 
time t. The heritability HRt (2) of a given trait within this population was defined as the ratio of 222 
the genotype sum of squares over the sum of genotype and error sum of squares. For the estimate 223 
of the heritability of measurement error, the row effect term was replaced by a replicate effect 224 
(each replicate consisted of two sequential rows) with exclusion of ZL22 as only one plant of this 225 
genotype was grown.  226 
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HRt = 
𝑆𝑆,𝑡

𝑆𝑆,𝑡+𝑆𝑆,𝑡
                                    (2) 227 

As the heritability index may change over the growth of the plant, an nonparametric smoothing 228 
method was provided for analyzing the time varying heritability of plants. The definition in (3) 229 
excludes the variation brought by the greenhouse row effect, which can be considered as the 230 
percentage of the variation in plant response that can be explained by the genotype effect after 231 
adjusting the environmental effect. To compare with this definition of heritability (2) the 232 
response in the model without considering the row effect was constructed as  233 

𝑦ℎ,𝑖𝑗,𝑡 = µℎ,𝑡 + 𝛾ℎ,𝑣(𝑖,𝑗),𝑡 + 𝜀ℎ,𝑖𝑗,𝑡        (3) 234 

where similarly as (1), v(i,j) is the genotype of the jth plant in the ith row. Let 𝑆�̃�,t and 𝑆�̃�t be the 235 
genotype sum of squares and total sum of squares under (4). The classical heritability is defined 236 
as 𝑆�̃�,t 237 

HRt = 
𝑆𝑆,�̃�

𝑆𝑆�̃�
                                             (4) 238 

 239 

Hyperspectral Image Processing 240 

 241 

Two methods and thresholds were used to extract plant regions of interest from hyperspectral 242 
images. First, the commonly used NDVI (normalized difference vegetation index) formula was 243 
applied to all pixels using the formula (R

750nm
-R

705nm
)/(R

750nm
+R

705nm
), and pixels with a value 244 

greater than 0.25 were classified as originating from the plant [13]. Second, based on the 245 
difference in reflectance between stem and leaves at wavelengths of 1056nm and 1151nm, the 246 
stem was segmented from other part of plants by selecting pixels where (R

1056nm
/R

1151nm
) 247 

produced a value greater than 1.2. Leaf pixels were defined as pixels identified as plant pixels 248 
based on NDVI but not classified as stem pixels. In addition to the biological variation between 249 
individual plants, overall intensity variation existed both between different plants imaged on the 250 
same day and the same plant on different days as a result of changes in the performance of the 251 
lighting used in the hyperspectral imaging chamber. To calibrate each individual image and 252 
make the results comparable, a python script (hosted on Github; see code availability section) 253 
was used to normalize the intensity values of each plant pixel using data from the non-plant 254 
pixels in the same image.  255 
 256 
In order to visualize variation across 243 separate wavelength measurements across multiple 257 
plant images, we used a PCA (Principal Component Analysis) based approach. After the 258 
normalization described above, PCA analysis of intensity values for individual pixels was 259 
conducted. PCA values of each individual plant pixel per analyzed plant were translated to 260 
intensity values using the formula [x-min(x)]/[max(x)-min(x)]. False color RGB images were 261 
constructed with the values for the first principal component stored in the red channel, the second 262 
principal component in the green channel and the third principal component stored in the blue 263 
channel. 264 
 265 

Fluorescence Image Processing 266 
 267 

A consistent area of interest was defined for each zoom level to exclude the pot and non-uniform 268 
areas of the imaging chamber backdrop. Within that area, pixels with an intensity value greater 269 
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than 70 in the red channel were considered to be plant pixels. The aggregate fluorescence 270 
intensity was defined as the sum of the red channel intensity values for all pixels classified as 271 
plant pixels within the region of interest, and the mean fluorescence intensity as the aggregate 272 
fluorescence intensity value divided by the number of plant pixels within the region of interest.  273 

 274 

Plant Biomass Prediction 275 

 276 

Two methods were used to predict plant biomass. The first was a single variable model based on 277 
the number of zoom level adjusted plant pixels identified in the two RGB side view images on a 278 
given day. The second was a multivariate model based upon the sum of plant pixels identified in 279 
the two RGB side views, sum of plant pixels identified in the two RGB side views plus the RGB 280 
top view, aggregate fluorescence intensity in the two side views, aggregate fluorescence intensity 281 
in the two side views plus the top view, number of plant stem pixels identified in the 282 
hyperspectral image and number of plant leaf pixels identified in the hyperspectral image. Traits 283 
were selected to overlap with those employed by [14] where possible. This multivariate dataset 284 
was used to predict plant biomass using linear modeling as well as MARS, Random Forest and 285 
SVM [14]. MARS analysis was performed using the R package earth [15] Random Forest with the 286 
R package randomForest [16] and SVM with the R package e1071 [17]. 287 

 288 

Data Validation and Quality Control  289 

 290 

Validation against ground truth measurements 291 
 292 

A total of approximately 500 GB of image data was initially generated by the system during the 293 
course of this experiment consisting of RGB images (51.1%), fluorescence images (4.3%), and 294 
hyperspectral images (44.6%). A subset of the RGB images within this dataset were previously 295 
analyzed in [18] , and were made available for download from http://plantvision.unl.edu/dataset 296 
under the terms of the Toronto Agreement. To validate the dataset and ensure plants had been 297 
properly tracked through both the automated imaging system and ground truth measurements, a 298 
simple script was written to segment images into plant and not-plant pixels (Figure 1). Source 299 
codes for all validation analysis are posted online 300 

(https://github.com/shanwai1234/Maize_Phenotype_Map). 301 

 302 

 303 
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 304 
Figure 1: Segmentation of images into plant and not plant pixels for one representative plant (Path to this image in 305 
the released dataset: Genotype_ZL019 -> Plant_008-19 -> Image_Type -> Day_32). The area enclosed by green 306 
border is composed of pixels scored as "plant", the area outside the green border s composed of pixels scored as 307 
"not-plant". Minimum bounding rectangle of plant pixels is shown in red. (A) Side view, angle 1; (B) Side view, 90 308 
degree rotation relative to A; (C) Top View. 309 
 310 

Based on the segmentation of the image into plant and non-plant pixels, plant height was scored 311 
as the y axis dimension of the minimum bounding box. Plant area was scored as the total number 312 
of plant pixels observed in both side view images after correcting for the area of each pixel at 313 
each zoom employed (See Methods). Similar approaches to estimate plant biomass have been 314 
widely employed across a range of grain crop species including [19] , wheat [20] , barley 315 
[20,21],maize [12] 

, sorghum [22] and seteria [9] . Calculated values were compared to manual 316 
measurements of plant height and plant fresh biomass which were quantified using destructive 317 
methods on the last day of the experiment. In both cases manual measurements and image 318 
derived estimates were highly correlated, although the correlation between manual and estimated 319 
height was greater than the correlation between manually measured and estimated biomass 320 
(Figure 22A,B). Using the PlantCV software package [23]

, equivalent correlations between 321 
estimated and ground truth biomass were obtained (r=0.91). Estimates of biomass using both 322 
software packages were more correlated with each other (r=0.96) than either was with ground 323 
truth measurements. This suggests that a significant fraction of the remaining error is the result 324 
of the expected imperfect correlation between plant size and plant mass, rather than inaccuracies 325 
in easimating plant size using individual software packages. Recent reports have suggested that 326 
estimates of biomass incorporating multiple traits extracted from image data can increase 327 
accuracy [14]. We tested the accuracy of biomass prediction of four multivariate estimation 328 
techniques on this dataset (see Methods). The correlation coefficient (r value) of the estimated 329 
biomass measures with ground truth data was 0.949, 0.958, 0.925 and 0.951 for multivariate 330 
linear model, MARS, Random Forest and SVM respectively.  331 

 332 
The residual value - difference between the destructively measured biomass value and the 333 
predicted biomass value based on image data and the linear regression line equation – was 334 
calculated for each individual plant (Figure 2C). Using data from the multiple replicates of each 335 
individual accession, the proportion of error which is controlled by genetic factors rather than 336 
random error can be ascertained. We determined that 58% of the total error in biomass estimate 337 
was controlled by genetic variation between different maize lines. As such, this error is 338 
systematic rather than random and thus more likely to produce misleading downstream results 339 
when used in quantitative genetic analysis. As mentioned above, biomass and plant size are 340 
imperfectly correlated, as different plants can exhibit different densities, for example as a result 341 
of different leaf to stem ratios. Recent reports have suggested that estimates of biomass 342 
incorporating multiple traits extracted from image data can increase accuracy [14]. We tested the 343 
accuracy of biomass prediction of four multivariate estimation techniques on this dataset (see 344 
Methods). The correlation of the estimated biomass measures with ground truth data was 0.949, 345 
0.958, 0.925 and 0.951 for multivariate linear model, MARS, Random Forest and SVM 346 
respectively. However, even when employing the most accurate of these four methods (MARS), 347 
63% of the error in biomass estimation could be explained by genetic factors. This source of 348 
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error, with the biomass of some lines systematically underestimated and the biomass of other 349 
lines systematically overestimated presents a significant challenge to downstream quantitative 350 
genetic analysis. Given the prevalence of plant pixel counts as a proxy for biomass [20,22,9,21,12,19]. 351 

 352 

 353 
Figure 2: Correlation between image-based and manual measurements of individual plants.(A) Plant height; (B) 354 
Plant fresh biomass; (C) Variation in the residual between estimated biomass and ground truth measurement of 355 
biomass across inbreds. 356 

 357 

Patterns of change over time 358 
 359 

One of the desirable aspects of image based plant phenotyping is that, unlike destructively 360 
measured phenotypes, the same plant can be imaged repeatedly. Instead of providing a snapshot 361 
in time this allows researchers to quantify rates of change in phenotypic values over time, 362 
providing an additional set of derived trait values. Given the issues with biomass quantification 363 
presented above, measurements of plant height were selected to validate patterns of change in 364 
phenotypic values over time. As expected, height increases over time, and the patterns of 365 
increase tended to cluster together by genotype (Figure 3A). Increases in height followed by 366 
declines, as observed for ZL26, were determined to be caused by a change in the angle of the 367 
main stalk. While the accuracy of height estimates was assessed by comparison to physical 368 
ground truth measurements only on the last day, the height of three randomly selected plants 369 
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(Plant 007-26, Plant 002-7 and Plant 041-29) were manually measured from image data and 370 
compared to software based height estimates, and no significant differences were observed 371 
between the manual and automated measurements (Figure 3B; Supplementary Table 1). To 372 
perform a similar test of the accuracy of biomass estimation at different stages in the maize life 373 
cycle, a set of existing ground truth measurements for two genotypes under two stress treatments 374 
[12] were combined with additional later grow stage data (Supplemental Table 2). The correlation 375 
between total plant pixels observed in the two side views and plant biomass was actually 376 
substantially higher in this dataset (r=0.97) than the primary dataset, likely as a result of the 377 
smaller amount of genetic variability among these plants (Supplementary Figure 1). 378 

 379 
Figure 3: (A) Plant growth curves of each of five replicates of eight selected genotypes; (B) Comparison of manual 380 
measurements of plant height from image data with automated measurements for three randomly selected plants on 381 
each day of the experiment. 382 

 383 

Heritability of phenotypes 384 
 385 

The proportion of total phenotypic variation for a trait controlled by genetic variation is referred 386 
to as the heritability of that trait and is a good indicator of how easy or difficult it will be to 387 
either identify the genes which control variation in a given trait, or to breed new crop varieties in 388 
which a given trait is significantly altered. Broad-sense heritability can be estimated without the 389 
need to first link specific genes to variation in specific traits [24] . Variation in a trait which is not 390 
controlled by genotype can result from environmental effects, interactions between genotype and 391 
environment, random variance, and measurement error. Controlling for estimated row effects on 392 
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different phenotypic measurements significantly increased overall broad sense heritability 393 
(Figure 4A,B). This result suggests that even within controlled environments such as 394 
greenhouses, significant micro-environmental variation exists and that proper statistically based 395 
experimental design remains critical importance in even controlled environment phenotyping 396 
efforts.  397 

 398 

If the absolute size of measurement error was constant in this experiment, as the measured values 399 
for a given trait became larger, the total proportion of variation explained by the error term 400 
should decrease and, as a result, heritability should increase as observed (Figure 4A). This trend 401 
was indeed observed across six different phenotypic measurements (three traits calculated from 402 
each of two viewing angles (Figure 4B). Plant height also exhibited significantly greater 403 
heritability than plant area or plant width and greater heritability when calculated solely from the 404 
90 degree side angle photo than when calculated solely from to 0 degree angle photo. 405 
 406 
In previous studies, fluorescence intensity has been treated as an indicator for plant abiotic stress 407 
status [25,26,7,27] or chlorophyll content level [28,29]. Using the fluorescence images collected as part 408 
of this experiment, the mean fluorescence intensity value for each plant image was calculated 409 
(see Methods). We found that this trait exhibited moderate heritability, with the proportion of 410 
variation controlled by genetic factors increasing over time and reaching approximately 60% by 411 
the last day of the experiment (Figure 4B). 412 

 413 

 414 
Figure 4: (A) The time course broad sense heritability of PH90. The heritability in the G model was calculated using 415 
a linear model that only considers the effect of genotype with residual values in the error term while heritability in 416 
the G+E model was calculated using a linear model that considers the effect of both genotype and environment (row 417 
effect) with residual values in the error term.; (B) The time course broad sense heritability of PA90 before and after 418 
controlling for the row effect; (B) Variation in broad-sense heritability (H2) after controlling row effects for 6 trait 419 
measurements every second day across the phenotyping cycle. PA0: Plant Area in 0 degree (The major axis of leaf 420 
phylotaxy was parallel to the camera at 0 degree); PA90: Plant Area in 90 degree (The major axis of leaf phylotaxy 421 
was perpendicular to the camera at 90 degree); PH0: Plant Height in 0 degree; PH90: Plant Height in 90 degree; 422 
PW0: Plant Width in 0 degree; PW90: Plant Width in 90 degree; PF0: Average of plant fluorescence intensity in 0 423 
degree; PF90: Average of plant fluorescence intensity in 90 degree. 424 

 425 

Hyperspectral image validation 426 
 427 

Hyperspectral imaging of crop plants has been employed previously in field settings using 428 
airborne cameras [30,31,32]. As a result of the architecture of grain crops such as maize, aerial 429 
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imagery will largely capture leaf tissue during vegetative growth, and either tassels (maize) or 430 
seed heads (sorghum, millet, rice, oats, etc) during reproductive growth. The dataset described 431 
here includes hyperspectral imagery taken from the side of individual plants, enabling 432 
quantification of the reflectance properties of plant stems in addition to leaf tissue. 433 

Many uses of hyperspectral data reduce the data from a whole plant or whole plot of 434 
genetically identical plants to a single aggregate measurement. While these approaches can 435 
increase the precision of intensity measurements for individual wavelengths, these approaches 436 
also sacrifice spatial resolution and can in some cases produce apparent changes in reflectivity 437 
between plants that result from variation in the ratios of the sizes of different organs with 438 
different reflective properties. To assess the extent of variation in the reflectance properties of 439 
individual plants, a principal component analysis of variation in intensity values for individual 440 
pixels was conducted. After non-plant pixels were removed from the hyperspectral data cube 441 
(Figure 5A) (See Methods), false color images were generated encoding the intensity values of 442 
the first three principal components of variation as the intensity of the red, green, and blue 443 
channels respectively (Figure 5B, C and D). The second principal component (green channel) 444 
marked boundary pixels where intensity values likely represent a mixture of reflectance data 445 
from the plant and from the background. The first principal component (red channel) appeared to 446 
indicate distinctions between pixels within the stem of the plant and pixels within the leaves. 447 

 448 

 449 
Figure 5: Segmentation and visualization of variation in hyperspectral signatures of representative maize plant 450 
images. (A) RGB photo of Plant 013-2 (ZL02) collected on DAP 37; (B) False color image constructed of the same 451 
corn plant from a hyperspectral photo taken on the same day. For each plant pixel the values for each of the first 452 
three principal components of variation across 243 specific wavelength intensity values are encoded as one of the 453 
three color channels in the false image; (C) Equivalent visualization for Plant 048-9 (ZL09); (D) Equivalent 454 
visualization for Plant 008-19 (ZL19). 455 
 456 
Based on this observation, an index was defined which accurately separated plant pixels into leaf 457 
and stem (see Methods). Stem pixels were segmented from the rest of the plant using an index 458 
value derived from the difference in intensity values observed in the 1056nm and 1151nm 459 
hyperspectral bands. This methodology was previously described [12]. The reflectance pattern of 460 
individual plant stems is quite dissimilar from the data observed from leaves and exhibits 461 
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significantly different reflective properties in some areas of the near infrared (Figure 6). 462 
Characteristics of the stem are important breeding targets for both agronomic traits (lodging 463 
resistance, yield for biomass crops) and value added traits (biofuel conversion potential for 464 
bioenergy crops, yield for sugarcane and sweet sorghum). Hyperspectral imaging of the stem has 465 
the potential to provide nondestructive measurements of these traits. The calculated pattern of 466 
leaf reflectance for the data presented here are comparable with those observed in field-based 467 
hyperspectral studies [33,34,35], providing both external validation and suggesting that the data 468 
presented here may be of use in developing new indices for use under field conditions.  469 

 470 

 471 
Figure 6: Reflectance values for three plants - Plant 090-6 (ZL06), Plant 002-7 (ZL07), and Plant 145-16 (ZL16) on 472 
three days across development. (A) Reflectance values for non-stem plant pixels (i.e. leaves) (B) Reflectance values 473 
for pixels within the plant stem. 474 
 475 
In conclusion, while the results presented above highlight some of the simplest traits which can 476 
be extracted from plant image data, these represent a small fraction of the total set of phenotypes 477 
for which image analysis algorithms currently exist, and those in turn represent a small fraction 478 
of the total set of phenotypes which can potentially be scored from image data. Software 479 
packages already exist to measure a range of plant architectural traits such as leaf length, angle, 480 
and curvature from RGB images [6,36]. Tools are also being developed to extract phenotypic 481 
information on abiotic stress response patterns from fluorescence imaging [6,7]. The analysis of 482 
plant traits from hyperspectral image data, while common place in the remote sensing realm 483 
where an entire field may represent a single data point, is just beginning for single plant imaging. 484 
Recent work as highlighted the potential of hyperspectral imaging to quantify changes in plant 485 
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composition and nutrient content throughout development [6,7]. While these techniques have great 486 
potential to accelerate efforts to link genotype to phenotype through ameliorating the current 487 
bottleneck of plant phenotypic data collection, it will be important to balance the development of 488 
new image analysis tools with the awareness of the potential for systematic error resulting from 489 
genetic variation between different lines of the same crop species. 490 

 491 

Availability of source code and requirements 492 

 493 

• Project name: Maize Phenotype Map  494 

• Project home page:  https://github.com/shanwai1234/Maize\_Phenotype\_Map  495 

• Operating system(s): Linux  496 

• Programming language: Python 2.7  497 

• Other requirements: OpenCV module 2.4.8, Numpy >1.5, CMake > 2.6, GCC > 4.4.x, 498 
Scipy 0.13  499 

• License: BSD 3-Clause License  500 

 501 

Availability of supporting data and materials 502 

 503 
The image data sets from four types of cameras, pot weight records per day and ground truth 504 
measurements with corresponding documentation for 32 maize inbreds and same types of image 505 
data for two maize inbreds under two stress treatments were deposited in the CyVerse data 506 
commons under a CC0 license with [38]. All image data were stored in the following data 507 
structure: Genotype -> Plant -> Camera type -> Day. For the hyperspectral camera each photo is 508 
stored as 243 sub images, each image representing intensity values for a given wavelength, so 509 
these require one additional level of nesting in the data structure Day -> wavelength. The 510 
grayscale images from the IR camera and the hyperspectral imaging system are stored as three-511 
channel images with all three channels in a given pixel set to identical values. The fluorescence 512 
images contain almost all information in the red channel with the blue and green channel having 513 
intensities equal to or very close to zero, but data all three channels exist. Genotype data of 32 514 
inbreds were generated as part of a separate project and SNP calls for individual inbred lines 515 
were made available either through [39] or the ZeaGBSv2.7 GBS SNP dataset stored in Panzea. 516 
Measurements for thirteen core phenotypes at each field trial as well as local weather data can be 517 
retrieved from publicly released Genomes 2 Fields datasets released on CyVerse [39,40]. Data from 518 
the 2014 G2F field trials is posted [39] and data from the 2015 G2F field trials is posted [40]. 519 
Genetically identical seeds from the majority of the accessions used in creating both this dataset 520 
and the Genomes 2 Fields field trial data can be ordered from public domain sources (e.g. USDA 521 
GRIN) and are listed in Table 1. Further supporting metadata and snapshots of the Maize 522 
Phenotype Map code are available in the GigaScience database, GigaDB [41]. 523 
 524 
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DAP: Days after planting 528 
GBS: Genotyping by Sequencing 529 
LED: Light-emitting diode 530 
MARS: Multivariate Adaptive Regression Splines 531 
NDVI: Normalized difference vegetation index 532 
NIR: Near-infrared 533 
RGB: An image with separate intensity values for the red, blue and green channels 534 
SNP: Single Nucleotide Polymorphism 535 
SVM: Support Vector Machines 536 
UNL: University of Nebraska-Lincoln 537 
PA0: Plant Area calculated from a 0 degree image. Plants were initially orientated then leaves 538 
would be arranged parallel to the camera at 0 degrees. 539 
PA90: Plant Area calculated from a 90 degree image. Plants were initially orientated then leaves 540 
would be arranged perpendicular to the camera at 90 degrees. 541 
PCA: Principal Component Analysis 542 
PH0: Plant Height calculated from a 0 degree image 543 
PH90: Plant Height calculated from a 90 degree image 544 
PW0: Plant Width calculated from a 0 degree image 545 
PW90: Plant Width calculated from a 90 degree image 546 
PF0: Average of plant fluorescence intensity in 0 degree 547 
PF90: Average of plant fluorescence intensity in 90 degree. 548 
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 686 

Figure S1. Correlation of fresh weight biomass with total number of plant pixels identified in two side view images 687 
for maize plants destructively sampled at eight different time points between 13 days and 39 days after planting 688 
(DAP). 689 
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