Supplementary Material, Methods and Figures

MS Western, a Method of Multiplexed Absolute Protein Quantification is a Practical Alternative to Western Blotting

Mukesh Kumar¹, Shai R. Joseph¹, Martina Augsburg², Aliona Bogdanova¹, David Drechsel¹, Nadine L. Vastenhouw¹, Frank Buchholz^{1,2,3,4}, Marc Gentzel^{1,5}, Andrej Shevchenko^{1#}

 ¹Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
 ²Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
 ³German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany
 ⁴National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
 ⁵Present address: Center for Molecular and Cellular Bioengineering, TU Dresden, Germany

Corresponding author

Supplementary Material and Methods

Protein analysis by GeLC-MS/MS

Proteins were *in-gel* digested with trypsin (Shevchenko et al, 2006) and peptides extracted from a gel matrix were dried down in a vacuum centrifuge, re-dissolved in 5% aqueous FA and 5 μ L were injected using an autosampler into a Dionex Ultimate 3000 nano-HPLC system equipped with 300 μ m i.d. × 5 mm trap column and 75 μ m × 15 cm Acclaim PepMap100 C18 analytical column. 0.1% aqueous FA and acetonitrile were used as solvents A and B, respectively. Samples were loaded onto the trap column for 5 min with the solvent A at the flow rate of 20 μ L/min. Then the trap column was switched on-line to the separation column and flow rate was set to 200nL/min. Peptides were separated using 180 min gradient elution program: a linear gradient from 0% to 30% B was delivered in 145 min and increased to 100% B in 10 min and maintained for another 5 min, dropped to 0%B in 10 min and maintained for another 10 min for column equilibration.

Expression of chimeric proteins

Synthetic genes produced by GeneArt (Thermo Fisher Scientific) or GenScript (Piscataway NJ) were sub-cloned into pET expression vector and transformed into an *E.coli* strain that was dual auxotroph for arginine and lysine ($^{\Delta}$ Arg $^{\Delta}$ LysBL21 (DE3) T1 pRARE). Fresh transformants were inoculated into a synthetic media MDAG-135 (Studier F.W, 2005) supplemented with antibiotics (100 µg/ml ampicillin and 15 µg/ml chloramphenicol) and incubated overnight at 37°C on a shaking platform. This overnight starting culture was further diluted 1000-fold by PA-5052 and MDAG-135 media supplemented with the same antibiotics and incubated at 37°C until OD₆₀₀ =0.5. Cells in MDAG-135 media were induced by 0.2mM isopropyl β-d-1-thiogalactopyranoside (IPTG), while this was not required in PA-5052 auto-inducing media. After 4 to 6 hr post induction cells were pelleted, re-suspended in

2x phosphate-buffered saline (PBS), aliquoted, snap frozen in liquid nitrogen and stored at -80°C until analysed. Prior analyses frozen aliquots were thawed and cell lysed in an equal volume of 2x Laemmli buffer by incubating at 80°C for 15 minutes. Samples were clarified by centrifugation and the supernatant subjected to 1D SDS PAGE on a 4-20% pre-cast gradient gel. Proteins were visualized by Coomassie staining and full length expression of corresponding synthetic genes was validated by *in-gel* digestion and LC-MS/MS of recovered peptides.

Quantification of target proteins in HeLa cells extracts

HeLa cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 1% penicillin-streptomycin (Gibco[™] Life Technologies). 1x10⁷ HeLa cells were re-suspended in 100 µL RIPA buffer containing Complete Protease Inhibitor Cocktail, EDTA-free (Roche). Equal volume of 2x Laemmli buffer was added and incubated at 80°C for 15 minutes with intermittent vortexing. Next, the sample was incubated with benzonase at 37°C for 30 minutes. The sample was centrifuged and supernatant was transferred to a new vial and further diluted with RIPA / 2x Laemmli buffer (1:1, v/v). The sample obtained at each dilution step was subjected to 1D SDS PAGE on two different gels. One gel was analyzed by WB utilizing the LI-COR Odyssey system and another by MS Western using bands of isotopically labelled CP03 and BSA as the internal standard and reference protein, respectively. To equalize the protein amount analyzed by both methods 50 µL of the extract were loaded on a gel processed by MS Western protocol and an aliquot corresponding to 20% of recovered tryptic peptides was analysed by LC-MS/MS. For the analysis on an Odyssey system 10 µL of extracts were loaded onto 4-12% Bis-Tris gel (NuPAGE, Life Technologies) and proteins blotted onto a nitrocellulose membrane (Amersham Protran 0.45µm, GE Healthcare). Primary antibodies (Supplementary Table S6) were applied and incubated overnight at 4°C. After washing the secondary antibodies

(Supplementary Table S6) were applied in the dark at room temperature for 30 min and the membrane was washed three times. Membranes were scanned with Odyssey Infrared Imager (LI-COR) at the channel 700 for ladder and GAPDH and channel 800 for GOI at highest possible intensity without saturation. Signals were measured using the Image Studio Software (version 2.1) by applying rectangles with background correction 'median left/right 3'. The GOI was normalized to GAPDH.

Knockdown experiments in HeLa cells

For knock-down (KD) experiments $2x10^5$ HeLa cells were seeded in 6 well plates containing 2ml of supplemented DMEM and after 24h the medium was exchanged to 2ml antibiotic-free DMEM. For each transfection, 300 ng of esiRNA (Eupheria Biotech, Dresden, Germany) against the genes of interest (AKT1, CAT, PLK1, and TUBA4A) were dissolved in 200 µl OptiMEM (GibcoTM, Life Technologies), combined with 7 µl Oligofectamine reagent (Invitrogen) in 70 µl OptiMEM, incubated for 20 min and then pipetted into the individual wells. All KDs were performed in triplicate; renilla luciferase transfections as RNAi specificity controls were performed on a separate plate. Cells transfected with AKT1-, CAT-, and RLuc-esiRNA were harvested 72h post-transfection (except PLK1 and TUBA4A that were harvested after 24h and 48h, respectively, to avoid cell death) by washing with PBS and detaching cells with 0.05% Trypsin-EDTA (Gibco[™] Life Technologies) for 5 min at 37°C. Cells were re-suspended in 1 ml culture media followed by manual counting using disposable chambers FastRead 102 (Biosigma S.r.l., Cona, Italy. Cell suspension contained in each well was transferred into a 1.5 ml Eppendorf tube and pelleted by spinning at 0.1 rcf at room temperature. The supernatant was aspirated and discarded and cells were washed twice with 1ml PBS. Cell pellets were re-suspended in 100 µl RIPA-buffer containing protease inhibitors, aliquoted and stored at -20°C until analysis. Aliquots of the thawed pellet were analysed by MS Western and Odyssey WB as described above. Further details on the

employed antibodies and esiRNA probes are provided in Supplementary Tables S6 and S7, respectively.

Supplementary Figures

Twin strep tag-3C cleavage site- GP (1-8)-Ubiquitin (9-12)-ADH (13-18)-Enolase (19-25)-BSA (26-31)-His-tag

MGSAWSHPQFEKGGGSGGGSGGSGGSGSAWSHPQFEKLEVLFQGPAAAKVFADYEEYV<u>K</u>1DFYELEPH <u>K2</u>VAAAFPGDVD<u>R3</u>GLAGVENVTEL<u>K4</u>IGEEYISDLDQL<u>R5</u>VIFLENY<u>R6LLSYVDDEAFIR7</u>VLVDLE <u>R8</u>TLSDYNIQ<u>K9</u>ESTLHLVL<u>R10</u>TITLEVEPSDTIENV<u>K11</u>EGIPPDQQ<u>R12</u>IGDYAGI<u>K13</u>VLGIDGGEG<u>K</u> 14EALDFFA<u>R15</u>VVGLSTLPEIYE<u>K16</u>ANELLINV<u>K17</u>GVIFYESHG<u>K18</u>GNPTVEVELTTE<u>K19</u>TFAEAL<u>R</u> 20AADALLL<u>K21</u>TAGIQIVADDLTVTNP<u>K22</u>NVNDVIAPAFV<u>K23</u>VNQIGTLSESI<u>K24</u>AVDDFLISLDGT AN<u>K25</u>HLVDEPQNLI<u>K26</u>YLYEIA<u>R27</u>QTALVELL<u>K28</u>LGEYGFQNALIV<u>R29</u>DAFLGSFLYEYS<u>R30</u>LVN ELTEFA<u>K47</u>GSGHHHHHH

Fig. S1: Sequence design of the chimeric protein CP01. The proteotypic peptides were selected from five commercially available proteins: Glycogen phosphorylase (GP), Ubiquitin, Alcohol dehydrogenase (ADH), Enolase and BSA. The peptides originating from the respective proteins are colour coded as exemplified in the header. Numbers in parenthesis represent the peptides numbers in the assembled chimera sequence which belongs to the corresponding proteins, e.g. peptide 1 to 8 belong to GP; peptides 9 to 12 belong to Ubiquitin *etc.* The sequence string assembled from sequences of proteotypic peptides (here peptide 1 to peptide 31) is flanked with twin-strep-tag and his-tag at the N- and C-terminus, respectively. The cleavage site for the 3C protease is placed after the twin-strep-tag.

(B)

Nominal mass (M,): 42298; Calculated pl value: 4.78

Fixed modifications: Carbamidomethyl(C), Label: 13C (6) (K), Label: 13C (6)15N (4) (R) Variable modifications: Acetyl (Protein N-term), Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **99%**

Matched peptides shown in Bold Red

1 MGSAWSHPQFEKGGGSGGGSGGSGGSAWSHPQFEKLEVLFQGPAAAKVFADYE 51 EYVKDFYELEPHKVAAAFPGDVDRGLAGVENVTELKIGEEYISDLDQLRV 101 IFLENYRLLSYVDDEAFIRVLVDLERTLSDYNIQKESTLHLVLRTITLEV 151 EPSDTIENVKEGIPPDQQRIGDYAGIKVLGIDGGEGKEALDFFARVVGLS 201 TLPEIYEKANELLINVKGVIFYESHGKGNPTVEVELTTEKTFAEALRAAD 251 ALLLKTAGIQIVADDLTVTNPKNVNDVIAPAFVKVNQIGTLSESIKAVDD 301 FLISLDGTANKHLVDEPQNLIKYLYEIARQTALVELLKLGEYGFQNALIV 351 RDAFLGSFLYEYSRLVNELTEFAKGSGHHHHHH

Fig. S2: Expression and validation of the sequence of chimeric protein CP01. (**A**) 1D SDS-PAGE analysis (4-20% gradient gel) showing the overexpressed CP01 (**B**) in-gel digestion of CP01 with trypsin followed by LC-MS/MS analysis of recovered tryptic peptides confirms its accurate full length expression. MS/MS spectra were mapped to the CP01 sequence by the Mascot search (mass accuracy 5 ppm for precursor and 0.3Da for fragment ions; two missed cleavage site allowed) and indicated its 100% coverage. Twin strep tag-3C cleavage site-GP (1-4)-H4 (5-9)-H2B (10-14)-H2A (15-16, 26)-H3 (17-19)-BSA (20-25)-His tag MGSAWSHPQFEKGGGSGGGSGGSGGSAWSHPQFEKLEVLFQGPAAAKVFADYEEYVK₁DFYELEPH K₂VAAAFPGDVDR₃GLAGVENVTELK₄VFLENVIR₅DAVTYTEHAK₆ISGLIYEETR₇TVTAMDVVY ALK₈DNIQGITKPAIR₉ESYAIYVYK₁₀AMGIMNSFVNDIFER₁₁LLLPGELAK₁₂QVHPDTGISSK₁₃EIQ TAVR₁₄AGLQFPVGR₁₅HIQLAVR₁₆STELLIR₁₇EIAQDFK₁₈YRPGTVALR₁₉HLVDEPQNLIK₂₀YLYEI AR₂₁QTALVELLK₂₂LGEYGFQNALIVR₂₃DAFLGSFLYEYSR₂₄LVNELTEFAK₂₅GSGHHHHHHREP NAGTEAQSQDF₂₆

Fig. S3: Sequence design of the chimeric protein CP02. The proteotypic peptides were selected from four histones (H2A, H2B, H3 and H4) from zebrafish (*D.rerio*). The reference peptides were selected from glycogen phosphorylase (GP) and BSA and were placed at the N- and C-terminus respectively. The peptides originating from the respective proteins are colour coded as exemplified in the header. Numbers in parenthesis represent the peptides numbers in the assembled chimera sequence which belongs to the corresponding proteins, e.g. peptide 1 to 4 belong to GP; peptides 5 to 9 belong to Histone H4 *etc.* The sequence string assembled from sequences of proteotypic peptides (here peptide 1 to 25) is flanked with twin-strep-tag and his-tag at the N- and C-terminus, respectively. The cleavage site for the 3C protease was placed after the twin-strep-tag.

Fig. S4: Expression and validation of the sequence of chimeric protein CP02. (**A**) 1D SDS-PAGE analysis (4-20% gel) showing the overexpressed CP02 (**B**) in-gel digestion of CP02 with trypsin followed by LC-MS/MS analysis of recovered tryptic peptides confirms its accurate full length expression. MS/MS spectra were mapped to the CP02 sequence by the Mascot search (mass accuracy 5 ppm for precursor and 0.3Da for fragment ions; two missed cleavage site allowed) and indicated its 100% coverage.

Twin strep tag-3C cleavage site-GP (1-4)-PLK1 (5-10)-AKT1 (11-16)-PTEN (17-22)-Catalase (23-29)-

GAPDH (30-35)-Tubulin (36-41)-BSA (42-47)-His tag

$$\begin{split} MGSAWSHPQFEKGGGSGGGSGGSGGSAWSHPQFEKLEVLFQGPAAAKVFADYEEYV\underline{K}_1 DFYELEPH \\ \underline{K}_2 VAAAFPGDVD\underline{R}_3 GLAGVENVTEL\underline{K}_4 LILYNDGDSLQYIE\underline{R}_3 AGVPGVAAPGAPAAAPPA\underline{K}_6 LGN \\ LFLNEDLEV\underline{K}_7 QEEAEDPACIPIFWVS\underline{K}_8 HINPVAASLIQ\underline{K}_9 FSIAPSSLDPSN\underline{R}_{10} LFELILMEEI\underline{R}_{11} DE \\ VAHTLTEN\underline{R}_{12} NDGTFIGY\underline{K}_{13} CLQWTTVIE\underline{R}_{14} TFCGTPEYLAPEVLEDNDYG\underline{R}_{15} HPFLTAL\underline{K}_{16} IYS \\ SNSGPT\underline{R}_{17} YVYYYSYLL\underline{K}_{18} FMYFEFPQPLPVCGDI\underline{K}_{19} NNIDDVV\underline{R}_{20} AQEALDFYGEV\underline{R}_{21} IYNLCA \\ E\underline{R}_{22} LSQEDPDYGI\underline{R}_{23} NAIHTFVQSGSHLAA\underline{R}_{24} DLFNAIATG\underline{K}_{25} FNTANDDNVTQV\underline{R}_{26} NLSVEDAA \\ \underline{R}_{27} AFYVNVLNEEQ\underline{R}_{28} DPILFPSFIHSQ\underline{K}_{29} VPTANVSVVDLTC\underline{R}_{30} GALQNIIPASTGAA\underline{K}_{31} VIHDNF \\ GIVEGLMTTVHAITATQ\underline{K}_{32} LVINGNPITIFQE\underline{R}_{33} VGVNGFG\underline{R}_{34} LISWYDNEFGYSN\underline{R}_{35} VGINYQPP \\ TVVPGGDLA\underline{K}_{36} TIGGGDDSFNTFFSETGAG\underline{K}_{37} AVFVDLEPTVIDEV\underline{R}_{38} NLDIERPTYTNLN\underline{R}_{39} IHF \\ PLATYAPVISAE\underline{K}_{40} QLFHPEQLITG\underline{K}_{41} HLVDEPQNLI\underline{K}_{42} YLYEIA\underline{R}_{43} QTALVELL\underline{K}_{44} LGEYGFQN \\ ALIV\underline{R}_{45} DAFLGSFLYEYS\underline{R}_{46} LVNELTEFA\underline{K}_{47} GSGHHHHHH \end{split}$$

Fig. S5: Sequence design of the chimeric protein CP03. The proteotypic peptides were selected from six proteins (PLK1, AKT1, PTEN, Catalase, GAPDH and α-Tubulin) from HeLa cells. The reference peptides were selected from glycogen phosphorylase (GP) and BSA and were placed at the N- and C-terminus respectively. The peptides originating from the respective proteins are colour coded as exemplified in the header. Numbers in parenthesis represent the peptides numbers in the assembled chimera sequence which belongs to the corresponding proteins, e.g. peptide 1 to 4 belong to GP; peptides 5 to 10 belongs to PLK1 *etc.* The sequence string assembled from sequences of proteotypic peptides (here peptide 1 to 47) is flanked with twin-strep-tag and his-tag at the N- and C-terminus, respectively. The cleavage site for the 3C protease was placed after the twin-strep-tag.

(B)

Nominal mass (M_r): **72398**; Calculated pI value: **5.01** Fixed modifications: Carbamidomethyl(C), Label: 13 C (6) (K), Label: 13 C (6)15 N (4) (R) Variable modifications: Acetyl (Protein N-term), Oxidation (M) Cleavage by Trypsin: cuts C-term side of KR unless next residue is P Sequence Coverage: **98%**

Matched peptides shown in **Bold Red**

1 MGSAWSHPQFEKGGGSGGGSGGSGGSGGSAWSHPQFEKLEVLFQGPAAAKVFADYE 51 EYVKDFYELEPHKVAAAFPGDVDRGLAGVENVTELKLILYNDGDSLQYIE 101 RAGVPGVAAPGAPAAAPPAKLGNLFLNEDLEVKQEEAEDPACIPIFWVSK 151 HINPVAASLIQKFSIAPSSLDPSNRLFELILMEEIRDEVAHTLTENRNDG 201 TFIGYKCLQWTTVIERTFCGTPEYLAPEVLEDNDYGRHPFLTALKIYSSN 251 SGPTRYVYYSYLLKFMYFEFPQPLPVCGDIKNNIDDVVRAQEALDFYGE 301 VRIYNLCAERLSQEDPDYGIRNAIHTFVQSGSHLAARDLFNAIATGKFNT 351 ANDDNVTQVRNLSVEDAARAFYVNVLNEEQRDPILFPSFIHSQKVPTANV 401 SVVDLTCRGALQNIIPASTGAAKVIHDNFGIVEGLMTTVHAITATQKLVI 451 NGNPITIFQERVGVNGFGRLISWYDNEFGYSNRVGINYQPPTVVPGGDLA 501 KTIGGGDDSFNTFFSETGAGKAVFVDLEPTVIDEVRNLDIERPTYTNLNR 551 IHFPLATYAPVISAEKQLFHPEQLITGKHLVDEPQNLIKYLYEIARQTAL 601 VELLKLGEYGFQNALIVRDAFLGSFLYEYSRLVNELTEFAKGSGHHHHHH

Fig. S6: Expression and validation of the sequence of chimeric protein CP03. (**A**) 1D SDS-PAGE analysis (4-20% gel) showing the overexpressed CP03 (**B**) in-gel digestion of CP03 with trypsin followed by LC-MS/MS analysis of recovered tryptic peptides confirms its accurate full length expression. MS/MS spectra were mapped to the CP03 sequence by the Mascot search (mass accuracy 5 ppm for precursor and 0.3Da for fragment ions; two missed cleavage site allowed) and indicated its 100% coverage. Twin strep tag-3C cleavage site-GP (1-4)-187 target peptides (5-191) from 43 different eye proteins from *Drosophila melanogaster*-BSA (192-197)-His tag

 $\mathbf{M} \mathbf{GSAWSHPQFEKGGGSGGGSGGSGWSHPQFEKLEVLFQGPAAAK\mathbf{VFADYEEYV}\underline{\mathbf{K}}, \mathbf{DFYELEPH}\underline{\mathbf{K}}, \mathbf{VAAAFPGDVD}\underline{\mathbf{R}}, \mathbf{GLAG}$ VENVTELK,GSTLSAQQGSQFK_NEPVSYILELINGR_NIGDSYVAAK_LDNGYNHLIEVVR_LVLGIPTYGR_FSPLVASNER_1_LT EAEGSSLYIGGR₁₁STDAEEDPQVIK₁,FADQDNDLVNLR₁₁LSNFVDTTVAWLNYR₁₄FFVSVTR₁₅VQLTDLNR₁₆DVFIPDVFNNY Kı,ıLAIFPFPGPSQYINVVPYLK₁₈VPIWPYTLYFR₁₀GTFFVSHK₂₀GHEISVFSLTHK₂₀APLGLHFHASWLK₂,IINNPEATQR₂₃AV YWVEHVSR,"SHYHVGSALAK,"AEQNGYGVTVHYEELSSAK,"GSAYAHAENTLR,"SEGDLTQITPPSALGVQVR,"AEVEAVQI $IAESLK_{29}AANQLTDRPTIINVAISPSSDR_{20}GHGAGGADVLTYK_{21}DLNQGNSYVQDK_{22}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SEYTGLGAITEFR_{24}SLVFVDNHDNQR_{22}SLVFVDNHDNDNR_{22}SLVFVDNHDNDNR_{22}SLVFVDNHDNDNNHDNNTNASSLVFVDNHDNDNNHDNNASSLVFVDNHDNNHDNNTNASSLVFVDNHDNDNNHDNNTNNHD$ VVEFLDHLIDLGVAGFR, IGALDTSR, LIELLVR, LADLLLQEER, VNGEPVDVGAFFIR, ITPDVVGAIVQEATTYFR, ATQLS EQLGSELTPK₄₁LLAADYADGVSQPR₄₂ILSWNAVNLYGLK₄₃ASEQPGLTAIHTAFLR₄₄LLPAQYEDGISAPR₄₅GIATNDVGIAK₄₆ DTFSFLTGSGR₄₇AINEGGFQSLPQK₄₈FGLNEGSEPQAYGIGLK₄₉ITTHYTLNPR₅₀AILVYLVEK₅₁ITPGWEENWAGALDVK₅,IN PQHSIPTLVDNGFTIWESR₅₃ALGLEFNK₅₄INLDPYALYVIVEK₅₅TNFDDSALFYASGESLK₅₆VLTTGGDAGSNR₅₇LGSDVQPPG R₅₈VFLQLLENQR₅₉NLSQTFGNIWR₆₀VFDLPDFLTWR₆₁GSTVQFAAR₆₂DGAISHVVFK₆₃YFNAYLSDR₆₄FSEPYDSTLSDVIK₆₅N VANLEATK, DADAIVQQTLAK, GTQAEIVVADVTK, VGDVTEVAEAVAFLASSK, SVLLTLR, IDALEGVYK, ALNLDFDYK, ,AITFPLFWENK,1LTLYGIDGSPPVR1,ELPYYEEANGSR15AVGVELNK16APADPEAFK17AIQVYLVEK18LINLQAGEHLKPEFL K₇₀INPQHTIPTLVDNGFALWESR₈₀GLVVSGTR₈₁SLSDVSLTGR₈₂GNSYLILPPPR₈₃ISGPSNHVTVVR₈₁NAAFSGDSYVSHR₈₄SV $\mathbf{VNVGL} \mathbf{GQALR}_{\mathbf{x}_{2}} \mathbf{STQEEVDHIR}_{\mathbf{x}_{2}} \mathbf{SAVHDVEVFLK}_{\mathbf{x}_{7}} \mathbf{VSTAIDAISVSGR}_{\mathbf{x}_{3}} \mathbf{VALQIQDVATSSR}_{\mathbf{x}_{2}} \mathbf{LEEISLR}_{\mathbf{0}} \mathbf{LLELHDNR}_{\mathbf{0}_{1}} \mathbf{LFNNFD}$ $VLR_{g}, LAVLDLSHNR_{g}, ASLSGIQSHAFK_{g}, TFFDGNPIHTLR_{g}, DFGVELEDLQITR_{g}, STISSTTTVR_{g}, TSTTSSLTGNPR_{g}, TSVATVA$ GGAVVGATK₉₉LLVPGSSSTTTTSSLR₁₀₀LLPDTTDEQLLTSALEEK₁₀₁STGNIFAAK₁₀₂VFAVNSAGR₁₀₃IFADNVYGR₁₀₄GVAED FAPSFVK105HDGGSPITGYIIEK106HYPNPAVR105VVGSEADTGR105DAPTTESYLR106STVPFATSESNR116LVGGNDLDTPLIITR11 IAELEGLGSR₁₁₂IQYLEDSTR₁₁₃IGEAISQSSIR₁₁₄FITQIVDVTK₁₁₅AEDAGVYLVVAR₁₁₆TYYDFGFVALDIIK₁₁₇VWQVSVSAHA LLWDLNDGK₁₁₈DVLSVAFSADNR₁₁₉LWDLAAGK₁₂₉LNNDLIAR_{1,1}FQEALAGLSK₁₂₇LAAHDALGGAAK₁₂₃SAGSGVSTTAIEK₁, ₄IVQVQIDDVGK₁₂₅SELDVFSDWLQVAR₁₂₅FSQSDFGLDQGETLLR₁₂₇ESLLEITIYHQK₁₂₅GAAYQEAPVDAEVAVTPK₁₂₅ISAFG LFTYSVFSIIAGSLK₁₃₀VFANPVQLEFYGFVPWSIIQR₁₃₁QVGASSGSSGAVSK₁₃₂IVQIQQVGPAHLNVK₁₃₃VQDNSVLVEGNHE ER134 VLPAIEAFQK135 FSEATLDEIIR136 FHGVALAFNALDSK137 ENAILTDIWNITPFK138 VIVDILLK130 TILVDLQVGK140 LAELH AASVVAK141EAGLEIELAPK142AGFAGDDAPR143SYELPDGQVITIGNER144VAPEEHPVLLTEAPLNPK145GYSFTTTAER144EITS LAPSTIK_147 EITALAPSTIK_148 QEYDESGPGIVHR 149 QEYDESGPSIVHR 150 SIELLEK 151 LQASGDFPTTK 152 EQNSPIYISR 153 ATVAA FAASEGHAHPR₁₅₄YQVIVK₁₅₅SSDAQSQATASEAESK₁₅₆ALSASSLIALSSR₁₅₇DPVLTAFQLSWELK₁₅₈DDYGITEDDIIEVR₁₅₉AT AWVIVHR160 VELELWLK162 VVLPDLAVLR163 ALGIEEQSGGAAR164 VDEYGFFLYWK165 YYLSDLAR166 IEQADYLPTEQDILR167 VPTTGILEYPFDLDGIVFR168 TIITYPWFQNSSVILFLNK169 AGIAVEGDIK179 DAFGIIVSYAVK171 DTALASTTLIASQDAR172 DFL LSPGELELEVTLDK₁₇₃VFGQLATTYR₁₇₄LQYAPLNR₁₇₅ISLEVTLDR₁₇₆LLQPAPGTIEK₁₇₇FYPEDVAEELIQDITLR₁₇₈IGFPWSE IR₁₇₉TTHTAGFLANDR₁₈₀LFYLQVK₁₈₁AAIELNR₁₈₂GDNILLTK₁₈₃VPPEVPPSK₁₈₄LVDFIINR₁₈₅SLVGVQK₁₈₆QIDVETVADR₁₈₇YI QATDLSEASR₁₈₈NAEYDQFLEDIQK₁₈₉ATAWVIVHR₁₉₉ALSASSLIALSSR₁₉₁HLVDEPQNLIK₁₉₂YLYEIAR₁₉₃QTALVELLK₁₉₄LG EYGFQNALIV<u>R</u>195DAFLGSFLYEYS<u>R</u>196LVNELTEFA<u>K</u>197GSGHHHHHH

Fig. S7: Sequence design of the chimeric protein CP04. The proteotypic peptides were selected from 43 proteins (For list of proteins see supplementary Table S4) from the eye of *Drosophila melanogaster*. The reference peptides were selected from glycogen phosphorylase (GP) and BSA and were placed at the N- and C-terminus respectively. The sequence string assembled from sequences of proteotypic peptides (here peptide 1 to 197) is flanked with twin-strep-tag and his-tag at the N- and C-terminus, respectively. The cleavage site for the 3C protease was placed after the twin-strep-tag.

(B)

Nominal mass (M_): 264624; Calculated pI value: 5.00

Fixed modifications: Carbamidomethyl(C), Label: 13C (6) (K), Label: 13C (6)15 N (4) (R) Variable modifications: Acetyl (Protein N-term), Oxidation (M)

Cleavage by Trypsin: cuts C-term side of KR unless next residue is P

Sequence Coverage: 98%

Matched peptides shown in **Bold Red**

Fig. S8: Expression and validation of the sequence of chimeric protein CP04. (**A**) 1D SDS-PAGE analysis (4-20% gel) showing the overexpressed CP04 (**B**) in-gel digestion of CP03 with trypsin followed by LC-MS/MS analysis of recovered tryptic peptides confirms its accurate full length expression. MS/MS spectra were mapped to the CP04 sequence by the Mascot search (mass accuracy 5 ppm for precursor and 0.3Da for fragment ions; two missed cleavage site allowed) and indicated its 100% coverage.

Fig. S9: Efficient incorporation of heavy isotope labelled Arginine (${}^{13}C_{6} {}^{15}N_{4}$ -Arg) and Lysine (${}^{13}C_{6}$ -Lys) amino acids into a chimeric protein. **A**, shows the base peak chromatogram of full LC-MS/MS run of in-gel digested heavy isotope labelled chimeric protein CP01. **B**, shows the extracted ion chromatogram (XIC) of one of the arginine containing peptide pair: heavy*(labelled) and light (unlabelled). As evident by the XICs, even the trace of unlabelled peptide was not detected (B, lower panel) confirming the labeling efficiency (LE) of ca 100%. Similarly, the LE of lysine was calculated and exemplified here with one of the lysine containing peptide in panel **C**, the LE of lysine was found to be 99.5%. The mass spectrum of heavy isotope labelled arginine and lysine containing peptide is shown in panel **D** and **E** respectively.

Fig. S10: Relative abundance of proteotypic peptides from endogenous and chimeric protein CP01. Isotopically labelled and unlabelled peptides were produced by in-gel co-digestion of CP01 and corresponding native proteins, respectively. The relative abundance of peptide pairs resulting from native full length and single CP01 differed by less than 10%. The abundance of a complementary peptide resulting from an incomplete cleavage of native BSA is highlighted in red.

Fig. S11: Relative abundance of proteotypic peptides from endogenous and chimeric protein (CP03). The relative abundance of peptide pairs resulting from native full length and single CP03 differed by less than 10%. The abundance of "complementary" peptide resulting from incomplete cleavage of two of the catalase peptide is coloured. The peptide marked with (*) is known to have phosphorylation (Mertins et al., 2013)

Histone H4 Zebrafish (Uniprot accession # A4VAK6)

MSGRGKGSKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVF LENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG

Histone H4 Human, Recombinant (NEB Catalog # M2504S)

SGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFL ENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG

Fig. S12: Amino acid sequence of Histone H4 from Zebrafish and Human recombinant as

supplied by NEB. Both these sequences share 99% identity.

Fig. S13: Relative abundance of proteotypic peptides from full length BSA and chimeric protein CP03. The yield of unlabelled (light) and isotopically labelled (heavy) peptide pairs from full length BSA and CP03, respectively, at different digestion time point are shown. After 90 minutes of digestion, the relative abundance of all the light and heavy peptide pairs, except QTALVELLK, differed by less than 5%. Low abundance of light QTALVELLK compared to its heavy counterpart is due to missed cleavage (KQTALVELLK) owing to the presence of dibasic residue at the peptide N-terminus (KKQTALVELLK).

Fig. S14: Relative abundance of proteotypic peptides from endogenous α-Tubulin (TUBA) and chimeric protein CP03. The yield of unlabelled (light) and isotopically labelled (heavy) peptide pairs from endogenous TUBA and CP03, respectively, at different digestion time point are shown. After 90 minutes of digestion, the relative abundance of all the light and heavy peptide pairs differed by less than 5%. Low abundance of light QLFHPEQLITGK compared to its heavy counterpart is due to slow release and after 12hrs of digestion the abundance of light QLFHPEQLITGK matched to its heavy counterparts.

Fig. S15: MS Western quantification of proteins spiked into the constant background of E.coli lysate . **A-E,** respectively shows the quantification of Enolase, ADH, BSA, GP and UBI based on different peptides.

Fig. S16: Quantification by MS Western and Odyssey is quantitatively concordant.

A-D, the Odyssey images of total protein extract of HeLa cell subjected to RNAi. Knockdown (KD) experiments were performed in triplicate and compared against non-targeting luciferase esiRNA (esiLUC) control. **E**, KD efficiency by esiRNA against CAT, AKT1 and PLK1 proteins determined by MS Western and Odyssey. **F**, KD efficiency by esiRNA against TUBA4A determined by MS Western and Odyssey. MS Western recognized that TUBA1A, along with TUB4A, was also KD with the similar efficiency. In panels E and F values are mean \pm SD (n=3), where "n" represents number of biological replicates.

Fig. S17: Quantification of protein from the gel where nothing is visible. **A**, shows the electrophoresed 1D SDS PAGE gel loaded with serially diluted total protein extract from HeLa cells. The gel slice corresponding to the apparent molecular weight of α -Tubulin (TUBA) were cut from different dilutions (marked with box) and codigested with BSA and CPO1 gel band. **B**, shows the absolute quantification of TUBA1A from four different dilutions. The y-axis shows the amount (fmol) of TUBA1A quantified and the x-axis shows the corresponding equivalent amount of HeLa cells.

5µl was injected on to the HPLC column and analysed by LC-MS/MS (only 10.8% of total protein amount loaded on the gel was injected into HPLC column). **C**, shows the calibration plot of serially diluted BSA. The y-axis shows the abundance of light BSA peptide (coming from serially diluted BSA) normalised to the corresponding heavy BSA peptide (coming from CP01). The x-axis shows the amount (fmol) of protein loaded on to the HPLC column. Inset to the pane C, shows the calibration plot of three lower dilutions at 0.8, 1.6 and 3.3fmol.

Fig. S19: Attomole quantification of axotactin protein from *Drosophila* eye. **A**, (**a**) shows the base peak chromatogram of full LC-MS/MS run of in-gel codigest of total protein extract of *Drosophila* eye, reference protein BSA and CP04. (**b-e**) shows the XICs of light (L) and heavy (H) peptide pairs of

two of the axotactin peptides of sequence INLDPYALYVIVEK and TNFDDSALFYASGESLK at m/z 825.4627 (L), 828.4717(H) and 932.9331(L), 935.9446(H) respectively. **B**, (**f**-**g**) shows the corresponding mass spectrum of INLDPYALYVIVEK and TNFDDSALFYASGESLK at m/z 825.4627 (L), 828.4717(H) and 932.9331(L), 935.9446(H) respectively. **C**, shows the relative abundance of heavy and light peptides yielding from CP04 and endogenous axotactin protein respectively. **D**, shows the attomole quantification of axotactin protein from the eye of *Drosophila* raised under two different conditions. Error bar indicates ±SD (n=2) **E**, (**a**) shows the base peak chromatogram of full LC-MS/MS run of in-gel codigest of total protein extract of *Drosophila* eye, known amount of BSA and heavy isotope labelled chimeric protein CP04. (**b-f**) shows the XICs of light and heavy pairs of five BSA peptides and the corresponding mass spectra are shown in panel (**g-k**)

Fig. S20: Attomole quantification of protein. **A**, **B**, shows the electrophoresed 1D SDS PAGE gel loaded with serially diluted BSA protein. The pmol amount of protein loaded in each gel lane is

indicated. **C**, shows the electrophoresed 1D SDS PAGE gel loaded with the heavy isotope labelled chimeric protein CP01 (same amount in all lanes). The BSA gel band corresponding to different dilutions (gel A&B) were cut (marked with colour box) and codigested with CP01 gel band (gel C) (marked with colour box). After in-gel digestion and extraction the peptides were recovered in 46µl of 5% aqueous formic acid and 5µl was injected on to the HPLC column and analysed by LC-MS/MS (only 10.8% of total protein amount loaded on the gel was injected into HPLC column). **D**, shows the calibration plot of serially diluted BSA. The y-axis shows the abundance of light BSA peptide (coming from serially diluted BSA) normalised to the corresponding heavy BSA peptide (coming from CP01). The x-axis shows the amount (amol) of protein loaded on to the HPLC column. Inset to the pane D, shows the calibration plot of three lower dilutions at 106, 212 and 849amol. **E**, exemplify the mass spectra of light and heavy BSA peptide of sequence LVNELTEFAK at m/z 582.3190 and 585.3290 respectively. The masses were extracted using Xcalibur software with 5ppm mass tolerance.

Fig. S21: Comparison of histone quantification by MS Western and by Western blot. The quantification of histone molecules from different developmental stages of zebrafish embryo was carried out by MS Western and Western blot (Li-COR Odyssey system). **A**, The number of histone H2A per embryo determined by MS Western and Western blot fits very well. **B and D**, the number of histone H2B and H4 per embryo determined by MS Western and Western and Western blot is generally matching. **C**, the number of histone H3 per embryo determined by MS Western and Western and Western blot did not match. The western blot reports higher number of molecules compared to MS Western. The values are mean \pm SD (n=3), where "n" represents number of biological replicates.

Supplementary Tables

Table S1: Target proteins and corresponding proteotypic peptides selected for chimeric protein CP01.

S.No	Protein UniProt	Protein Name (Gene	Peptide sequence	$[M+2H]^2$
	accession	Name)		m/z^+
	number	,		
1.	P00489	Glycogen	GLAGVENVTELK	
	(PYGM_RABIT)	phosphorylase, muscle		615.3408
		form (PYGM)	VLVDLER	422.2505
			VAAAFPGDVDR	559.2859
			IGEEYISDLDQLR	775.8889
			LLSYVDDEAFIR	720.8722
			VIFLENYR	527.2903
			VFADYEEYVK	631.8024
			DFYELEPHK	589.2796
2.	P02769	Bovine Serum Albumin		
	(ALBU_BOVIN)	(ALB)	LVNELTEFAK	582.319
			YLYEIAR	464.2505
			DAFLGSFLYEYSR	784.3771
			HLVDEPQNLIK	653.3619
			LGEYGFQNALIVR	740.4016
			QTALVELLK	507.8128
3.	P00924	Enolase 1 (ENO1)		
	(ENO1_YEAST)		GNPTVEVELTTEK	708.8649
			NVNDVIAPAFVK	643.8589
			AVDDFLISLDGTANK	789.9055
			TFAEALR	404.2218
			TAGIQIVADDLTVTNPK	878.478
			AADALLLK	407.7553
			VNQIGTLSESIK	644.8593
4.	P00330	Alcohol dehydrogenase		
	(ADH1_YEAST)	1 (ADH1)	GVIFYESHGK	568.7909
			ANELLINVK	507.3033
			IGDYAGIK	418.7294
			VLGIDGGEGK	472.7569
			EALDFFAR	484.7457
			VVGLSTLPEIYEK	724.406
5.	P63048	Ubiquitin (UBA52)		
	(RL40_BOVIN)		TITLEVEPSDTIENVK	894.4675
			TLSDYNIQK	541.2798
			ESTLHLVLR	534.3139
			EGIPPDOOR	520.2618

Table S2: Target proteins and corresponding proteotypic peptides selected for chimericprotein CP02. Histone peptides were selected from *Danio rerio (Zebrafish)*

S.No	Protein UniProt accession number	Protein Name (Gene Name)	Peptide sequence	[M+2H] ²⁺ <i>m</i> / <i>z</i>
1.	P00489	Glycogen		
	(PYGM_RABIT)	phosphorylase, muscle	GLAGVENVTELK	615.3405
		form (PYGM)	VAAAFPGDVDR	559.2855
			DFYELEPHK	589.2796
			VFADYEEYVK	631.8006
2	P02769	Bovine Serum Albumin		
	(ALBU_BOVIN)	(ALB)	LVNELTEFAK	582.3193
			YLYEIAR	464.2504
			DAFLGSFLYEYSR	784.3754
			HLVDEPQNLIK	653.3617
			LGEYGFQNALIVR	740.4018
			QTALVELLK	507.8128
3	A4VAK6	Histone H4	DNIQGITKPAIR	663.3809
		(hist1h4l)	ISGLIYEETR	590.8141
			VFLENVIR	495.2926
			DAVTYTEHAK	567.7749
			TVTAMDVVYALK	655.8549
4.	B3DJF8	Histone H2B	ESYAIYVYK	568.2872
		(si:dkey-108k21.22)	EIQTAVR	408.7324
			LLLPGELAK	477.3051
			AMGIMNSFVNDIFER	872.4133
			QVHPDTGISSK	584.8015
5.	Q7ZTT0	Histone H2A	AGLQFPVGR	472.7693
		(phc2b)	HIQLAVR	418.759
			EPNAGTEAQSQDF	697.2966
6.	Q6PI20	Histone H3.3	YRPGTVALR	516.8011
		(h3f3a)	STELLIR	416.2504
			EIAQDFK	425.7191

Table S3: Target proteins and corresponding proteotypic peptides selected for chimeric protein CP03.

S.No	Protein UniProt	Protein Name	Peptide sequence	[M+2H] ²⁺
	accession	(Gene Name)		m/z
	number			
1.	P00489	Glycogen		
	(PYGM_RABIT)	phosphorylase,	GLAGVENVTELK	615.3405
		muscle form	VAAAFPGDVDR	559.2855
		(PYGM)	DFYELEPHK	589.2796
			VFADYEEYVK	631.8006
2.	P02769	Bovine Serum		
	(ALBU_BOVIN)	Albumin (ALB)	LVNELTEFAK	582.3193
			YLYEIAR	464.2504
			DAFLGSFLYEYSR	784.3754
			HLVDEPQNLIK	653.3617
			LGEYGFQNALIVR	740.4018
			QTALVELLK	507.8128
3.	P04040	Catalase (CAT)	DPILFPSFIHSQK	764.912
			NLSVEDAAR	487.7483
			LSQEDPDYGIR	646.8105
			DLFNAIATGK	525.2853
			FNTANDDNVTQVR	747.3531
			AFYVNVLNEEQR	741.3729
			NAIHTFVQSGSHLAAR	859.9518
4.	P53350	Serine/threonine-	AGVPGVAAPGAPAAAPPAK	785.4403
		protein kinase	LGNLFLNEDLEVK	752.4067
		PLK1 (PLK1)	HINPVAASLIQK	645.8803
			FSIAPSSLDPSNR	695.8518
			QEEAEDPACIPIFWVSK	1009.9782
			LILYNDGDSLQYIER	906.4623
5.	Q71U36	Tubulin alpha-1A	TIGGGDDSFNTFFSETGAGK	1004.451
		chain (TUBA1A)	AVFVDLEPTVIDEVR	851.4547
			QLFHPEQLITGK	705.8925
			NLDIERPTYTNLNR	859.9448
			IHFPLATYAPVISAEK	878.9846
			VGINYQPPTVVPGGDLAK	912.9968
6.	P60484	Phosphatase and	NNIDDVVR	472.7435
		tensin homolog	IYNLCAER	519.7557
		(PTEN)	AQEALDFYGEVR	699.3384
			YVYYYSYLLK	687.8529
			IYSSNSGPTR	541.2681
			FMYFEFPQPLPVCGDIK	1052.5011
7.	P31749	RAC-alpha	NDGTFIGYK	507.7482
		serine/threonine-	CLQWTTVIER	653.3343
		protein kinase	DEVAHTLTENR	642.812
		(AKT1)	HPFLTALK	463.7757
			TFCGTPEYLAPEVLEDNDYGR	1223.5483
			LFELILMEEIR	703.3916
8.	P04406	Glyceraldehyde-3-	VGVNGFGR	403.2192
		phosphate	LVINGNPITIFQER	807.4531
		dehydrogenase	VIHDNFGIVEGLMTTVHAITATQK	1298.1836
		(GAPDH)	GALONIIPASTGAAK	706.3984

VPTANVSVVDLTCR	765.9009
LISWYDNEFGYSNR	882.4048

Table S4: Target proteins and corresponding proteotypic peptides selected for chimeric protein CP04.

S.No	Protein UniProt	Protein Name (Gene	Peptide sequence [M+2	
	accession	Name)		<i>m/z</i> .
	number			
1.	P00489	Glycogen		
	(PYGM_RABIT)	phosphorylase, muscle	GLAGVENVTELK	615.3405
		form (PYGM)	VAAAFPGDVDR	559.2855
			DFYELEPHK	589.2796
			VFADYEEYVK	631.8006
2.	P02769	Bovine Serum Albumin		
	(ALBU_BOVIN)	(ALB)	LVNELTEFAK	582.3193
			YLYEIAR	464.2504
			DAFLGSFLYEYSR	784.3754
			HLVDEPQNLIK	653.3617
			LGEYGFQNALIVR	740.4018
			QTALVELLK	507.8128
3	A0A0B4K7R8	Crumbs (crb)	GSTLSAQQGSQFK	669.836
			NEPVSYILELINGR	808.939
			NIGDSYVAAK	519.267
			LDNGYNHLIEVVR	514.607
4	A8JUP3	Cht6 (Cht6)	LVLGIPTYGR	544.827
			FSPLVASNER	560.295
			LTEAEGSSLYIGGR	726.87
			STDAEEDPQVIK	666.32
			FADQDNDLVNLR	710.347
5	Q9VGT0	UDP-		
		glycosyltransferase 35b		
		(Ugt35b)	LSNFVDTTVAWLNYR	899.962
			FFVSVTR	428.24
			VQLTDLNR	479.769
			DVFIPDVFNNYK	735.867
			ILAIFPFPGPSQYINVVPYLK	1188.67
6	E1JI40	Vermiform (verm)	VPIWPYTLYFR	727.895
			GTFFVSHK	461.743
			GHEISVFSLTHK	452.242
			APLGLHFHASWLK	492.942
7	Q9VGT3	GM04645p (Ugt86Da)	IINNPEATQR	578.309
			AVYWVEHVSR	623.323
			SHYHVGSALAK	390.541
			AEQNGYGVTVHYEELSSAK	694.664
8	Q7K3B7	LD40177p (CG11208)	GSAYAHAENTLR	645.316
			SEGDLTQITPPSALGVQVR	984.523
			AEVEAVQIIAESLK	771.426
			AANQLTDRPTIINVAISPSSDR	780.418
9	A0A0B4LGS0	Amylase proximal		
		(Amy-p)	GHGAGGADVLTYK	623.316
			DLNQGNSYVQDK	690.825

			SLVFVDNHDNQR	722.354
			SEYTGLGAITEFR	722.36
			VVEFLDHLIDLGVAGFR	950.52
10	O9VJ86	Bicoid stability factor		
		(bsf)	IGALDTSR	416.731
			LIELLVR	428.287
			LADLLLQEER	600.335
			VNGEPVDVGAFFIR	760.401
			ITPDVVGAIVQEATTYFR	990.527
			ATQLSEQLGSELTPK	801.423
11	Q9VJ80	LD42267p (CG10211)	LLAADYADGVSQPR	738.381
			ILSWNAVNLYGLK	745.922
			ASEQPGLTAIHTAFLR	571.309
			LLPAQYEDGISAPR	765.404
12	O7JWF1	Electron transfer	GIATNDVGIAK	529.796
		flavoprotein-ubiquinone	DTFSFLTGSGR	594.289
		oxidoreductase,	AINEGGFOSLPOK	694.862
		mitochondrial (Etf-QO)	FGLNEGSEPOAYGIGLK	890.45
			ITTHYTLNPR	608.331
13	O9VG97	Inactive glutathione S-	AILVYLVEK	524.326
_		transferase D3 (GstD3)	ITPGWEENWAGALDVK	893.443
			INPOHSIPTLVDNGFTIWESR	808.750
			ALGLEFNK	446.251
14	M9NF15	Axotactin (axo)	INLOPYALYVIVEK	825.462
			TNEDDSALEYASGESLK 932 933	
			VLTTGGDAGSNR	574 289
15	09VZI8	RH40737p (CG11594)	LGSDVOPPGR	513 272
10	27+200		VFLOLLENOR	630 359
			NLSOTEGNIWR	668 344
			VFDLPDFLTWR	704 866
16	09VF24	Crossveinless d (cv-d)		7011000
10	X =		GSTVOFAAR	468.748
		-	DGAISHVVFK	536.792
			YFNAYLSDR	574.773
			FSEPYDSTLSDVIK	800.889
17	09U1L2	CG3699		
	C	(EG:BACR7A4.14)	NVANLEATK	480.262
			DADAIVOOTLAK	636.844
			GTQAEIVVADVTK	665.864
			VGDVTEVAEAVAFLASSK	896.972
18	A1ZB68	FI01423p (GstE3)	SVLLTLR	401.264
			IDALEGVYK	504.274
			ALNLDFDYK	549.777
			AITFPLFWENK	683.364
			LTLYGIDGSPPVR	694.383
			ELPYYEEANGSR	714.325
19	P20432	Glutathione S-		
		transferase D1 (GstD1)	AVGVELNK	415.243
			APADPEAFK	473.237
			AIOVYLVEK	531.813
			LLNLOAGEHI KPEFI K	925.531
			INPOHTIPTI VDNGFAI WESR	803,417
20	A0A1F4	Protein eyes shut (eys)	GLVVSGTR	394.735

			SLSDVSLTGR	517.777
			GNSYLILPPPR	613.849
			ISGPSNHVTVVR	633.351
			NAAFSGDSYVSHR	705.824
21	A0A0B4LGM0	Prominin (prom)	SVVNVGLGQALR	606.857
			STQEEVDHIR	607.294
			SAVHDVEVFLK	415.229
			VSTAIDAISVSGR	638.349
			VALOIODVATSSR	694.381
22	A0A0B4KI35	Chaoptin (chp)	LEEISLR	430.248
			LLELHDNR	505.275
			LFNNFDVLR	569.306
			LAVLDLSHNR	569.323
			ASLSGIOSHAFK	623.333
			TFFDGNPIHTLR	709.366
			DFGVELEDLOITR	767.892
23	A0A0B4KI71	Microtubule-associated		
		protein 205 (Map205)	STISSTTTVR	526.783
			TSTTSSLTGNPR	611.307
			TSVATVAGGAVVGATK	694.891
			LLVPGSSSTTTTSSLR	803.935
			LLPDTTDEOLLTSALEEK	1008.53
24	L0MN91	Bent (bt)	STGNIFAAK	454.746
			VFAVNSAGR	460.751
			IFADNVYGR	527.769
			GVAEDFAPSFVK	633.823
			HDGGSPITGYIEK	743.881
25	E1JI76	Z band alternatively		
		protein 66 (Zasp66)	HYPNPAVR	477 251
			VVGSFADTGR	495 746
			DAPTTESYI R	576.78
			STVPFATSFSNR	648 315
			I VGGNDI DTPI IITR	798 953
26	MOPRIO	Titin (ele)	LAFLEGLGSR	522 788
20			IOVI EDSTR	562 783
			IGFAISOSSIR	580.816
			FITOIVDVTK	582 338
			AFDAGVYLVVAR	631 841
			TYYDEGEVALDIK	832 936
27	M9PCC1	Receptor of activated		032.750
2,		protein kinase C 1		506 562
		(Rack1)	VWQVSVSAH	506.763
			ALLWDLNDGK	572.804
			DVLSVAFSADNR	647.327
•			LWDLAAGK	437.246
28	A1Z9J3	Short stop (shot)	LNNDLIAR	464.764
			FQEALAGLSK	532.295
			LAAHDALGGAAK	365.537
			SAGSGVSTTAIEK	604.312
			IVQVQIDDVGK	607.344
			SELDVFSDWLQVAR	832.921
			FSQSDFGLDQGETLLR	906.943

29	E1JJE6	Uncharacterized protein		
		(CG42492)	ESLLEITIYHQK	737.402
			GAAYQEAPVDAEVAVTPK	908.461
			ISAFGLFTYSVFSIIAGSLK	1061.09
			VFANPVQLEFYGFVPWSIIQR	1255.67
30	M9NE68	Heat shock protein 23		
		(Hsp23)	QVGASSGSSGAVSK	611.308
			IVQIQQVGPAHLNVK	822.484
			VQDNSVLVEGNHEER	575.612
31	Q9W3C3	CG2004 (CG2004)	VLPAIEAFQK	558.327
			FSEATLDEIIR	647.339
			FHGVALAFNALDSK 745.3	
			ENAILTDIWNITPFK	887.975
32	Q9VBS7	Uncharacterized protein		
		(CG10550)	VIVDILLK	456.811
			TILVDLQVGK	543.332
			LAELHAASVVAK	604.854
			EAGLEIELAPK	585.325
33	P53501	Actin-57B (Act57B)	AGFAGDDAPR	488.728
			SYELPDGQVITIGNER	895.95
			VAPEEHPVLLTEAPLNPK	977.537
			GYSFTTTAER	566.767
			EITSLAPSTIK	580.332
34	A0A0B4LH50	Actin 87E (Act87E)	EITALAPSTIK	572.335
			QEYDESGPGIVHR	743.85
35	X2JCP8	Actin 5C (Act5C)	QEYDESGPSIVHR	758.856
36	Q8IMT8	Veli (veli)	SIELLEK	416.245
			LQASGDFPTTK	582.799
			EQNSPIYISR	603.81
			ATVAAFAASEGHAHPR	531.603
37	P06002	Opsin Rh1 (ninaE)	YQVIVK	375.232
			SSDAQSQATASEAESK	798.854
38	P19334	Transient receptor		
		potential protein (trp)	ALSASSLIALSSR	638.368
			DPVLTAFQLSWELK	823.945
			DDYGITEDDIIEVR	826.888
			ATAWVIVHR	526.803
39	X2JCI4	Phosphoinositide		
		phospholipase C		
		(norpA)	VELELWLK	515.303
			VVLPDLAVLR	547.851
			ALGIEEQSGGAAR	629.824
			VDEYGFFLYWK	733.854
40	P23625	G protein alpha q		
-		subunit (Galphaq)	YYLSDLAR	500.758
			IEQADYLPTEQDILR	902.459
			VPTTGILEYPFDLDGIVFR	1076.58
			TIITYPWFQNSSVILFLNK	1142.62
41	M9NES0	Arrestin 1 (Arr1)	AGIAVEGDIK	486.771
			DAFGIIVSYAVK	641.856
			DTALASTTLIASQDAR	817.424
			DFLLSPGELELEVTLDK	959.507
42	P19107	Phosrestin-1 (Arr2)	VFGQLATTYR	578.311

			LQYAPLNR	487.774
			ISLEVTLDR	523.298
			LLQPAPGTIEK	583.842
43	C7LAH9	Moesin/ezrin/radixin		
		homolog 1 (Moe)	FYPEDVAEELIQDITLR	1026.02
			IGFPWSEIR	552.796
			TTHTAGFLANDR	652.324
			LFYLQVK	455.774
44	P10676	Neither inactivation nor		
		afterpotential protein C		
		(ninaC)	AAIELNR	393.728
			GDNILLTK	437.256
			VPPEVPPSK	475.272
			LVDFIINR	495.293
45	P45594	Cofilin/actin-		
		depolymerizing factor		
		homolog (tsr)	SLVGVQK	365.727
			QIDVETVADR	573.295
			YIQATDLSEASR	677.336
			NAEYDQFLEDIQK	806.879

Data dependent acquisition setting for LTO Orbitran Velos mass spectrometer			
Parameter	Value		
Scan range	350-1700 m/z		
Microscans	1		
Nominal resolution (at 400 m/z)	60.000		
Lock mass	445 120025 m/z (Siloxane)		
Data mode	Centroid		
Target ion count	$1 \times 10 = 6 \text{ (FT) and } 5 \times 10 = 4 \text{ (IT)}$		
Max fill time	$1 \times 10 \times 10^{-1} \text{ and } 5 \times 10^{-4} \text{ (IT)}$		
Max. III tille			
Automatic gain control (AGC)			
Activation type (MS/MS)	CID		
Intensity threshold for DDA	5000		
Isolation width	2.0 m/z		
Normalized collision energy (NCE)	35%		
Activation Q	0.25		
Activation time	30 ms		
Dynamic exclusion list size	500		
Dynamic exclusion time	30s		
Exclusion mass width	5ppm		
Data dependent acquisition setting for Q Exactiv	e HF mass spectrometer		
Parameter	Value		
Full scan			
Scan range	350-1700 m/z		
Microscans	1		
Resolution	60,000		
Lock mass	445.120025 m/z (Siloxane)		
Data mode	Profile		
AGC target	3e6		
Maximum IT	50 ms		
dd-MS2	1		
Microscans	1		
Resolution			
Data mode			
AGC target	20 mg		
TopN (no mex)			
Isolation window	12 $1.6 m/z$		
Isolation offset	1.0 m/z		
Fixed first mass	140 m/z		
NCE (no stepped NCE)	25		
Apex trigger	Off		
Charge exclusion	Unassigned, 1 and >8		
Peptide match	Off		
Exclude isotopes	On		
Dynamic exclusion	30s		

Table S5: Data-dependent acquisition (DDA) settings used in this study

Primary antibodies				
Target	Company	Code	dilution in WB	
Serine/Threonine Kinase 1 (AKT1), mouse monoclonal	Sigma-Aldrich	P2482	1:5000	
Catalase (CAT), mouse monoclonal	Sigma-Aldrich	C0979	1:2000	
Polo like Kinase 1(PLK1), mouse monoclonal	Sigma-Aldrich	P5998	1:5000	
α-Tubulin (TUBA4A), mouse monoclonal	Sigma-Aldrich	T6199	1:5000	
Glyceraldehyde-3- Phosphate Dehydrogenase (GAPDH), goat polyclonal	Acris Antibodies	AP16240PU-N*	1:7000	

Table S6: Antibodies used for quantifying proteins in HeLa cells

*at present discontinued by the manufacturer

Secondary antibodies					
Name	Company	Code	dilution in WB		
IRDye® 680LT Donkey anti-Goat (H+L)	LI-COR	925-68024	1:15000		
IRDye® 800CW Donkey anti- Mouse (H+L)	LI-COR	926-32212	1:15000		

esiRNAs						
Target	Company	Code				
RLUC	Eupheria Biotech	EHURLUC				
AKT1	Eupheria Biotech	EHU083501				
CATALASE	Eupheria Biotech	EHU048671				
PLK1	Eupheria Biotech	EHU051011				
TUBA4A	Eupheria Biotech	EHU159831				

Table S7: Human esiRNAs used to knock-down target proteins in HeLa cells

Table S8: Antibodies used for quantifying zebrafish histones

Primary antibodies						
Target	Company	Code	WB			
H3	Abcam	ab1791	1:10,000			
H4	Abcam	ab10158	1:1,000			
H2A	Abcam	ab18255	1:1,000			
H2B	Abcam	ab1790	1:3,000			
α-tubulin	Sigma	T6074	1:20,000			

Secondary antibodies							
Name	Company	Code	WB				
IRDye® 800CW	LI-COR	P/N 925-32213	1:20,000				
donkey anti-rabbit							
IRDye® 800CW	LI-COR	P/N 925-32212	1:20,000				
donkey anti-							
mouse							

Table S9: Absolute quantification of four histone proteins from zebrafish embryo at ten different developmental stage (BR=Biological replicate and each biological replicate value represents average of two technical replicates). The value in BR1, BR2 and BR3 columns represents amount of histone protein (in fmol) per embryo. The average CV and rCV is <10%

Histone H4	Stage	BR1	BR2	BR3	Average	STDEV	%CV	Median	MAD	rSD	%rCV
	1Cell	457.7922	404.7025	391.4224	417.9723	28.6741	6.860287	404.7025	13.28008	19.68905	4.865068
	8Cell	329.6173	326.3716	471.9903	375.9931	67.89325	18.05705	329.6173	3.245678	4.812042	1.459888
	64Cell	416.8338	435.7922	538.8788	463.8349	53.62552	11.56134	435.7922	18.9584	28.10773	6.449801
	256Cell	580.0844	538.1631	602.0019	573.4164	26.48514	4.618833	580.0844	21.91748	32.49486	5.601747
	1K Cell	800.1541	692.1338	737.5328	743.2736	44.28553	5.958174	737.5328	45.39893	67.30845	9.126165
	HIGH	791.3026	814.9278	699.5248	768.5851	49.77634	6.476361	791.3026	23.62529	35.02685	4.42648
	OBLONG	973.007	829.0689	760.894	854.3233	88.41688	10.34935	829.0689	68.17483	101.076	12.19151
	SPHERE	1007.126	973.5415	819.5227	933.3967	81.68011	8.750846	973.5415	33.58461	49.79255	5.114579
	DOME	1505.467	1451.782	1478.131	1478.46	21.91767	1.482466	1478.131	26.34882	39.06477	2.642848
	SHIELD	2227.938	2311.965	2303.745	2281.216	37.82236	1.657991	2303.745	8.21964	12.18644	0.528984
Histone H2B	Stage	BR1	BR2	BR3	Average	STDEV	%CV	Median	MAD	rSD	%rCV
	1Cell	194.2716	145.65	143.8195	161.247	23.36384	14.48947	145.65	1.830496	2.713893	1.863298
	8Cell	183.294	201.006	263.9764	216.0921	34.62278	16.02223	201.006	17.71202	26.25984	13.0642
	64Cell	259.3253	260.5473	314.4543	278.109	25.70486	9.24273	260.5473	1.221982	1.81171	0.695348
	256Cell	394.2926	369.6656	402.8801	388.9461	14.07693	3.61925	394.2926	8.58745	12.73175	3.229011
	1K Cell	590.3178	547.9452	546.5898	561.6176	20.30162	3.614848	547.9452	1.355396	2.00951	0.366735
	HIGH	602.5109	635.9684	526.4676	588.3156	45.81657	7.787753	602.5109	33.45759	49.60423	8.232919
	OBLONG	738.5126	732.591	625.5263	698.8766	51.92286	7.429474	732.591	5.921552	8.779293	1.198389
	SPHERE	762.2935	781.0886	690.0224	744.4682	39.25619	5.273052	762.2935	18.79515	27.86569	3.655507
	DOME	1193.542	1171.266	1289.459	1218.089	51.279	4.209791	1193.542	22.27623	33.02674	2.76712
	SHIELD	1720.818	2105.001	2407.573	2077.797	281.0254	13.52516	2105.001	302.5716	448.5927	21.3108
Histone H2A	Stage	BR1	BR2	BR3	Average	STDEV	%CV	Median	MAD	rSD	%rCV
	1Cell	249.3922	197.9448	188.0373	211.7914	26.89365	12.69818	197.9448	9.907552	14.68894	7.420724
	1Cell 8Cell	249.3922 215.3167	197.9448 242.5229	188.0373 309.7799	211.7914 255.8732	26.89365 39.70305	12.69818 15.51669	197.9448 242.5229	9.907552 27.2062	14.68894 40.33591	7.420724 16.6318
	1Cell 8Cell 64Cell	249.3922 215.3167 301.5995	197.9448 242.5229 305.8671	188.0373 309.7799 367.6506	211.7914 255.8732 325.0391	26.89365 39.70305 30.18125	12.69818 15.51669 9.285421	197.9448 242.5229 305.8671	9.907552 27.2062 4.267666	14.68894 40.33591 6.327242	7.420724 16.6318 2.068624
	1Cell 8Cell 64Cell 256Cell	249.3922 215.3167 301.5995 432.3453	197.9448 242.5229 305.8671 430.5412	188.0373 309.7799 367.6506 453.6402	211.7914 255.8732 325.0391 438.8423	26.89365 39.70305 30.18125 10.48962	12.69818 15.51669 9.285421 2.390293	197.9448 242.5229 305.8671 432.3453	9.907552 27.2062 4.267666 1.804121	14.68894 40.33591 6.327242 2.67479	7.420724 16.6318 2.068624 0.61867
	1Cell 8Cell 64Cell 256Cell 1K Cell	249.3922 215.3167 301.5995 432.3453 633.8255	197.9448 242.5229 305.8671 430.5412 597.9493	188.0373 309.7799 367.6506 453.6402 579.814	211.7914 255.8732 325.0391 438.8423 603.8629	26.89365 39.70305 30.18125 10.48962 22.44311	12.69818 15.51669 9.285421 2.390293 3.71659	197.9448 242.5229 305.8671 432.3453 597.9493	9.907552 27.2062 4.267666 1.804121 18.13531	14.68894 40.33591 6.327242 2.67479 26.88742	7.420724 16.6318 2.068624 0.61867 4.496605
	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393	188.0373 309.7799 367.6506 453.6402 579.814 563.4623	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174
	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031
	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081
	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539
	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892
	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892
Histone H3	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 BR2	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 BR3	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 %CV	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV
Histone H3	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 BR2 220	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 BR3 260.0746	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 %CV 6.837154	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641
Histone H3	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell 8Cell	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 BR2 220 317.298	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 BR3 260.0746 430.7783	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763 348.917	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 %CV 6.837154 16.73229	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823
Histone H3	1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell 8Cell 64Cell	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 BR2 220 317.298 387.1543	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 BR3 260.0746 430.7783 479.8892	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763 348.917 426.8413	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 %CV 6.837154 16.73229 9.141538	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298 413.4805	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071 39.03133	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702
Histone H3	1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD SHIELD Stage 1Cell 8Cell 64Cell 256Cell	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805 682.2903	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 BR2 220 317.298 387.1543 582.4125	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 BR3 260.0746 430.7783 479.8892 624.1576	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763 348.917 426.8413 629.6201	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986 40.95749	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 9.074783 %CV 6.837154 16.73229 9.141538 6.505112	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298 413.4805 624.1576	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627 41.74512	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071 39.03133 61.89132	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702 9.915977
Histone H3	1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD SHIELD Stage 1Cell 8Cell 64Cell 256Cell 1K Cell	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805 682.2903 927.4467	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 8R2 220 317.298 387.1543 582.4125 1290.012	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 8R3 260.0746 430.7783 479.8892 624.1576 926.6482	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 4verage 241.6763 348.917 426.8413 629.6201 1048.036	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986 40.95749 171.1033	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 9.074783 %CV 6.837154 16.73229 9.141538 6.505112 16.3261	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298 413.4805 624.1576 927.4467	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627 41.74512 0.798579	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071 39.03133 61.89132 1.183973	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702 9.915977 0.127659
Histone H3	1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell 8Cell 256Cell 1K Cell HIGH	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805 682.2903 927.4467 968.1659	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 8R2 220 317.298 387.1543 582.4125 1290.012 893.3207	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 8R3 260.0746 430.7783 479.8892 624.1576 926.6482 922.0678	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763 348.917 426.8413 629.6201 1048.036 927.8515	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986 40.95749 171.1033 30.8279	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 %CV 6.837154 16.73229 9.141538 6.505112 16.3261 3.322504	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298 413.4805 624.1576 927.4467 922.0678	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627 41.74512 0.798579 28.74711	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071 39.03133 61.89132 1.183973 42.62046	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702 9.915977 0.127659 4.62227
Histone H3	1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell 8Cell 256Cell 1K Cell HIGH OBLONG	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805 682.2903 927.4467 968.1659 1049.45	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 8R2 220 317.298 387.1543 582.4125 1290.012 893.3207 976.9009	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 8R3 260.0746 430.7783 479.8892 624.1576 926.6482 922.0678 1047.411	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763 348.917 426.8413 629.6201 1048.036 927.8515 1024.587	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986 40.95749 171.1033 30.8279 33.72979	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 9.074783 %CV 6.837154 16.73229 9.141538 6.505112 16.3261 3.322504 3.292036	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Wedian 244.9543 317.298 413.4805 624.1576 927.4467 922.0678 1047.411	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627 41.74512 0.798579 28.74711 2.039448	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071 39.03133 61.89132 1.183973 42.62046 3.023686	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702 9.915977 0.127659 4.62227 0.288682
Histone H3	1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805 682.2903 927.4467 968.1659 1049.45 1229.202	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 8R2 220 317.298 387.1543 582.4125 1290.012 893.3207 976.9009 1178.453	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 8R3 260.0746 430.7783 479.8892 624.1576 926.6482 922.0678 1047.411 1083.159	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 Average 241.6763 348.917 426.8413 629.6201 1048.036 927.8515 1024.587 1163.605	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986 40.95749 171.1033 30.8279 33.72979 60.53903	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 9.074783 %CV 6.837154 16.73229 9.141538 6.505112 16.3261 3.322504 3.292036 5.202714	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298 413.4805 624.1576 927.4467 922.0678 1047.411 1178.453	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627 41.74512 0.798579 28.74711 2.039448 50.74838	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 75.10866 274.1065 75.21955	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702 9.915977 0.127659 4.62227 0.288682 6.384602
Histone H3	1Cell 8Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME SHIELD Stage 1Cell 8Cell 64Cell 256Cell 1K Cell HIGH OBLONG SPHERE DOME	249.3922 215.3167 301.5995 432.3453 633.8255 632.6728 779.6588 825.9572 1374.179 1718.778 BR1 244.9543 298.6748 413.4805 682.2903 927.4467 968.1659 1049.45 1229.202 1916.443	197.9448 242.5229 305.8671 430.5412 597.9493 665.1393 734.8612 828.6819 1228.439 2144.869 8R2 220 317.298 387.1543 582.4125 1290.012 893.3207 976.9009 1178.453 1943.526	188.0373 309.7799 367.6506 453.6402 579.814 563.4623 637.3996 731.978 1266.959 1903.66 8R3 260.0746 430.7783 479.8892 624.1576 926.6482 922.0678 1047.411 1083.159 1867.927	211.7914 255.8732 325.0391 438.8423 603.8629 620.4248 717.3065 795.539 1289.859 1922.435 4000 241.6763 348.917 426.8413 629.6201 1048.036 927.8515 1024.587 1163.605 1909.299	26.89365 39.70305 30.18125 10.48962 22.44311 42.40335 59.38882 44.95818 61.66213 174.4568 STDEV 16.52378 58.38181 39.01986 40.95749 171.1033 30.8279 33.72979 60.53903 31.27372	12.69818 15.51669 9.285421 2.390293 3.71659 6.834568 8.27942 5.651286 4.780532 9.074783 %CV 6.837154 16.73229 9.141538 6.505112 16.3261 3.322504 3.292036 5.202714 1.637969	197.9448 242.5229 305.8671 432.3453 597.9493 632.6728 734.8612 825.9572 1266.959 1903.66 Median 244.9543 317.298 413.4805 624.1576 927.4467 922.0678 1047.411 1178.453 1916.443	9.907552 27.2062 4.267666 1.804121 18.13531 32.46651 44.79764 2.724675 38.51926 184.8823 MAD 15.12029 18.62317 26.32627 41.74512 0.798579 28.74711 2.039448 50.74838 27.08336	14.68894 40.33591 6.327242 2.67479 26.88742 48.13485 66.41698 4.039603 57.10866 274.1065 rSD 22.41734 27.61071 39.03133 61.89132 1.183973 42.62046 3.023686 75.23955 40.15378	7.420724 16.6318 2.068624 0.61867 4.496605 7.608174 9.038031 0.489081 4.507539 14.39892 %rCV 9.151641 8.701823 9.439702 9.915977 0.127659 4.62227 0.288682 6.384602 2.095225